// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::TensorMap; static void test_additions() { Tensor<std::complex<float>, 1> data1(3); Tensor<std::complex<float>, 1> data2(3); for (int i = 0; i < 3; ++i) { data1(i) = std::complex<float>(i, -i); data2(i) = std::complex<float>(i, 7 * i); } Tensor<std::complex<float>, 1> sum = data1 + data2; for (int i = 0; i < 3; ++i) { VERIFY_IS_EQUAL(sum(i), std::complex<float>(2*i, 6*i)); } } static void test_abs() { Tensor<std::complex<float>, 1> data1(3); Tensor<std::complex<double>, 1> data2(3); data1.setRandom(); data2.setRandom(); Tensor<float, 1> abs1 = data1.abs(); Tensor<double, 1> abs2 = data2.abs(); for (int i = 0; i < 3; ++i) { VERIFY_IS_APPROX(abs1(i), std::abs(data1(i))); VERIFY_IS_APPROX(abs2(i), std::abs(data2(i))); } } static void test_conjugate() { Tensor<std::complex<float>, 1> data1(3); Tensor<std::complex<double>, 1> data2(3); Tensor<int, 1> data3(3); data1.setRandom(); data2.setRandom(); data3.setRandom(); Tensor<std::complex<float>, 1> conj1 = data1.conjugate(); Tensor<std::complex<double>, 1> conj2 = data2.conjugate(); Tensor<int, 1> conj3 = data3.conjugate(); for (int i = 0; i < 3; ++i) { VERIFY_IS_APPROX(conj1(i), std::conj(data1(i))); VERIFY_IS_APPROX(conj2(i), std::conj(data2(i))); VERIFY_IS_APPROX(conj3(i), data3(i)); } } static void test_contractions() { Tensor<std::complex<float>, 4> t_left(30, 50, 8, 31); Tensor<std::complex<float>, 5> t_right(8, 31, 7, 20, 10); Tensor<std::complex<float>, 5> t_result(30, 50, 7, 20, 10); t_left.setRandom(); t_right.setRandom(); typedef Map<Matrix<std::complex<float>, Dynamic, Dynamic>> MapXcf; MapXcf m_left(t_left.data(), 1500, 248); MapXcf m_right(t_right.data(), 248, 1400); Matrix<std::complex<float>, Dynamic, Dynamic> m_result(1500, 1400); // This contraction should be equivalent to a regular matrix multiplication typedef Tensor<float, 1>::DimensionPair DimPair; Eigen::array<DimPair, 2> dims; dims[0] = DimPair(2, 0); dims[1] = DimPair(3, 1); t_result = t_left.contract(t_right, dims); m_result = m_left * m_right; for (int i = 0; i < t_result.dimensions().TotalSize(); i++) { VERIFY_IS_APPROX(t_result.data()[i], m_result.data()[i]); } } void test_cxx11_tensor_of_complex() { CALL_SUBTEST(test_additions()); CALL_SUBTEST(test_abs()); CALL_SUBTEST(test_conjugate()); CALL_SUBTEST(test_contractions()); }