// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_reduction_cuda #define EIGEN_USE_GPU #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500 #include <cuda_fp16.h> #endif #include "main.h" #include <unsupported/Eigen/CXX11/Tensor> template<typename Type, int DataLayout> static void test_full_reductions() { Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); const int num_rows = internal::random<int>(1024, 5*1024); const int num_cols = internal::random<int>(1024, 5*1024); Tensor<Type, 2, DataLayout> in(num_rows, num_cols); in.setRandom(); Tensor<Type, 0, DataLayout> full_redux; full_redux = in.sum(); std::size_t in_bytes = in.size() * sizeof(Type); std::size_t out_bytes = full_redux.size() * sizeof(Type); Type* gpu_in_ptr = static_cast<Type*>(gpu_device.allocate(in_bytes)); Type* gpu_out_ptr = static_cast<Type*>(gpu_device.allocate(out_bytes)); gpu_device.memcpyHostToDevice(gpu_in_ptr, in.data(), in_bytes); TensorMap<Tensor<Type, 2, DataLayout> > in_gpu(gpu_in_ptr, num_rows, num_cols); TensorMap<Tensor<Type, 0, DataLayout> > out_gpu(gpu_out_ptr); out_gpu.device(gpu_device) = in_gpu.sum(); Tensor<Type, 0, DataLayout> full_redux_gpu; gpu_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_ptr, out_bytes); gpu_device.synchronize(); // Check that the CPU and GPU reductions return the same result. VERIFY_IS_APPROX(full_redux(), full_redux_gpu()); gpu_device.deallocate(gpu_in_ptr); gpu_device.deallocate(gpu_out_ptr); } template<typename Type, int DataLayout> static void test_first_dim_reductions() { int dim_x = 33; int dim_y = 1; int dim_z = 128; Tensor<Type, 3, DataLayout> in(dim_x, dim_y, dim_z); in.setRandom(); Eigen::array<int, 1> red_axis; red_axis[0] = 0; Tensor<Type, 2, DataLayout> redux = in.sum(red_axis); // Create device Eigen::CudaStreamDevice stream; Eigen::GpuDevice dev(&stream); // Create data(T) Type* in_data = (Type*)dev.allocate(dim_x*dim_y*dim_z*sizeof(Type)); Type* out_data = (Type*)dev.allocate(dim_z*dim_y*sizeof(Type)); Eigen::TensorMap<Eigen::Tensor<Type, 3, DataLayout> > gpu_in(in_data, dim_x, dim_y, dim_z); Eigen::TensorMap<Eigen::Tensor<Type, 2, DataLayout> > gpu_out(out_data, dim_y, dim_z); // Perform operation dev.memcpyHostToDevice(in_data, in.data(), in.size()*sizeof(Type)); gpu_out.device(dev) = gpu_in.sum(red_axis); gpu_out.device(dev) += gpu_in.sum(red_axis); Tensor<Type, 2, DataLayout> redux_gpu(dim_y, dim_z); dev.memcpyDeviceToHost(redux_gpu.data(), out_data, gpu_out.size()*sizeof(Type)); dev.synchronize(); // Check that the CPU and GPU reductions return the same result. for (int i = 0; i < gpu_out.size(); ++i) { VERIFY_IS_APPROX(2*redux(i), redux_gpu(i)); } dev.deallocate(in_data); dev.deallocate(out_data); } template<typename Type, int DataLayout> static void test_last_dim_reductions() { int dim_x = 128; int dim_y = 1; int dim_z = 33; Tensor<Type, 3, DataLayout> in(dim_x, dim_y, dim_z); in.setRandom(); Eigen::array<int, 1> red_axis; red_axis[0] = 2; Tensor<Type, 2, DataLayout> redux = in.sum(red_axis); // Create device Eigen::CudaStreamDevice stream; Eigen::GpuDevice dev(&stream); // Create data Type* in_data = (Type*)dev.allocate(dim_x*dim_y*dim_z*sizeof(Type)); Type* out_data = (Type*)dev.allocate(dim_x*dim_y*sizeof(Type)); Eigen::TensorMap<Eigen::Tensor<Type, 3, DataLayout> > gpu_in(in_data, dim_x, dim_y, dim_z); Eigen::TensorMap<Eigen::Tensor<Type, 2, DataLayout> > gpu_out(out_data, dim_x, dim_y); // Perform operation dev.memcpyHostToDevice(in_data, in.data(), in.size()*sizeof(Type)); gpu_out.device(dev) = gpu_in.sum(red_axis); gpu_out.device(dev) += gpu_in.sum(red_axis); Tensor<Type, 2, DataLayout> redux_gpu(dim_x, dim_y); dev.memcpyDeviceToHost(redux_gpu.data(), out_data, gpu_out.size()*sizeof(Type)); dev.synchronize(); // Check that the CPU and GPU reductions return the same result. for (int i = 0; i < gpu_out.size(); ++i) { VERIFY_IS_APPROX(2*redux(i), redux_gpu(i)); } dev.deallocate(in_data); dev.deallocate(out_data); } void test_cxx11_tensor_reduction_cuda() { CALL_SUBTEST_1((test_full_reductions<float, ColMajor>())); CALL_SUBTEST_1((test_full_reductions<double, ColMajor>())); CALL_SUBTEST_2((test_full_reductions<float, RowMajor>())); CALL_SUBTEST_2((test_full_reductions<double, RowMajor>())); CALL_SUBTEST_3((test_first_dim_reductions<float, ColMajor>())); CALL_SUBTEST_3((test_first_dim_reductions<double, ColMajor>())); CALL_SUBTEST_4((test_first_dim_reductions<float, RowMajor>())); // Outer reductions of doubles aren't supported just yet. // CALL_SUBTEST_4((test_first_dim_reductions<double, RowMajor>())) CALL_SUBTEST_5((test_last_dim_reductions<float, ColMajor>())); // Outer reductions of doubles aren't supported just yet. // CALL_SUBTEST_5((test_last_dim_reductions<double, ColMajor>())); CALL_SUBTEST_6((test_last_dim_reductions<float, RowMajor>())); CALL_SUBTEST_6((test_last_dim_reductions<double, RowMajor>())); }