// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <complex> #include <cmath> #include <Eigen/CXX11/Tensor> using Eigen::Tensor; template <int DataLayout> static void test_1D_fft_ifft_invariant(int sequence_length) { Tensor<double, 1, DataLayout> tensor(sequence_length); tensor.setRandom(); array<int, 1> fft; fft[0] = 0; Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft; Tensor<std::complex<double>, 1, DataLayout> tensor_after_fft_ifft; tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), sequence_length); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), sequence_length); for (int i = 0; i < sequence_length; ++i) { VERIFY_IS_APPROX(static_cast<float>(tensor(i)), static_cast<float>(std::real(tensor_after_fft_ifft(i)))); } } template <int DataLayout> static void test_2D_fft_ifft_invariant(int dim0, int dim1) { Tensor<double, 2, DataLayout> tensor(dim0, dim1); tensor.setRandom(); array<int, 2> fft; fft[0] = 0; fft[1] = 1; Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft; Tensor<std::complex<double>, 2, DataLayout> tensor_after_fft_ifft; tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); for (int i = 0; i < dim0; ++i) { for (int j = 0; j < dim1; ++j) { //std::cout << "[" << i << "][" << j << "]" << " Original data: " << tensor(i,j) << " Transformed data:" << tensor_after_fft_ifft(i,j) << std::endl; VERIFY_IS_APPROX(static_cast<float>(tensor(i,j)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j)))); } } } template <int DataLayout> static void test_3D_fft_ifft_invariant(int dim0, int dim1, int dim2) { Tensor<double, 3, DataLayout> tensor(dim0, dim1, dim2); tensor.setRandom(); array<int, 3> fft; fft[0] = 0; fft[1] = 1; fft[2] = 2; Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft; Tensor<std::complex<double>, 3, DataLayout> tensor_after_fft_ifft; tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::BothParts, Eigen::FFT_REVERSE>(fft); VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2); for (int i = 0; i < dim0; ++i) { for (int j = 0; j < dim1; ++j) { for (int k = 0; k < dim2; ++k) { VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k)), static_cast<float>(std::real(tensor_after_fft_ifft(i,j,k)))); } } } } template <int DataLayout> static void test_sub_fft_ifft_invariant(int dim0, int dim1, int dim2, int dim3) { Tensor<double, 4, DataLayout> tensor(dim0, dim1, dim2, dim3); tensor.setRandom(); array<int, 2> fft; fft[0] = 2; fft[1] = 0; Tensor<std::complex<double>, 4, DataLayout> tensor_after_fft; Tensor<double, 4, DataLayout> tensor_after_fft_ifft; tensor_after_fft = tensor.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft); tensor_after_fft_ifft = tensor_after_fft.template fft<Eigen::RealPart, Eigen::FFT_REVERSE>(fft); VERIFY_IS_EQUAL(tensor_after_fft.dimension(0), dim0); VERIFY_IS_EQUAL(tensor_after_fft.dimension(1), dim1); VERIFY_IS_EQUAL(tensor_after_fft.dimension(2), dim2); VERIFY_IS_EQUAL(tensor_after_fft.dimension(3), dim3); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(0), dim0); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(1), dim1); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(2), dim2); VERIFY_IS_EQUAL(tensor_after_fft_ifft.dimension(3), dim3); for (int i = 0; i < dim0; ++i) { for (int j = 0; j < dim1; ++j) { for (int k = 0; k < dim2; ++k) { for (int l = 0; l < dim3; ++l) { VERIFY_IS_APPROX(static_cast<float>(tensor(i,j,k,l)), static_cast<float>(tensor_after_fft_ifft(i,j,k,l))); } } } } } void test_cxx11_tensor_ifft() { CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(4)); CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(16)); CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(32)); CALL_SUBTEST(test_1D_fft_ifft_invariant<ColMajor>(1024*1024)); CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(4,4)); CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(8,16)); CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(16,32)); CALL_SUBTEST(test_2D_fft_ifft_invariant<ColMajor>(1024,1024)); CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(4,4,4)); CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(8,16,32)); CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(16,4,8)); CALL_SUBTEST(test_3D_fft_ifft_invariant<ColMajor>(256,256,256)); CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(4,4,4,4)); CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(8,16,32,64)); CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(16,4,8,12)); CALL_SUBTEST(test_sub_fft_ifft_invariant<ColMajor>(64,64,64,64)); }