// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2016 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_sycl #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include <unsupported/Eigen/CXX11/Tensor> using Eigen::array; using Eigen::SyclDevice; using Eigen::Tensor; using Eigen::TensorMap; void test_sycl_cpu(const Eigen::SyclDevice &sycl_device) { int sizeDim1 = 100; int sizeDim2 = 100; int sizeDim3 = 100; array<int, 3> tensorRange = {{sizeDim1, sizeDim2, sizeDim3}}; Tensor<float, 3> in1(tensorRange); Tensor<float, 3> in2(tensorRange); Tensor<float, 3> in3(tensorRange); Tensor<float, 3> out(tensorRange); in2 = in2.random(); in3 = in3.random(); float * gpu_in1_data = static_cast<float*>(sycl_device.allocate(in1.dimensions().TotalSize()*sizeof(float))); float * gpu_in2_data = static_cast<float*>(sycl_device.allocate(in2.dimensions().TotalSize()*sizeof(float))); float * gpu_in3_data = static_cast<float*>(sycl_device.allocate(in3.dimensions().TotalSize()*sizeof(float))); float * gpu_out_data = static_cast<float*>(sycl_device.allocate(out.dimensions().TotalSize()*sizeof(float))); TensorMap<Tensor<float, 3>> gpu_in1(gpu_in1_data, tensorRange); TensorMap<Tensor<float, 3>> gpu_in2(gpu_in2_data, tensorRange); TensorMap<Tensor<float, 3>> gpu_in3(gpu_in3_data, tensorRange); TensorMap<Tensor<float, 3>> gpu_out(gpu_out_data, tensorRange); /// a=1.2f gpu_in1.device(sycl_device) = gpu_in1.constant(1.2f); sycl_device.memcpyDeviceToHost(in1.data(), gpu_in1_data ,(in1.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(in1(i,j,k), 1.2f); } } } printf("a=1.2f Test passed\n"); /// a=b*1.2f gpu_out.device(sycl_device) = gpu_in1 * 1.2f; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data ,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * 1.2f); } } } printf("a=b*1.2f Test Passed\n"); /// c=a*b sycl_device.memcpyHostToDevice(gpu_in2_data, in2.data(),(in2.dimensions().TotalSize())*sizeof(float)); gpu_out.device(sycl_device) = gpu_in1 * gpu_in2; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * in2(i,j,k)); } } } printf("c=a*b Test Passed\n"); /// c=a+b gpu_out.device(sycl_device) = gpu_in1 + gpu_in2; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) + in2(i,j,k)); } } } printf("c=a+b Test Passed\n"); /// c=a*a gpu_out.device(sycl_device) = gpu_in1 * gpu_in1; sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * in1(i,j,k)); } } } printf("c= a*a Test Passed\n"); //a*3.14f + b*2.7f gpu_out.device(sycl_device) = gpu_in1 * gpu_in1.constant(3.14f) + gpu_in2 * gpu_in2.constant(2.7f); sycl_device.memcpyDeviceToHost(out.data(),gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i,j,k), in1(i,j,k) * 3.14f + in2(i,j,k) * 2.7f); } } } printf("a*3.14f + b*2.7f Test Passed\n"); ///d= (a>0.5? b:c) sycl_device.memcpyHostToDevice(gpu_in3_data, in3.data(),(in3.dimensions().TotalSize())*sizeof(float)); gpu_out.device(sycl_device) =(gpu_in1 > gpu_in1.constant(0.5f)).select(gpu_in2, gpu_in3); sycl_device.memcpyDeviceToHost(out.data(), gpu_out_data,(out.dimensions().TotalSize())*sizeof(float)); for (int i = 0; i < sizeDim1; ++i) { for (int j = 0; j < sizeDim2; ++j) { for (int k = 0; k < sizeDim3; ++k) { VERIFY_IS_APPROX(out(i, j, k), (in1(i, j, k) > 0.5f) ? in2(i, j, k) : in3(i, j, k)); } } } printf("d= (a>0.5? b:c) Test Passed\n"); sycl_device.deallocate(gpu_in1_data); sycl_device.deallocate(gpu_in2_data); sycl_device.deallocate(gpu_in3_data); sycl_device.deallocate(gpu_out_data); } void test_cxx11_tensor_sycl() { cl::sycl::gpu_selector s; Eigen::SyclDevice sycl_device(s); CALL_SUBTEST(test_sycl_cpu(sycl_device)); }