// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; template <int DataLayout> static void test_fft_2D_golden() { Tensor<float, 2, DataLayout> input(2, 3); input(0, 0) = 1; input(0, 1) = 2; input(0, 2) = 3; input(1, 0) = 4; input(1, 1) = 5; input(1, 2) = 6; array<ptrdiff_t, 2> fft; fft[0] = 0; fft[1] = 1; Tensor<std::complex<float>, 2, DataLayout> output = input.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); std::complex<float> output_golden[6]; // in ColMajor order output_golden[0] = std::complex<float>(21, 0); output_golden[1] = std::complex<float>(-9, 0); output_golden[2] = std::complex<float>(-3, 1.73205); output_golden[3] = std::complex<float>( 0, 0); output_golden[4] = std::complex<float>(-3, -1.73205); output_golden[5] = std::complex<float>(0 ,0); std::complex<float> c_offset = std::complex<float>(1.0, 1.0); if (DataLayout == ColMajor) { VERIFY_IS_APPROX(output(0) + c_offset, output_golden[0] + c_offset); VERIFY_IS_APPROX(output(1) + c_offset, output_golden[1] + c_offset); VERIFY_IS_APPROX(output(2) + c_offset, output_golden[2] + c_offset); VERIFY_IS_APPROX(output(3) + c_offset, output_golden[3] + c_offset); VERIFY_IS_APPROX(output(4) + c_offset, output_golden[4] + c_offset); VERIFY_IS_APPROX(output(5) + c_offset, output_golden[5] + c_offset); } else { VERIFY_IS_APPROX(output(0)+ c_offset, output_golden[0]+ c_offset); VERIFY_IS_APPROX(output(1)+ c_offset, output_golden[2]+ c_offset); VERIFY_IS_APPROX(output(2)+ c_offset, output_golden[4]+ c_offset); VERIFY_IS_APPROX(output(3)+ c_offset, output_golden[1]+ c_offset); VERIFY_IS_APPROX(output(4)+ c_offset, output_golden[3]+ c_offset); VERIFY_IS_APPROX(output(5)+ c_offset, output_golden[5]+ c_offset); } } static void test_fft_complex_input_golden() { Tensor<std::complex<float>, 1, ColMajor> input(5); input(0) = std::complex<float>(1, 1); input(1) = std::complex<float>(2, 2); input(2) = std::complex<float>(3, 3); input(3) = std::complex<float>(4, 4); input(4) = std::complex<float>(5, 5); array<ptrdiff_t, 1> fft; fft[0] = 0; Tensor<std::complex<float>, 1, ColMajor> forward_output_both_parts = input.fft<BothParts, FFT_FORWARD>(fft); Tensor<std::complex<float>, 1, ColMajor> reverse_output_both_parts = input.fft<BothParts, FFT_REVERSE>(fft); Tensor<float, 1, ColMajor> forward_output_real_part = input.fft<RealPart, FFT_FORWARD>(fft); Tensor<float, 1, ColMajor> reverse_output_real_part = input.fft<RealPart, FFT_REVERSE>(fft); Tensor<float, 1, ColMajor> forward_output_imag_part = input.fft<ImagPart, FFT_FORWARD>(fft); Tensor<float, 1, ColMajor> reverse_output_imag_part = input.fft<ImagPart, FFT_REVERSE>(fft); VERIFY_IS_EQUAL(forward_output_both_parts.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(reverse_output_both_parts.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(forward_output_real_part.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(reverse_output_real_part.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(forward_output_imag_part.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(reverse_output_imag_part.dimension(0), input.dimension(0)); std::complex<float> forward_golden_result[5]; std::complex<float> reverse_golden_result[5]; forward_golden_result[0] = std::complex<float>(15.000000000000000,+15.000000000000000); forward_golden_result[1] = std::complex<float>(-5.940954801177935, +0.940954801177934); forward_golden_result[2] = std::complex<float>(-3.312299240582266, -1.687700759417735); forward_golden_result[3] = std::complex<float>(-1.687700759417735, -3.312299240582266); forward_golden_result[4] = std::complex<float>( 0.940954801177934, -5.940954801177935); reverse_golden_result[0] = std::complex<float>( 3.000000000000000, + 3.000000000000000); reverse_golden_result[1] = std::complex<float>( 0.188190960235587, - 1.188190960235587); reverse_golden_result[2] = std::complex<float>(-0.337540151883547, - 0.662459848116453); reverse_golden_result[3] = std::complex<float>(-0.662459848116453, - 0.337540151883547); reverse_golden_result[4] = std::complex<float>(-1.188190960235587, + 0.188190960235587); for(int i = 0; i < 5; ++i) { VERIFY_IS_APPROX(forward_output_both_parts(i), forward_golden_result[i]); VERIFY_IS_APPROX(forward_output_real_part(i), forward_golden_result[i].real()); VERIFY_IS_APPROX(forward_output_imag_part(i), forward_golden_result[i].imag()); } for(int i = 0; i < 5; ++i) { VERIFY_IS_APPROX(reverse_output_both_parts(i), reverse_golden_result[i]); VERIFY_IS_APPROX(reverse_output_real_part(i), reverse_golden_result[i].real()); VERIFY_IS_APPROX(reverse_output_imag_part(i), reverse_golden_result[i].imag()); } } static void test_fft_real_input_golden() { Tensor<float, 1, ColMajor> input(5); input(0) = 1.0; input(1) = 2.0; input(2) = 3.0; input(3) = 4.0; input(4) = 5.0; array<ptrdiff_t, 1> fft; fft[0] = 0; Tensor<std::complex<float>, 1, ColMajor> forward_output_both_parts = input.fft<BothParts, FFT_FORWARD>(fft); Tensor<std::complex<float>, 1, ColMajor> reverse_output_both_parts = input.fft<BothParts, FFT_REVERSE>(fft); Tensor<float, 1, ColMajor> forward_output_real_part = input.fft<RealPart, FFT_FORWARD>(fft); Tensor<float, 1, ColMajor> reverse_output_real_part = input.fft<RealPart, FFT_REVERSE>(fft); Tensor<float, 1, ColMajor> forward_output_imag_part = input.fft<ImagPart, FFT_FORWARD>(fft); Tensor<float, 1, ColMajor> reverse_output_imag_part = input.fft<ImagPart, FFT_REVERSE>(fft); VERIFY_IS_EQUAL(forward_output_both_parts.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(reverse_output_both_parts.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(forward_output_real_part.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(reverse_output_real_part.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(forward_output_imag_part.dimension(0), input.dimension(0)); VERIFY_IS_EQUAL(reverse_output_imag_part.dimension(0), input.dimension(0)); std::complex<float> forward_golden_result[5]; std::complex<float> reverse_golden_result[5]; forward_golden_result[0] = std::complex<float>( 15, 0); forward_golden_result[1] = std::complex<float>(-2.5, +3.44095480117793); forward_golden_result[2] = std::complex<float>(-2.5, +0.81229924058227); forward_golden_result[3] = std::complex<float>(-2.5, -0.81229924058227); forward_golden_result[4] = std::complex<float>(-2.5, -3.44095480117793); reverse_golden_result[0] = std::complex<float>( 3.0, 0); reverse_golden_result[1] = std::complex<float>(-0.5, -0.688190960235587); reverse_golden_result[2] = std::complex<float>(-0.5, -0.162459848116453); reverse_golden_result[3] = std::complex<float>(-0.5, +0.162459848116453); reverse_golden_result[4] = std::complex<float>(-0.5, +0.688190960235587); std::complex<float> c_offset(1.0, 1.0); float r_offset = 1.0; for(int i = 0; i < 5; ++i) { VERIFY_IS_APPROX(forward_output_both_parts(i) + c_offset, forward_golden_result[i] + c_offset); VERIFY_IS_APPROX(forward_output_real_part(i) + r_offset, forward_golden_result[i].real() + r_offset); VERIFY_IS_APPROX(forward_output_imag_part(i) + r_offset, forward_golden_result[i].imag() + r_offset); } for(int i = 0; i < 5; ++i) { VERIFY_IS_APPROX(reverse_output_both_parts(i) + c_offset, reverse_golden_result[i] + c_offset); VERIFY_IS_APPROX(reverse_output_real_part(i) + r_offset, reverse_golden_result[i].real() + r_offset); VERIFY_IS_APPROX(reverse_output_imag_part(i) + r_offset, reverse_golden_result[i].imag() + r_offset); } } template <int DataLayout, typename RealScalar, bool isComplexInput, int FFTResultType, int FFTDirection, int TensorRank> static void test_fft_real_input_energy() { Eigen::DSizes<ptrdiff_t, TensorRank> dimensions; ptrdiff_t total_size = 1; for (int i = 0; i < TensorRank; ++i) { dimensions[i] = rand() % 20 + 1; total_size *= dimensions[i]; } const DSizes<ptrdiff_t, TensorRank> arr = dimensions; typedef typename internal::conditional<isComplexInput == true, std::complex<RealScalar>, RealScalar>::type InputScalar; Tensor<InputScalar, TensorRank, DataLayout> input; input.resize(arr); input.setRandom(); array<ptrdiff_t, TensorRank> fft; for (int i = 0; i < TensorRank; ++i) { fft[i] = i; } typedef typename internal::conditional<FFTResultType == Eigen::BothParts, std::complex<RealScalar>, RealScalar>::type OutputScalar; Tensor<OutputScalar, TensorRank, DataLayout> output; output = input.template fft<FFTResultType, FFTDirection>(fft); for (int i = 0; i < TensorRank; ++i) { VERIFY_IS_EQUAL(output.dimension(i), input.dimension(i)); } RealScalar energy_original = 0.0; RealScalar energy_after_fft = 0.0; for (int i = 0; i < total_size; ++i) { energy_original += numext::abs2(input(i)); } for (int i = 0; i < total_size; ++i) { energy_after_fft += numext::abs2(output(i)); } if(FFTDirection == FFT_FORWARD) { VERIFY_IS_APPROX(energy_original, energy_after_fft / total_size); } else { VERIFY_IS_APPROX(energy_original, energy_after_fft * total_size); } } void test_cxx11_tensor_fft() { test_fft_complex_input_golden(); test_fft_real_input_golden(); test_fft_2D_golden<ColMajor>(); test_fft_2D_golden<RowMajor>(); test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 1>(); test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 1>(); test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 1>(); test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 1>(); test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 2>(); test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 2>(); test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 2>(); test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 2>(); test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 3>(); test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 3>(); test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 3>(); test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 3>(); test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 4>(); test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 4>(); test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 4>(); test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 4>(); test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 1>(); test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 1>(); test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 1>(); test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 1>(); test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 2>(); test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 2>(); test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 2>(); test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 2>(); test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 3>(); test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 3>(); test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 3>(); test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 3>(); test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 4>(); test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 4>(); test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 4>(); test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 4>(); }