// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_scan_cuda #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_GPU #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500 #include <cuda_fp16.h> #endif #include "main.h" #include <unsupported/Eigen/CXX11/Tensor> using Eigen::Tensor; typedef Tensor<float, 1>::DimensionPair DimPair; template<int DataLayout> void test_cuda_cumsum(int m_size, int k_size, int n_size) { std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl; Tensor<float, 3, DataLayout> t_input(m_size, k_size, n_size); Tensor<float, 3, DataLayout> t_result(m_size, k_size, n_size); Tensor<float, 3, DataLayout> t_result_gpu(m_size, k_size, n_size); t_input.setRandom(); std::size_t t_input_bytes = t_input.size() * sizeof(float); std::size_t t_result_bytes = t_result.size() * sizeof(float); float* d_t_input; float* d_t_result; cudaMalloc((void**)(&d_t_input), t_input_bytes); cudaMalloc((void**)(&d_t_result), t_result_bytes); cudaMemcpy(d_t_input, t_input.data(), t_input_bytes, cudaMemcpyHostToDevice); Eigen::CudaStreamDevice stream; Eigen::GpuDevice gpu_device(&stream); Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_t_input(d_t_input, Eigen::array<int, 3>(m_size, k_size, n_size)); Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_t_result(d_t_result, Eigen::array<int, 3>(m_size, k_size, n_size)); gpu_t_result.device(gpu_device) = gpu_t_input.cumsum(1); t_result = t_input.cumsum(1); cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); for (DenseIndex i = 0; i < t_result.size(); i++) { if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) { continue; } if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) { continue; } std::cout << "mismatch detected at index " << i << ": " << t_result(i) << " vs " << t_result_gpu(i) << std::endl; assert(false); } cudaFree((void*)d_t_input); cudaFree((void*)d_t_result); } void test_cxx11_tensor_scan_cuda() { CALL_SUBTEST_1(test_cuda_cumsum<ColMajor>(128, 128, 128)); CALL_SUBTEST_2(test_cuda_cumsum<RowMajor>(128, 128, 128)); }