// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
******************************************************************************
* Copyright (C) 2015, International Business Machines Corporation and
* others. All Rights Reserved.
******************************************************************************
*
* File unifiedcache.cpp
******************************************************************************
*/

#include "unifiedcache.h"

#include <algorithm>      // For std::max()

#include "mutex.h"
#include "uassert.h"
#include "uhash.h"
#include "ucln_cmn.h"
#include "umutex.h"

static icu::UnifiedCache *gCache = NULL;
static UMutex gCacheMutex = U_MUTEX_INITIALIZER;
static UConditionVar gInProgressValueAddedCond = U_CONDITION_INITIALIZER;
static icu::UInitOnce gCacheInitOnce = U_INITONCE_INITIALIZER;

static const int32_t MAX_EVICT_ITERATIONS = 10;
static const int32_t DEFAULT_MAX_UNUSED = 1000;
static const int32_t DEFAULT_PERCENTAGE_OF_IN_USE = 100;


U_CDECL_BEGIN
static UBool U_CALLCONV unifiedcache_cleanup() {
    gCacheInitOnce.reset();
    if (gCache) {
        delete gCache;
        gCache = NULL;
    }
    return TRUE;
}
U_CDECL_END


U_NAMESPACE_BEGIN

U_CAPI int32_t U_EXPORT2
ucache_hashKeys(const UHashTok key) {
    const CacheKeyBase *ckey = (const CacheKeyBase *) key.pointer;
    return ckey->hashCode();
}

U_CAPI UBool U_EXPORT2
ucache_compareKeys(const UHashTok key1, const UHashTok key2) {
    const CacheKeyBase *p1 = (const CacheKeyBase *) key1.pointer;
    const CacheKeyBase *p2 = (const CacheKeyBase *) key2.pointer;
    return *p1 == *p2;
}

U_CAPI void U_EXPORT2
ucache_deleteKey(void *obj) {
    CacheKeyBase *p = (CacheKeyBase *) obj;
    delete p;
}

CacheKeyBase::~CacheKeyBase() {
}

static void U_CALLCONV cacheInit(UErrorCode &status) {
    U_ASSERT(gCache == NULL);
    ucln_common_registerCleanup(
            UCLN_COMMON_UNIFIED_CACHE, unifiedcache_cleanup);

    gCache = new UnifiedCache(status);
    if (gCache == NULL) {
        status = U_MEMORY_ALLOCATION_ERROR;
    }
    if (U_FAILURE(status)) {
        delete gCache;
        gCache = NULL;
        return;
    }
}

UnifiedCache *UnifiedCache::getInstance(UErrorCode &status) {
    umtx_initOnce(gCacheInitOnce, &cacheInit, status);
    if (U_FAILURE(status)) {
        return NULL;
    }
    U_ASSERT(gCache != NULL);
    return gCache;
}

UnifiedCache::UnifiedCache(UErrorCode &status) :
        fHashtable(NULL),
        fEvictPos(UHASH_FIRST),
        fNumValuesTotal(0),
        fNumValuesInUse(0),
        fMaxUnused(DEFAULT_MAX_UNUSED),
        fMaxPercentageOfInUse(DEFAULT_PERCENTAGE_OF_IN_USE),
        fAutoEvictedCount(0),
        fNoValue(nullptr) {
    if (U_FAILURE(status)) {
        return;
    }
    fNoValue = new SharedObject();
    if (fNoValue == nullptr) {
        status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    fNoValue->softRefCount = 1;  // Add fake references to prevent fNoValue from being deleted
    fNoValue->hardRefCount = 1;  // when other references to it are removed.
    fNoValue->cachePtr = this;

    fHashtable = uhash_open(
            &ucache_hashKeys,
            &ucache_compareKeys,
            NULL,
            &status);
    if (U_FAILURE(status)) {
        return;
    }
    uhash_setKeyDeleter(fHashtable, &ucache_deleteKey);
}

void UnifiedCache::setEvictionPolicy(
        int32_t count, int32_t percentageOfInUseItems, UErrorCode &status) {
    if (U_FAILURE(status)) {
        return;
    }
    if (count < 0 || percentageOfInUseItems < 0) {
        status = U_ILLEGAL_ARGUMENT_ERROR;
        return;
    }
    Mutex lock(&gCacheMutex);
    fMaxUnused = count;
    fMaxPercentageOfInUse = percentageOfInUseItems;
}

int32_t UnifiedCache::unusedCount() const {
    Mutex lock(&gCacheMutex);
    return uhash_count(fHashtable) - fNumValuesInUse;
}

int64_t UnifiedCache::autoEvictedCount() const {
    Mutex lock(&gCacheMutex);
    return fAutoEvictedCount;
}

int32_t UnifiedCache::keyCount() const {
    Mutex lock(&gCacheMutex);
    return uhash_count(fHashtable);
}

void UnifiedCache::flush() const {
    Mutex lock(&gCacheMutex);

    // Use a loop in case cache items that are flushed held hard references to
    // other cache items making those additional cache items eligible for
    // flushing.
    while (_flush(FALSE));
}

void UnifiedCache::handleUnreferencedObject() const {
    Mutex lock(&gCacheMutex);
    --fNumValuesInUse;
    _runEvictionSlice();
}

#ifdef UNIFIED_CACHE_DEBUG
#include <stdio.h>

void UnifiedCache::dump() {
    UErrorCode status = U_ZERO_ERROR;
    const UnifiedCache *cache = getInstance(status);
    if (U_FAILURE(status)) {
        fprintf(stderr, "Unified Cache: Error fetching cache.\n");
        return;
    }
    cache->dumpContents();
}

void UnifiedCache::dumpContents() const {
    Mutex lock(&gCacheMutex);
    _dumpContents();
}

// Dumps content of cache.
// On entry, gCacheMutex must be held.
// On exit, cache contents dumped to stderr.
void UnifiedCache::_dumpContents() const {
    int32_t pos = UHASH_FIRST;
    const UHashElement *element = uhash_nextElement(fHashtable, &pos);
    char buffer[256];
    int32_t cnt = 0;
    for (; element != NULL; element = uhash_nextElement(fHashtable, &pos)) {
        const SharedObject *sharedObject =
                (const SharedObject *) element->value.pointer;
        const CacheKeyBase *key =
                (const CacheKeyBase *) element->key.pointer;
        if (sharedObject->hasHardReferences()) {
            ++cnt;
            fprintf(
                    stderr,
                    "Unified Cache: Key '%s', error %d, value %p, total refcount %d, soft refcount %d\n",
                    key->writeDescription(buffer, 256),
                    key->creationStatus,
                    sharedObject == fNoValue ? NULL :sharedObject,
                    sharedObject->getRefCount(),
                    sharedObject->getSoftRefCount());
        }
    }
    fprintf(stderr, "Unified Cache: %d out of a total of %d still have hard references\n", cnt, uhash_count(fHashtable));
}
#endif

UnifiedCache::~UnifiedCache() {
    // Try our best to clean up first.
    flush();
    {
        // Now all that should be left in the cache are entries that refer to
        // each other and entries with hard references from outside the cache.
        // Nothing we can do about these so proceed to wipe out the cache.
        Mutex lock(&gCacheMutex);
        _flush(TRUE);
    }
    uhash_close(fHashtable);
    fHashtable = nullptr;
    delete fNoValue;
    fNoValue = nullptr;
}

const UHashElement *
UnifiedCache::_nextElement() const {
    const UHashElement *element = uhash_nextElement(fHashtable, &fEvictPos);
    if (element == NULL) {
        fEvictPos = UHASH_FIRST;
        return uhash_nextElement(fHashtable, &fEvictPos);
    }
    return element;
}

UBool UnifiedCache::_flush(UBool all) const {
    UBool result = FALSE;
    int32_t origSize = uhash_count(fHashtable);
    for (int32_t i = 0; i < origSize; ++i) {
        const UHashElement *element = _nextElement();
        if (element == nullptr) {
            break;
        }
        if (all || _isEvictable(element)) {
            const SharedObject *sharedObject =
                    (const SharedObject *) element->value.pointer;
            U_ASSERT(sharedObject->cachePtr == this);
            uhash_removeElement(fHashtable, element);
            removeSoftRef(sharedObject);    // Deletes the sharedObject when softRefCount goes to zero.
            result = TRUE;
        }
    }
    return result;
}

int32_t UnifiedCache::_computeCountOfItemsToEvict() const {
    int32_t totalItems = uhash_count(fHashtable);
    int32_t evictableItems = totalItems - fNumValuesInUse;

    int32_t unusedLimitByPercentage = fNumValuesInUse * fMaxPercentageOfInUse / 100;
    int32_t unusedLimit = std::max(unusedLimitByPercentage, fMaxUnused);
    int32_t countOfItemsToEvict = std::max(0, evictableItems - unusedLimit);
    return countOfItemsToEvict;
}

void UnifiedCache::_runEvictionSlice() const {
    int32_t maxItemsToEvict = _computeCountOfItemsToEvict();
    if (maxItemsToEvict <= 0) {
        return;
    }
    for (int32_t i = 0; i < MAX_EVICT_ITERATIONS; ++i) {
        const UHashElement *element = _nextElement();
        if (element == nullptr) {
            break;
        }
        if (_isEvictable(element)) {
            const SharedObject *sharedObject =
                    (const SharedObject *) element->value.pointer;
            uhash_removeElement(fHashtable, element);
            removeSoftRef(sharedObject);   // Deletes sharedObject when SoftRefCount goes to zero.
            ++fAutoEvictedCount;
            if (--maxItemsToEvict == 0) {
                break;
            }
        }
    }
}

void UnifiedCache::_putNew(
        const CacheKeyBase &key,
        const SharedObject *value,
        const UErrorCode creationStatus,
        UErrorCode &status) const {
    if (U_FAILURE(status)) {
        return;
    }
    CacheKeyBase *keyToAdopt = key.clone();
    if (keyToAdopt == NULL) {
        status = U_MEMORY_ALLOCATION_ERROR;
        return;
    }
    keyToAdopt->fCreationStatus = creationStatus;
    if (value->softRefCount == 0) {
        _registerMaster(keyToAdopt, value);
    }
    void *oldValue = uhash_put(fHashtable, keyToAdopt, (void *) value, &status);
    U_ASSERT(oldValue == nullptr);
    (void)oldValue;
    if (U_SUCCESS(status)) {
        value->softRefCount++;
    }
}

void UnifiedCache::_putIfAbsentAndGet(
        const CacheKeyBase &key,
        const SharedObject *&value,
        UErrorCode &status) const {
    Mutex lock(&gCacheMutex);
    const UHashElement *element = uhash_find(fHashtable, &key);
    if (element != NULL && !_inProgress(element)) {
        _fetch(element, value, status);
        return;
    }
    if (element == NULL) {
        UErrorCode putError = U_ZERO_ERROR;
        // best-effort basis only.
        _putNew(key, value, status, putError);
    } else {
        _put(element, value, status);
    }
    // Run an eviction slice. This will run even if we added a master entry
    // which doesn't increase the unused count, but that is still o.k
    _runEvictionSlice();
}


UBool UnifiedCache::_poll(
        const CacheKeyBase &key,
        const SharedObject *&value,
        UErrorCode &status) const {
    U_ASSERT(value == NULL);
    U_ASSERT(status == U_ZERO_ERROR);
    Mutex lock(&gCacheMutex);
    const UHashElement *element = uhash_find(fHashtable, &key);

    // If the hash table contains an inProgress placeholder entry for this key,
    // this means that another thread is currently constructing the value object.
    // Loop, waiting for that construction to complete.
     while (element != NULL && _inProgress(element)) {
        umtx_condWait(&gInProgressValueAddedCond, &gCacheMutex);
        element = uhash_find(fHashtable, &key);
    }

    // If the hash table contains an entry for the key,
    // fetch out the contents and return them.
    if (element != NULL) {
         _fetch(element, value, status);
        return TRUE;
    }

    // The hash table contained nothing for this key.
    // Insert an inProgress place holder value.
    // Our caller will create the final value and update the hash table.
    _putNew(key, fNoValue, U_ZERO_ERROR, status);
    return FALSE;
}

void UnifiedCache::_get(
        const CacheKeyBase &key,
        const SharedObject *&value,
        const void *creationContext,
        UErrorCode &status) const {
    U_ASSERT(value == NULL);
    U_ASSERT(status == U_ZERO_ERROR);
    if (_poll(key, value, status)) {
        if (value == fNoValue) {
            SharedObject::clearPtr(value);
        }
        return;
    }
    if (U_FAILURE(status)) {
        return;
    }
    value = key.createObject(creationContext, status);
    U_ASSERT(value == NULL || value->hasHardReferences());
    U_ASSERT(value != NULL || status != U_ZERO_ERROR);
    if (value == NULL) {
        SharedObject::copyPtr(fNoValue, value);
    }
    _putIfAbsentAndGet(key, value, status);
    if (value == fNoValue) {
        SharedObject::clearPtr(value);
    }
}

void UnifiedCache::_registerMaster(
            const CacheKeyBase *theKey, const SharedObject *value) const {
    theKey->fIsMaster = true;
    value->cachePtr = this;
    ++fNumValuesTotal;
    ++fNumValuesInUse;
}

void UnifiedCache::_put(
        const UHashElement *element,
        const SharedObject *value,
        const UErrorCode status) const {
    U_ASSERT(_inProgress(element));
    const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer;
    const SharedObject *oldValue = (const SharedObject *) element->value.pointer;
    theKey->fCreationStatus = status;
    if (value->softRefCount == 0) {
        _registerMaster(theKey, value);
    }
    value->softRefCount++;
    UHashElement *ptr = const_cast<UHashElement *>(element);
    ptr->value.pointer = (void *) value;
    U_ASSERT(oldValue == fNoValue);
    removeSoftRef(oldValue);

    // Tell waiting threads that we replace in-progress status with
    // an error.
    umtx_condBroadcast(&gInProgressValueAddedCond);
}

void UnifiedCache::_fetch(
        const UHashElement *element,
        const SharedObject *&value,
        UErrorCode &status) const {
    const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer;
    status = theKey->fCreationStatus;

    // Since we have the cache lock, calling regular SharedObject add/removeRef
    // could cause us to deadlock on ourselves since they may need to lock
    // the cache mutex.
    removeHardRef(value);
    value = static_cast<const SharedObject *>(element->value.pointer);
    addHardRef(value);
}


UBool UnifiedCache::_inProgress(const UHashElement* element) const {
    UErrorCode status = U_ZERO_ERROR;
    const SharedObject * value = NULL;
    _fetch(element, value, status);
    UBool result = _inProgress(value, status);
    removeHardRef(value);
    return result;
}

UBool UnifiedCache::_inProgress(
        const SharedObject* theValue, UErrorCode creationStatus) const {
    return (theValue == fNoValue && creationStatus == U_ZERO_ERROR);
}

UBool UnifiedCache::_isEvictable(const UHashElement *element) const
{
    const CacheKeyBase *theKey = (const CacheKeyBase *) element->key.pointer;
    const SharedObject *theValue =
            (const SharedObject *) element->value.pointer;

    // Entries that are under construction are never evictable
    if (_inProgress(theValue, theKey->fCreationStatus)) {
        return FALSE;
    }

    // We can evict entries that are either not a master or have just
    // one reference (The one reference being from the cache itself).
    return (!theKey->fIsMaster || (theValue->softRefCount == 1 && theValue->noHardReferences()));
}

void UnifiedCache::removeSoftRef(const SharedObject *value) const {
    U_ASSERT(value->cachePtr == this);
    U_ASSERT(value->softRefCount > 0);
    if (--value->softRefCount == 0) {
        --fNumValuesTotal;
        if (value->noHardReferences()) {
            delete value;
        } else {
            // This path only happens from flush(all). Which only happens from the
            // UnifiedCache destructor.  Nulling out value.cacheptr changes the behavior
            // of value.removeRef(), causing the deletion to be done there.
            value->cachePtr = nullptr;
        }
    }
}

int32_t UnifiedCache::removeHardRef(const SharedObject *value) const {
    int refCount = 0;
    if (value) {
        refCount = umtx_atomic_dec(&value->hardRefCount);
        U_ASSERT(refCount >= 0);
        if (refCount == 0) {
            --fNumValuesInUse;
        }
    }
    return refCount;
}

int32_t UnifiedCache::addHardRef(const SharedObject *value) const {
    int refCount = 0;
    if (value) {
        refCount = umtx_atomic_inc(&value->hardRefCount);
        U_ASSERT(refCount >= 1);
        if (refCount == 1) {
            fNumValuesInUse++;
        }
    }
    return refCount;
}

U_NAMESPACE_END