// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::array; template <int DataLayout> static void test_simple_shuffling() { Tensor<float, 4, DataLayout> tensor(2,3,5,7); tensor.setRandom(); array<ptrdiff_t, 4> shuffles; shuffles[0] = 0; shuffles[1] = 1; shuffles[2] = 2; shuffles[3] = 3; Tensor<float, 4, DataLayout> no_shuffle; no_shuffle = tensor.shuffle(shuffles); VERIFY_IS_EQUAL(no_shuffle.dimension(0), 2); VERIFY_IS_EQUAL(no_shuffle.dimension(1), 3); VERIFY_IS_EQUAL(no_shuffle.dimension(2), 5); VERIFY_IS_EQUAL(no_shuffle.dimension(3), 7); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), no_shuffle(i,j,k,l)); } } } } shuffles[0] = 2; shuffles[1] = 3; shuffles[2] = 1; shuffles[3] = 0; Tensor<float, 4, DataLayout> shuffle; shuffle = tensor.shuffle(shuffles); VERIFY_IS_EQUAL(shuffle.dimension(0), 5); VERIFY_IS_EQUAL(shuffle.dimension(1), 7); VERIFY_IS_EQUAL(shuffle.dimension(2), 3); VERIFY_IS_EQUAL(shuffle.dimension(3), 2); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,l,j,i)); } } } } } template <int DataLayout> static void test_expr_shuffling() { Tensor<float, 4, DataLayout> tensor(2,3,5,7); tensor.setRandom(); array<ptrdiff_t, 4> shuffles; shuffles[0] = 2; shuffles[1] = 3; shuffles[2] = 1; shuffles[3] = 0; Tensor<float, 4, DataLayout> expected; expected = tensor.shuffle(shuffles); Tensor<float, 4, DataLayout> result(5,7,3,2); array<int, 4> src_slice_dim{{2,3,1,7}}; array<int, 4> src_slice_start{{0,0,0,0}}; array<int, 4> dst_slice_dim{{1,7,3,2}}; array<int, 4> dst_slice_start{{0,0,0,0}}; for (int i = 0; i < 5; ++i) { result.slice(dst_slice_start, dst_slice_dim) = tensor.slice(src_slice_start, src_slice_dim).shuffle(shuffles); src_slice_start[2] += 1; dst_slice_start[0] += 1; } VERIFY_IS_EQUAL(result.dimension(0), 5); VERIFY_IS_EQUAL(result.dimension(1), 7); VERIFY_IS_EQUAL(result.dimension(2), 3); VERIFY_IS_EQUAL(result.dimension(3), 2); for (int i = 0; i < expected.dimension(0); ++i) { for (int j = 0; j < expected.dimension(1); ++j) { for (int k = 0; k < expected.dimension(2); ++k) { for (int l = 0; l < expected.dimension(3); ++l) { VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); } } } } dst_slice_start[0] = 0; result.setRandom(); for (int i = 0; i < 5; ++i) { result.slice(dst_slice_start, dst_slice_dim) = tensor.shuffle(shuffles).slice(dst_slice_start, dst_slice_dim); dst_slice_start[0] += 1; } for (int i = 0; i < expected.dimension(0); ++i) { for (int j = 0; j < expected.dimension(1); ++j) { for (int k = 0; k < expected.dimension(2); ++k) { for (int l = 0; l < expected.dimension(3); ++l) { VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); } } } } } template <int DataLayout> static void test_shuffling_as_value() { Tensor<float, 4, DataLayout> tensor(2,3,5,7); tensor.setRandom(); array<ptrdiff_t, 4> shuffles; shuffles[2] = 0; shuffles[3] = 1; shuffles[1] = 2; shuffles[0] = 3; Tensor<float, 4, DataLayout> shuffle(5,7,3,2); shuffle.shuffle(shuffles) = tensor; VERIFY_IS_EQUAL(shuffle.dimension(0), 5); VERIFY_IS_EQUAL(shuffle.dimension(1), 7); VERIFY_IS_EQUAL(shuffle.dimension(2), 3); VERIFY_IS_EQUAL(shuffle.dimension(3), 2); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,l,j,i)); } } } } array<ptrdiff_t, 4> no_shuffle; no_shuffle[0] = 0; no_shuffle[1] = 1; no_shuffle[2] = 2; no_shuffle[3] = 3; Tensor<float, 4, DataLayout> shuffle2(5,7,3,2); shuffle2.shuffle(shuffles) = tensor.shuffle(no_shuffle); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 7; ++j) { for (int k = 0; k < 3; ++k) { for (int l = 0; l < 2; ++l) { VERIFY_IS_EQUAL(shuffle2(i,j,k,l), shuffle(i,j,k,l)); } } } } } template <int DataLayout> static void test_shuffle_unshuffle() { Tensor<float, 4, DataLayout> tensor(2,3,5,7); tensor.setRandom(); // Choose a random permutation. array<ptrdiff_t, 4> shuffles; for (int i = 0; i < 4; ++i) { shuffles[i] = i; } array<ptrdiff_t, 4> shuffles_inverse; for (int i = 0; i < 4; ++i) { const ptrdiff_t index = internal::random<ptrdiff_t>(i, 3); shuffles_inverse[shuffles[index]] = i; std::swap(shuffles[i], shuffles[index]); } Tensor<float, 4, DataLayout> shuffle; shuffle = tensor.shuffle(shuffles).shuffle(shuffles_inverse); VERIFY_IS_EQUAL(shuffle.dimension(0), 2); VERIFY_IS_EQUAL(shuffle.dimension(1), 3); VERIFY_IS_EQUAL(shuffle.dimension(2), 5); VERIFY_IS_EQUAL(shuffle.dimension(3), 7); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(i,j,k,l)); } } } } } void test_cxx11_tensor_shuffling() { CALL_SUBTEST(test_simple_shuffling<ColMajor>()); CALL_SUBTEST(test_simple_shuffling<RowMajor>()); CALL_SUBTEST(test_expr_shuffling<ColMajor>()); CALL_SUBTEST(test_expr_shuffling<RowMajor>()); CALL_SUBTEST(test_shuffling_as_value<ColMajor>()); CALL_SUBTEST(test_shuffling_as_value<RowMajor>()); CALL_SUBTEST(test_shuffle_unshuffle<ColMajor>()); CALL_SUBTEST(test_shuffle_unshuffle<RowMajor>()); }