// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; void test_simple_patch() { Tensor<float, 4> tensor(2,3,5,7); tensor.setRandom(); Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); // Single pixel patch: ColMajor Tensor<float, 5> single_pixel_patch; single_pixel_patch = tensor.extract_image_patches(1, 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2); VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3*5); VERIFY_IS_EQUAL(single_pixel_patch.dimension(4), 7); // Single pixel patch: RowMajor Tensor<float, 5, RowMajor> single_pixel_patch_row_major; single_pixel_patch_row_major = tensor_row_major.extract_image_patches(1, 1); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 7); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(1), 3*5); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(2), 1); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(3), 1); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(4), 2); for (int i = 0; i < tensor.size(); ++i) { // ColMajor if (tensor.data()[i] != single_pixel_patch.data()[i]) { std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " << single_pixel_patch.data()[i] << std::endl; } VERIFY_IS_EQUAL(single_pixel_patch.data()[i], tensor.data()[i]); // RowMajor if (tensor_row_major.data()[i] != single_pixel_patch_row_major.data()[i]) { std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " << single_pixel_patch_row_major.data()[i] << std::endl; } VERIFY_IS_EQUAL(single_pixel_patch_row_major.data()[i], tensor_row_major.data()[i]); VERIFY_IS_EQUAL(tensor.data()[i], tensor_row_major.data()[i]); VERIFY_IS_EQUAL(single_pixel_patch.data()[i], single_pixel_patch_row_major.data()[i]); } // Entire image patch: ColMajor Tensor<float, 5> entire_image_patch; entire_image_patch = tensor.extract_image_patches(3, 5); VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2); VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3); VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5); VERIFY_IS_EQUAL(entire_image_patch.dimension(3), 3*5); VERIFY_IS_EQUAL(entire_image_patch.dimension(4), 7); // Entire image patch: RowMajor Tensor<float, 5, RowMajor> entire_image_patch_row_major; entire_image_patch_row_major = tensor_row_major.extract_image_patches(3, 5); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 7); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 3*5); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 5); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(3), 3); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(4), 2); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { int patchId = i+3*j; for (int r = 0; r < 3; ++r) { for (int c = 0; c < 5; ++c) { for (int d = 0; d < 2; ++d) { for (int b = 0; b < 7; ++b) { float expected = 0.0f; float expected_row_major = 0.0f; if (r-1+i >= 0 && c-2+j >= 0 && r-1+i < 3 && c-2+j < 5) { expected = tensor(d, r-1+i, c-2+j, b); expected_row_major = tensor_row_major(b, c-2+j, r-1+i, d); } // ColMajor if (entire_image_patch(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(entire_image_patch(d, r, c, patchId, b), expected); // RowMajor if (entire_image_patch_row_major(b, patchId, c, r, d) != expected_row_major) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(entire_image_patch_row_major(b, patchId, c, r, d), expected_row_major); // Check that ColMajor and RowMajor agree. VERIFY_IS_EQUAL(expected, expected_row_major); } } } } } } // 2D patch: ColMajor Tensor<float, 5> twod_patch; twod_patch = tensor.extract_image_patches(2, 2); VERIFY_IS_EQUAL(twod_patch.dimension(0), 2); VERIFY_IS_EQUAL(twod_patch.dimension(1), 2); VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); VERIFY_IS_EQUAL(twod_patch.dimension(3), 3*5); VERIFY_IS_EQUAL(twod_patch.dimension(4), 7); // 2D patch: RowMajor Tensor<float, 5, RowMajor> twod_patch_row_major; twod_patch_row_major = tensor_row_major.extract_image_patches(2, 2); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 7); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 3*5); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(3), 2); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(4), 2); // Based on the calculation described in TensorTraits.h, padding happens to be 0. int row_padding = 0; int col_padding = 0; int stride = 1; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { int patchId = i+3*j; for (int r = 0; r < 2; ++r) { for (int c = 0; c < 2; ++c) { for (int d = 0; d < 2; ++d) { for (int b = 0; b < 7; ++b) { float expected = 0.0f; float expected_row_major = 0.0f; int row_offset = r*stride + i - row_padding; int col_offset = c*stride + j - col_padding; // ColMajor if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor.dimension(1) && col_offset < tensor.dimension(2)) { expected = tensor(d, row_offset, col_offset, b); } if (twod_patch(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(twod_patch(d, r, c, patchId, b), expected); // RowMajor if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor_row_major.dimension(2) && col_offset < tensor_row_major.dimension(1)) { expected_row_major = tensor_row_major(b, col_offset, row_offset, d); } if (twod_patch_row_major(b, patchId, c, r, d) != expected_row_major) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(twod_patch_row_major(b, patchId, c, r, d), expected_row_major); // Check that ColMajor and RowMajor agree. VERIFY_IS_EQUAL(expected, expected_row_major); } } } } } } } // Verifies VALID padding (no padding) with incrementing values. void test_patch_padding_valid() { int input_depth = 3; int input_rows = 3; int input_cols = 3; int input_batches = 1; int ksize = 2; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>. int stride = 2; // Only same stride is supported. Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches); // Initializes tensor with incrementing numbers. for (int i = 0; i < tensor.size(); ++i) { tensor.data()[i] = i + 1; } // ColMajor Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID); VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols VERIFY_IS_EQUAL(result.dimension(3), 1); // number of patches VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches // RowMajor Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID); VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4)); VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3)); VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2)); VERIFY_IS_EQUAL(result.dimension(3), result_row_major.dimension(1)); VERIFY_IS_EQUAL(result.dimension(4), result_row_major.dimension(0)); // No padding is carried out. int row_padding = 0; int col_padding = 0; for (int i = 0; (i+stride+ksize-1) < input_rows; i += stride) { // input rows for (int j = 0; (j+stride+ksize-1) < input_cols; j += stride) { // input cols int patchId = i+input_rows*j; for (int r = 0; r < ksize; ++r) { // patch rows for (int c = 0; c < ksize; ++c) { // patch cols for (int d = 0; d < input_depth; ++d) { // depth for (int b = 0; b < input_batches; ++b) { // batch float expected = 0.0f; float expected_row_major = 0.0f; int row_offset = r + i - row_padding; int col_offset = c + j - col_padding; if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) { expected = tensor(d, row_offset, col_offset, b); expected_row_major = tensor_row_major(b, col_offset, row_offset, d); } // ColMajor if (result(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected); // RowMajor if (result_row_major(b, patchId, c, r, d) != expected_row_major) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major); // Check that ColMajor and RowMajor agree. VERIFY_IS_EQUAL(expected, expected_row_major); } } } } } } } // Verifies VALID padding (no padding) with the same value. void test_patch_padding_valid_same_value() { int input_depth = 1; int input_rows = 5; int input_cols = 5; int input_batches = 2; int ksize = 3; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>. int stride = 2; // Only same stride is supported. // ColMajor Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches); tensor = tensor.constant(11.0f); Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID); VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols VERIFY_IS_EQUAL(result.dimension(3), 4); // number of patches VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches // RowMajor Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, 1, 1, PADDING_VALID); VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4)); VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3)); VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2)); VERIFY_IS_EQUAL(result.dimension(3), result_row_major.dimension(1)); VERIFY_IS_EQUAL(result.dimension(4), result_row_major.dimension(0)); // No padding is carried out. int row_padding = 0; int col_padding = 0; for (int i = 0; (i+stride+ksize-1) <= input_rows; i += stride) { // input rows for (int j = 0; (j+stride+ksize-1) <= input_cols; j += stride) { // input cols int patchId = i+input_rows*j; for (int r = 0; r < ksize; ++r) { // patch rows for (int c = 0; c < ksize; ++c) { // patch cols for (int d = 0; d < input_depth; ++d) { // depth for (int b = 0; b < input_batches; ++b) { // batch float expected = 0.0f; float expected_row_major = 0.0f; int row_offset = r + i - row_padding; int col_offset = c + j - col_padding; if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) { expected = tensor(d, row_offset, col_offset, b); expected_row_major = tensor_row_major(b, col_offset, row_offset, d); } // ColMajor if (result(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected); // RowMajor if (result_row_major(b, patchId, c, r, d) != expected_row_major) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major); // Check that ColMajor and RowMajor agree. VERIFY_IS_EQUAL(expected, expected_row_major); } } } } } } } // Verifies SAME padding. void test_patch_padding_same() { int input_depth = 3; int input_rows = 4; int input_cols = 2; int input_batches = 1; int ksize = 2; // Corresponds to the Rows and Cols for tensor.extract_image_patches<>. int stride = 2; // Only same stride is supported. // ColMajor Tensor<float, 4> tensor(input_depth, input_rows, input_cols, input_batches); // Initializes tensor with incrementing numbers. for (int i = 0; i < tensor.size(); ++i) { tensor.data()[i] = i + 1; } Tensor<float, 5> result = tensor.extract_image_patches(ksize, ksize, stride, stride, PADDING_SAME); VERIFY_IS_EQUAL(result.dimension(0), input_depth); // depth VERIFY_IS_EQUAL(result.dimension(1), ksize); // kernel rows VERIFY_IS_EQUAL(result.dimension(2), ksize); // kernel cols VERIFY_IS_EQUAL(result.dimension(3), 2); // number of patches VERIFY_IS_EQUAL(result.dimension(4), input_batches); // number of batches // RowMajor Tensor<float, 4, RowMajor> tensor_row_major = tensor.swap_layout(); VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(3)); VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(2)); VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(1)); VERIFY_IS_EQUAL(tensor.dimension(3), tensor_row_major.dimension(0)); Tensor<float, 5, RowMajor> result_row_major = tensor_row_major.extract_image_patches(ksize, ksize, stride, stride, PADDING_SAME); VERIFY_IS_EQUAL(result.dimension(0), result_row_major.dimension(4)); VERIFY_IS_EQUAL(result.dimension(1), result_row_major.dimension(3)); VERIFY_IS_EQUAL(result.dimension(2), result_row_major.dimension(2)); VERIFY_IS_EQUAL(result.dimension(3), result_row_major.dimension(1)); VERIFY_IS_EQUAL(result.dimension(4), result_row_major.dimension(0)); // Based on the calculation described in TensorTraits.h, padding happens to be // 0. int row_padding = 0; int col_padding = 0; for (int i = 0; (i+stride+ksize-1) <= input_rows; i += stride) { // input rows for (int j = 0; (j+stride+ksize-1) <= input_cols; j += stride) { // input cols int patchId = i+input_rows*j; for (int r = 0; r < ksize; ++r) { // patch rows for (int c = 0; c < ksize; ++c) { // patch cols for (int d = 0; d < input_depth; ++d) { // depth for (int b = 0; b < input_batches; ++b) { // batch float expected = 0.0f; float expected_row_major = 0.0f; int row_offset = r*stride + i - row_padding; int col_offset = c*stride + j - col_padding; if (row_offset >= 0 && col_offset >= 0 && row_offset < input_rows && col_offset < input_cols) { expected = tensor(d, row_offset, col_offset, b); expected_row_major = tensor_row_major(b, col_offset, row_offset, d); } // ColMajor if (result(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(result(d, r, c, patchId, b), expected); // RowMajor if (result_row_major(b, patchId, c, r, d) != expected_row_major) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(result_row_major(b, patchId, c, r, d), expected_row_major); // Check that ColMajor and RowMajor agree. VERIFY_IS_EQUAL(expected, expected_row_major); } } } } } } } void test_patch_no_extra_dim() { Tensor<float, 3> tensor(2,3,5); tensor.setRandom(); Tensor<float, 3, RowMajor> tensor_row_major = tensor.swap_layout(); VERIFY_IS_EQUAL(tensor.dimension(0), tensor_row_major.dimension(2)); VERIFY_IS_EQUAL(tensor.dimension(1), tensor_row_major.dimension(1)); VERIFY_IS_EQUAL(tensor.dimension(2), tensor_row_major.dimension(0)); // Single pixel patch: ColMajor Tensor<float, 4> single_pixel_patch; single_pixel_patch = tensor.extract_image_patches(1, 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(0), 2); VERIFY_IS_EQUAL(single_pixel_patch.dimension(1), 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(2), 1); VERIFY_IS_EQUAL(single_pixel_patch.dimension(3), 3*5); // Single pixel patch: RowMajor Tensor<float, 4, RowMajor> single_pixel_patch_row_major; single_pixel_patch_row_major = tensor_row_major.extract_image_patches(1, 1); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(0), 3*5); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(1), 1); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(2), 1); VERIFY_IS_EQUAL(single_pixel_patch_row_major.dimension(3), 2); for (int i = 0; i < tensor.size(); ++i) { // ColMajor if (tensor.data()[i] != single_pixel_patch.data()[i]) { std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " << single_pixel_patch.data()[i] << std::endl; } VERIFY_IS_EQUAL(single_pixel_patch.data()[i], tensor.data()[i]); // RowMajor if (tensor_row_major.data()[i] != single_pixel_patch_row_major.data()[i]) { std::cout << "Mismatch detected at index " << i << " : " << tensor.data()[i] << " vs " << single_pixel_patch_row_major.data()[i] << std::endl; } VERIFY_IS_EQUAL(single_pixel_patch_row_major.data()[i], tensor_row_major.data()[i]); VERIFY_IS_EQUAL(tensor.data()[i], tensor_row_major.data()[i]); VERIFY_IS_EQUAL(single_pixel_patch.data()[i], single_pixel_patch_row_major.data()[i]); } // Entire image patch: ColMajor Tensor<float, 4> entire_image_patch; entire_image_patch = tensor.extract_image_patches(3, 5); VERIFY_IS_EQUAL(entire_image_patch.dimension(0), 2); VERIFY_IS_EQUAL(entire_image_patch.dimension(1), 3); VERIFY_IS_EQUAL(entire_image_patch.dimension(2), 5); VERIFY_IS_EQUAL(entire_image_patch.dimension(3), 3*5); // Entire image patch: RowMajor Tensor<float, 4, RowMajor> entire_image_patch_row_major; entire_image_patch_row_major = tensor_row_major.extract_image_patches(3, 5); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(0), 3*5); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(1), 5); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(2), 3); VERIFY_IS_EQUAL(entire_image_patch_row_major.dimension(3), 2); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { int patchId = i+3*j; for (int r = 0; r < 3; ++r) { for (int c = 0; c < 5; ++c) { for (int d = 0; d < 2; ++d) { float expected = 0.0f; float expected_row_major = 0.0f; if (r-1+i >= 0 && c-2+j >= 0 && r-1+i < 3 && c-2+j < 5) { expected = tensor(d, r-1+i, c-2+j); expected_row_major = tensor_row_major(c-2+j, r-1+i, d); } // ColMajor if (entire_image_patch(d, r, c, patchId) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl; } VERIFY_IS_EQUAL(entire_image_patch(d, r, c, patchId), expected); // RowMajor if (entire_image_patch_row_major(patchId, c, r, d) != expected_row_major) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl; } VERIFY_IS_EQUAL(entire_image_patch_row_major(patchId, c, r, d), expected_row_major); // Check that ColMajor and RowMajor agree. VERIFY_IS_EQUAL(expected, expected_row_major); } } } } } // 2D patch: ColMajor Tensor<float, 4> twod_patch; twod_patch = tensor.extract_image_patches(2, 2); VERIFY_IS_EQUAL(twod_patch.dimension(0), 2); VERIFY_IS_EQUAL(twod_patch.dimension(1), 2); VERIFY_IS_EQUAL(twod_patch.dimension(2), 2); VERIFY_IS_EQUAL(twod_patch.dimension(3), 3*5); // 2D patch: RowMajor Tensor<float, 4, RowMajor> twod_patch_row_major; twod_patch_row_major = tensor_row_major.extract_image_patches(2, 2); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(0), 3*5); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(1), 2); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(2), 2); VERIFY_IS_EQUAL(twod_patch_row_major.dimension(3), 2); // Based on the calculation described in TensorTraits.h, padding happens to be 0. int row_padding = 0; int col_padding = 0; int stride = 1; for (int i = 0; i < 3; ++i) { for (int j = 0; j < 5; ++j) { int patchId = i+3*j; for (int r = 0; r < 2; ++r) { for (int c = 0; c < 2; ++c) { for (int d = 0; d < 2; ++d) { float expected = 0.0f; float expected_row_major = 0.0f; int row_offset = r*stride + i - row_padding; int col_offset = c*stride + j - col_padding; // ColMajor if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor.dimension(1) && col_offset < tensor.dimension(2)) { expected = tensor(d, row_offset, col_offset); } if (twod_patch(d, r, c, patchId) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl; } VERIFY_IS_EQUAL(twod_patch(d, r, c, patchId), expected); // RowMajor if (row_offset >= 0 && col_offset >= 0 && row_offset < tensor_row_major.dimension(1) && col_offset < tensor_row_major.dimension(0)) { expected_row_major = tensor_row_major(col_offset, row_offset, d); } if (twod_patch_row_major(patchId, c, r, d) != expected_row_major) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << std::endl; } VERIFY_IS_EQUAL(twod_patch_row_major(patchId, c, r, d), expected_row_major); // Check that ColMajor and RowMajor agree. VERIFY_IS_EQUAL(expected, expected_row_major); } } } } } } void test_imagenet_patches() { // Test the code on typical configurations used by the 'imagenet' benchmarks at // https://github.com/soumith/convnet-benchmarks // ColMajor Tensor<float, 4> l_in(3, 128, 128, 16); l_in.setRandom(); Tensor<float, 5> l_out = l_in.extract_image_patches(11, 11); VERIFY_IS_EQUAL(l_out.dimension(0), 3); VERIFY_IS_EQUAL(l_out.dimension(1), 11); VERIFY_IS_EQUAL(l_out.dimension(2), 11); VERIFY_IS_EQUAL(l_out.dimension(3), 128*128); VERIFY_IS_EQUAL(l_out.dimension(4), 16); // RowMajor Tensor<float, 5, RowMajor> l_out_row_major = l_in.swap_layout().extract_image_patches(11, 11); VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 16); VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 128*128); VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 11); VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 11); VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 3); for (int b = 0; b < 16; ++b) { for (int i = 0; i < 128; ++i) { for (int j = 0; j < 128; ++j) { int patchId = i+128*j; for (int c = 0; c < 11; ++c) { for (int r = 0; r < 11; ++r) { for (int d = 0; d < 3; ++d) { float expected = 0.0f; if (r-5+i >= 0 && c-5+j >= 0 && r-5+i < 128 && c-5+j < 128) { expected = l_in(d, r-5+i, c-5+j, b); } // ColMajor if (l_out(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); // RowMajor if (l_out_row_major(b, patchId, c, r, d) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected); } } } } } } // ColMajor l_in.resize(16, 64, 64, 32); l_in.setRandom(); l_out = l_in.extract_image_patches(9, 9); VERIFY_IS_EQUAL(l_out.dimension(0), 16); VERIFY_IS_EQUAL(l_out.dimension(1), 9); VERIFY_IS_EQUAL(l_out.dimension(2), 9); VERIFY_IS_EQUAL(l_out.dimension(3), 64*64); VERIFY_IS_EQUAL(l_out.dimension(4), 32); // RowMajor l_out_row_major = l_in.swap_layout().extract_image_patches(9, 9); VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32); VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 64*64); VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 9); VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 9); VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 16); for (int b = 0; b < 32; ++b) { for (int i = 0; i < 64; ++i) { for (int j = 0; j < 64; ++j) { int patchId = i+64*j; for (int c = 0; c < 9; ++c) { for (int r = 0; r < 9; ++r) { for (int d = 0; d < 16; ++d) { float expected = 0.0f; if (r-4+i >= 0 && c-4+j >= 0 && r-4+i < 64 && c-4+j < 64) { expected = l_in(d, r-4+i, c-4+j, b); } // ColMajor if (l_out(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); // RowMajor if (l_out_row_major(b, patchId, c, r, d) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected); } } } } } } // ColMajor l_in.resize(32, 16, 16, 32); l_in.setRandom(); l_out = l_in.extract_image_patches(7, 7); VERIFY_IS_EQUAL(l_out.dimension(0), 32); VERIFY_IS_EQUAL(l_out.dimension(1), 7); VERIFY_IS_EQUAL(l_out.dimension(2), 7); VERIFY_IS_EQUAL(l_out.dimension(3), 16*16); VERIFY_IS_EQUAL(l_out.dimension(4), 32); // RowMajor l_out_row_major = l_in.swap_layout().extract_image_patches(7, 7); VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32); VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 16*16); VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 7); VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 7); VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 32); for (int b = 0; b < 32; ++b) { for (int i = 0; i < 16; ++i) { for (int j = 0; j < 16; ++j) { int patchId = i+16*j; for (int c = 0; c < 7; ++c) { for (int r = 0; r < 7; ++r) { for (int d = 0; d < 32; ++d) { float expected = 0.0f; if (r-3+i >= 0 && c-3+j >= 0 && r-3+i < 16 && c-3+j < 16) { expected = l_in(d, r-3+i, c-3+j, b); } // ColMajor if (l_out(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); // RowMajor if (l_out_row_major(b, patchId, c, r, d) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected); } } } } } } // ColMajor l_in.resize(64, 13, 13, 32); l_in.setRandom(); l_out = l_in.extract_image_patches(3, 3); VERIFY_IS_EQUAL(l_out.dimension(0), 64); VERIFY_IS_EQUAL(l_out.dimension(1), 3); VERIFY_IS_EQUAL(l_out.dimension(2), 3); VERIFY_IS_EQUAL(l_out.dimension(3), 13*13); VERIFY_IS_EQUAL(l_out.dimension(4), 32); // RowMajor l_out_row_major = l_in.swap_layout().extract_image_patches(3, 3); VERIFY_IS_EQUAL(l_out_row_major.dimension(0), 32); VERIFY_IS_EQUAL(l_out_row_major.dimension(1), 13*13); VERIFY_IS_EQUAL(l_out_row_major.dimension(2), 3); VERIFY_IS_EQUAL(l_out_row_major.dimension(3), 3); VERIFY_IS_EQUAL(l_out_row_major.dimension(4), 64); for (int b = 0; b < 32; ++b) { for (int i = 0; i < 13; ++i) { for (int j = 0; j < 13; ++j) { int patchId = i+13*j; for (int c = 0; c < 3; ++c) { for (int r = 0; r < 3; ++r) { for (int d = 0; d < 64; ++d) { float expected = 0.0f; if (r-1+i >= 0 && c-1+j >= 0 && r-1+i < 13 && c-1+j < 13) { expected = l_in(d, r-1+i, c-1+j, b); } // ColMajor if (l_out(d, r, c, patchId, b) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(l_out(d, r, c, patchId, b), expected); // RowMajor if (l_out_row_major(b, patchId, c, r, d) != expected) { std::cout << "Mismatch detected at index i=" << i << " j=" << j << " r=" << r << " c=" << c << " d=" << d << " b=" << b << std::endl; } VERIFY_IS_EQUAL(l_out_row_major(b, patchId, c, r, d), expected); } } } } } } } void test_cxx11_tensor_image_patch() { CALL_SUBTEST_1(test_simple_patch()); CALL_SUBTEST_2(test_patch_no_extra_dim()); CALL_SUBTEST_3(test_patch_padding_valid()); CALL_SUBTEST_4(test_patch_padding_valid_same_value()); CALL_SUBTEST_5(test_patch_padding_same()); CALL_SUBTEST_6(test_imagenet_patches()); }