// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ****************************************************************************** * * Copyright (C) 2007-2012, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: unisetspan.cpp * encoding: UTF-8 * tab size: 8 (not used) * indentation:4 * * created on: 2007mar01 * created by: Markus W. Scherer */ #include "unicode/utypes.h" #include "unicode/uniset.h" #include "unicode/ustring.h" #include "unicode/utf8.h" #include "unicode/utf16.h" #include "cmemory.h" #include "uvector.h" #include "unisetspan.h" U_NAMESPACE_BEGIN /* * List of offsets from the current position from where to try matching * a code point or a string. * Store offsets rather than indexes to simplify the code and use the same list * for both increments (in span()) and decrements (in spanBack()). * * Assumption: The maximum offset is limited, and the offsets that are stored * at any one time are relatively dense, that is, there are normally no gaps of * hundreds or thousands of offset values. * * The implementation uses a circular buffer of byte flags, * each indicating whether the corresponding offset is in the list. * This avoids inserting into a sorted list of offsets (or absolute indexes) and * physically moving part of the list. * * Note: In principle, the caller should setMaxLength() to the maximum of the * max string length and U16_LENGTH/U8_LENGTH to account for * "long" single code points. * However, this implementation uses at least a staticList with more than * U8_LENGTH entries anyway. * * Note: If maxLength were guaranteed to be no more than 32 or 64, * the list could be stored as bit flags in a single integer. * Rather than handling a circular buffer with a start list index, * the integer would simply be shifted when lower offsets are removed. * UnicodeSet does not have a limit on the lengths of strings. */ class OffsetList { // Only ever stack-allocated, does not need to inherit UMemory. public: OffsetList() : list(staticList), capacity(0), length(0), start(0) {} ~OffsetList() { if(list!=staticList) { uprv_free(list); } } // Call exactly once if the list is to be used. void setMaxLength(int32_t maxLength) { if(maxLength<=(int32_t)sizeof(staticList)) { capacity=(int32_t)sizeof(staticList); } else { UBool *l=(UBool *)uprv_malloc(maxLength); if(l!=NULL) { list=l; capacity=maxLength; } } uprv_memset(list, 0, capacity); } void clear() { uprv_memset(list, 0, capacity); start=length=0; } UBool isEmpty() const { return (UBool)(length==0); } // Reduce all stored offsets by delta, used when the current position // moves by delta. // There must not be any offsets lower than delta. // If there is an offset equal to delta, it is removed. // delta=[1..maxLength] void shift(int32_t delta) { int32_t i=start+delta; if(i>=capacity) { i-=capacity; } if(list[i]) { list[i]=FALSE; --length; } start=i; } // Add an offset. The list must not contain it yet. // offset=[1..maxLength] void addOffset(int32_t offset) { int32_t i=start+offset; if(i>=capacity) { i-=capacity; } list[i]=TRUE; ++length; } // offset=[1..maxLength] UBool containsOffset(int32_t offset) const { int32_t i=start+offset; if(i>=capacity) { i-=capacity; } return list[i]; } // Find the lowest stored offset from a non-empty list, remove it, // and reduce all other offsets by this minimum. // Returns [1..maxLength]. int32_t popMinimum() { // Look for the next offset in list[start+1..capacity-1]. int32_t i=start, result; while(++i<capacity) { if(list[i]) { list[i]=FALSE; --length; result=i-start; start=i; return result; } } // i==capacity // Wrap around and look for the next offset in list[0..start]. // Since the list is not empty, there will be one. result=capacity-start; i=0; while(!list[i]) { ++i; } list[i]=FALSE; --length; start=i; return result+=i; } private: UBool *list; int32_t capacity; int32_t length; int32_t start; UBool staticList[16]; }; // Get the number of UTF-8 bytes for a UTF-16 (sub)string. static int32_t getUTF8Length(const UChar *s, int32_t length) { UErrorCode errorCode=U_ZERO_ERROR; int32_t length8=0; u_strToUTF8(NULL, 0, &length8, s, length, &errorCode); if(U_SUCCESS(errorCode) || errorCode==U_BUFFER_OVERFLOW_ERROR) { return length8; } else { // The string contains an unpaired surrogate. // Ignore this string. return 0; } } // Append the UTF-8 version of the string to t and return the appended UTF-8 length. static int32_t appendUTF8(const UChar *s, int32_t length, uint8_t *t, int32_t capacity) { UErrorCode errorCode=U_ZERO_ERROR; int32_t length8=0; u_strToUTF8((char *)t, capacity, &length8, s, length, &errorCode); if(U_SUCCESS(errorCode)) { return length8; } else { // The string contains an unpaired surrogate. // Ignore this string. return 0; } } static inline uint8_t makeSpanLengthByte(int32_t spanLength) { // 0xfe==UnicodeSetStringSpan::LONG_SPAN return spanLength<0xfe ? (uint8_t)spanLength : (uint8_t)0xfe; } // Construct for all variants of span(), or only for any one variant. // Initialize as little as possible, for single use. UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSet &set, const UVector &setStrings, uint32_t which) : spanSet(0, 0x10ffff), pSpanNotSet(NULL), strings(setStrings), utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), utf8Length(0), maxLength16(0), maxLength8(0), all((UBool)(which==ALL)) { spanSet.retainAll(set); if(which&NOT_CONTAINED) { // Default to the same sets. // addToSpanNotSet() will create a separate set if necessary. pSpanNotSet=&spanSet; } // Determine if the strings even need to be taken into account at all for span() etc. // If any string is relevant, then all strings need to be used for // span(longest match) but only the relevant ones for span(while contained). // TODO: Possible optimization: Distinguish CONTAINED vs. LONGEST_MATCH // and do not store UTF-8 strings if !thisRelevant and CONTAINED. // (Only store irrelevant UTF-8 strings for LONGEST_MATCH where they are relevant after all.) // Also count the lengths of the UTF-8 versions of the strings for memory allocation. int32_t stringsLength=strings.size(); int32_t i, spanLength; UBool someRelevant=FALSE; for(i=0; i<stringsLength; ++i) { const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); const UChar *s16=string.getBuffer(); int32_t length16=string.length(); UBool thisRelevant; spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); if(spanLength<length16) { // Relevant string. someRelevant=thisRelevant=TRUE; } else { thisRelevant=FALSE; } if((which&UTF16) && length16>maxLength16) { maxLength16=length16; } if((which&UTF8) && (thisRelevant || (which&CONTAINED))) { int32_t length8=getUTF8Length(s16, length16); utf8Length+=length8; if(length8>maxLength8) { maxLength8=length8; } } } if(!someRelevant) { maxLength16=maxLength8=0; return; } // Freeze after checking for the need to use strings at all because freezing // a set takes some time and memory which are wasted if there are no relevant strings. if(all) { spanSet.freeze(); } uint8_t *spanBackLengths; uint8_t *spanUTF8Lengths; uint8_t *spanBackUTF8Lengths; // Allocate a block of meta data. int32_t allocSize; if(all) { // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. allocSize=stringsLength*(4+1+1+1+1)+utf8Length; } else { allocSize=stringsLength; // One set of span lengths. if(which&UTF8) { // UTF-8 lengths and UTF-8 strings. allocSize+=stringsLength*4+utf8Length; } } if(allocSize<=(int32_t)sizeof(staticLengths)) { utf8Lengths=staticLengths; } else { utf8Lengths=(int32_t *)uprv_malloc(allocSize); if(utf8Lengths==NULL) { maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. return; // Out of memory. } } if(all) { // Store span lengths for all span() variants. spanLengths=(uint8_t *)(utf8Lengths+stringsLength); spanBackLengths=spanLengths+stringsLength; spanUTF8Lengths=spanBackLengths+stringsLength; spanBackUTF8Lengths=spanUTF8Lengths+stringsLength; utf8=spanBackUTF8Lengths+stringsLength; } else { // Store span lengths for only one span() variant. if(which&UTF8) { spanLengths=(uint8_t *)(utf8Lengths+stringsLength); utf8=spanLengths+stringsLength; } else { spanLengths=(uint8_t *)utf8Lengths; } spanBackLengths=spanUTF8Lengths=spanBackUTF8Lengths=spanLengths; } // Set the meta data and pSpanNotSet and write the UTF-8 strings. int32_t utf8Count=0; // Count UTF-8 bytes written so far. for(i=0; i<stringsLength; ++i) { const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); const UChar *s16=string.getBuffer(); int32_t length16=string.length(); spanLength=spanSet.span(s16, length16, USET_SPAN_CONTAINED); if(spanLength<length16) { // Relevant string. if(which&UTF16) { if(which&CONTAINED) { if(which&FWD) { spanLengths[i]=makeSpanLengthByte(spanLength); } if(which&BACK) { spanLength=length16-spanSet.spanBack(s16, length16, USET_SPAN_CONTAINED); spanBackLengths[i]=makeSpanLengthByte(spanLength); } } else /* not CONTAINED, not all, but NOT_CONTAINED */ { spanLengths[i]=spanBackLengths[i]=0; // Only store a relevant/irrelevant flag. } } if(which&UTF8) { uint8_t *s8=utf8+utf8Count; int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); utf8Count+=utf8Lengths[i]=length8; if(length8==0) { // Irrelevant for UTF-8 because not representable in UTF-8. spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=(uint8_t)ALL_CP_CONTAINED; } else { // Relevant for UTF-8. if(which&CONTAINED) { if(which&FWD) { spanLength=spanSet.spanUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); spanUTF8Lengths[i]=makeSpanLengthByte(spanLength); } if(which&BACK) { spanLength=length8-spanSet.spanBackUTF8((const char *)s8, length8, USET_SPAN_CONTAINED); spanBackUTF8Lengths[i]=makeSpanLengthByte(spanLength); } } else /* not CONTAINED, not all, but NOT_CONTAINED */ { spanUTF8Lengths[i]=spanBackUTF8Lengths[i]=0; // Only store a relevant/irrelevant flag. } } } if(which&NOT_CONTAINED) { // Add string start and end code points to the spanNotSet so that // a span(while not contained) stops before any string. UChar32 c; if(which&FWD) { int32_t len=0; U16_NEXT(s16, len, length16, c); addToSpanNotSet(c); } if(which&BACK) { int32_t len=length16; U16_PREV(s16, 0, len, c); addToSpanNotSet(c); } } } else { // Irrelevant string. if(which&UTF8) { if(which&CONTAINED) { // Only necessary for LONGEST_MATCH. uint8_t *s8=utf8+utf8Count; int32_t length8=appendUTF8(s16, length16, s8, utf8Length-utf8Count); utf8Count+=utf8Lengths[i]=length8; } else { utf8Lengths[i]=0; } } if(all) { spanLengths[i]=spanBackLengths[i]= spanUTF8Lengths[i]=spanBackUTF8Lengths[i]= (uint8_t)ALL_CP_CONTAINED; } else { // All spanXYZLengths pointers contain the same address. spanLengths[i]=(uint8_t)ALL_CP_CONTAINED; } } } // Finish. if(all) { pSpanNotSet->freeze(); } } // Copy constructor. Assumes which==ALL for a frozen set. UnicodeSetStringSpan::UnicodeSetStringSpan(const UnicodeSetStringSpan &otherStringSpan, const UVector &newParentSetStrings) : spanSet(otherStringSpan.spanSet), pSpanNotSet(NULL), strings(newParentSetStrings), utf8Lengths(NULL), spanLengths(NULL), utf8(NULL), utf8Length(otherStringSpan.utf8Length), maxLength16(otherStringSpan.maxLength16), maxLength8(otherStringSpan.maxLength8), all(TRUE) { if(otherStringSpan.pSpanNotSet==&otherStringSpan.spanSet) { pSpanNotSet=&spanSet; } else { pSpanNotSet=(UnicodeSet *)otherStringSpan.pSpanNotSet->clone(); } // Allocate a block of meta data. // UTF-8 lengths, 4 sets of span lengths, UTF-8 strings. int32_t stringsLength=strings.size(); int32_t allocSize=stringsLength*(4+1+1+1+1)+utf8Length; if(allocSize<=(int32_t)sizeof(staticLengths)) { utf8Lengths=staticLengths; } else { utf8Lengths=(int32_t *)uprv_malloc(allocSize); if(utf8Lengths==NULL) { maxLength16=maxLength8=0; // Prevent usage by making needsStringSpanUTF16/8() return FALSE. return; // Out of memory. } } spanLengths=(uint8_t *)(utf8Lengths+stringsLength); utf8=spanLengths+stringsLength*4; uprv_memcpy(utf8Lengths, otherStringSpan.utf8Lengths, allocSize); } UnicodeSetStringSpan::~UnicodeSetStringSpan() { if(pSpanNotSet!=NULL && pSpanNotSet!=&spanSet) { delete pSpanNotSet; } if(utf8Lengths!=NULL && utf8Lengths!=staticLengths) { uprv_free(utf8Lengths); } } void UnicodeSetStringSpan::addToSpanNotSet(UChar32 c) { if(pSpanNotSet==NULL || pSpanNotSet==&spanSet) { if(spanSet.contains(c)) { return; // Nothing to do. } UnicodeSet *newSet=(UnicodeSet *)spanSet.cloneAsThawed(); if(newSet==NULL) { return; // Out of memory. } else { pSpanNotSet=newSet; } } pSpanNotSet->add(c); } // Compare strings without any argument checks. Requires length>0. static inline UBool matches16(const UChar *s, const UChar *t, int32_t length) { do { if(*s++!=*t++) { return FALSE; } } while(--length>0); return TRUE; } static inline UBool matches8(const uint8_t *s, const uint8_t *t, int32_t length) { do { if(*s++!=*t++) { return FALSE; } } while(--length>0); return TRUE; } // Compare 16-bit Unicode strings (which may be malformed UTF-16) // at code point boundaries. // That is, each edge of a match must not be in the middle of a surrogate pair. static inline UBool matches16CPB(const UChar *s, int32_t start, int32_t limit, const UChar *t, int32_t length) { s+=start; limit-=start; return matches16(s, t, length) && !(0<start && U16_IS_LEAD(s[-1]) && U16_IS_TRAIL(s[0])) && !(length<limit && U16_IS_LEAD(s[length-1]) && U16_IS_TRAIL(s[length])); } // Does the set contain the next code point? // If so, return its length; otherwise return its negative length. static inline int32_t spanOne(const UnicodeSet &set, const UChar *s, int32_t length) { UChar c=*s, c2; if(c>=0xd800 && c<=0xdbff && length>=2 && U16_IS_TRAIL(c2=s[1])) { return set.contains(U16_GET_SUPPLEMENTARY(c, c2)) ? 2 : -2; } return set.contains(c) ? 1 : -1; } static inline int32_t spanOneBack(const UnicodeSet &set, const UChar *s, int32_t length) { UChar c=s[length-1], c2; if(c>=0xdc00 && c<=0xdfff && length>=2 && U16_IS_LEAD(c2=s[length-2])) { return set.contains(U16_GET_SUPPLEMENTARY(c2, c)) ? 2 : -2; } return set.contains(c) ? 1 : -1; } static inline int32_t spanOneUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { UChar32 c=*s; if(U8_IS_SINGLE(c)) { return set.contains(c) ? 1 : -1; } // Take advantage of non-ASCII fastpaths in U8_NEXT_OR_FFFD(). int32_t i=0; U8_NEXT_OR_FFFD(s, i, length, c); return set.contains(c) ? i : -i; } static inline int32_t spanOneBackUTF8(const UnicodeSet &set, const uint8_t *s, int32_t length) { UChar32 c=s[length-1]; if(U8_IS_SINGLE(c)) { return set.contains(c) ? 1 : -1; } int32_t i=length-1; c=utf8_prevCharSafeBody(s, 0, &i, c, -3); length-=i; return set.contains(c) ? length : -length; } /* * Note: In span() when spanLength==0 (after a string match, or at the beginning * after an empty code point span) and in spanNot() and spanNotUTF8(), * string matching could use a binary search * because all string matches are done from the same start index. * * For UTF-8, this would require a comparison function that returns UTF-16 order. * * This optimization should not be necessary for normal UnicodeSets because * most sets have no strings, and most sets with strings have * very few very short strings. * For cases with many strings, it might be better to use a different API * and implementation with a DFA (state machine). */ /* * Algorithm for span(USET_SPAN_CONTAINED) * * Theoretical algorithm: * - Iterate through the string, and at each code point boundary: * + If the code point there is in the set, then remember to continue after it. * + If a set string matches at the current position, then remember to continue after it. * + Either recursively span for each code point or string match, * or recursively span for all but the shortest one and * iteratively continue the span with the shortest local match. * + Remember the longest recursive span (the farthest end point). * + If there is no match at the current position, neither for the code point there * nor for any set string, then stop and return the longest recursive span length. * * Optimized implementation: * * (We assume that most sets will have very few very short strings. * A span using a string-less set is extremely fast.) * * Create and cache a spanSet which contains all of the single code points * of the original set but none of its strings. * * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). * - Loop: * + Try to match each set string at the end of the spanLength. * ~ Set strings that start with set-contained code points must be matched * with a partial overlap because the recursive algorithm would have tried * to match them at every position. * ~ Set strings that entirely consist of set-contained code points * are irrelevant for span(USET_SPAN_CONTAINED) because the * recursive algorithm would continue after them anyway * and find the longest recursive match from their end. * ~ Rather than recursing, note each end point of a set string match. * + If no set string matched after spanSet.span(), then return * with where the spanSet.span() ended. * + If at least one set string matched after spanSet.span(), then * pop the shortest string match end point and continue * the loop, trying to match all set strings from there. * + If at least one more set string matched after a previous string match, * then test if the code point after the previous string match is also * contained in the set. * Continue the loop with the shortest end point of either this code point * or a matching set string. * + If no more set string matched after a previous string match, * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). * Stop if spanLength==0, otherwise continue the loop. * * By noting each end point of a set string match, * the function visits each string position at most once and finishes * in linear time. * * The recursive algorithm may visit the same string position many times * if multiple paths lead to it and finishes in exponential time. */ /* * Algorithm for span(USET_SPAN_SIMPLE) * * Theoretical algorithm: * - Iterate through the string, and at each code point boundary: * + If the code point there is in the set, then remember to continue after it. * + If a set string matches at the current position, then remember to continue after it. * + Continue from the farthest match position and ignore all others. * + If there is no match at the current position, * then stop and return the current position. * * Optimized implementation: * * (Same assumption and spanSet as above.) * * - Start with spanLength=spanSet.span(USET_SPAN_CONTAINED). * - Loop: * + Try to match each set string at the end of the spanLength. * ~ Set strings that start with set-contained code points must be matched * with a partial overlap because the standard algorithm would have tried * to match them earlier. * ~ Set strings that entirely consist of set-contained code points * must be matched with a full overlap because the longest-match algorithm * would hide set string matches that end earlier. * Such set strings need not be matched earlier inside the code point span * because the standard algorithm would then have continued after * the set string match anyway. * ~ Remember the longest set string match (farthest end point) from the earliest * starting point. * + If no set string matched after spanSet.span(), then return * with where the spanSet.span() ended. * + If at least one set string matched, then continue the loop after the * longest match from the earliest position. * + If no more set string matched after a previous string match, * then try another spanLength=spanSet.span(USET_SPAN_CONTAINED). * Stop if spanLength==0, otherwise continue the loop. */ int32_t UnicodeSetStringSpan::span(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { if(spanCondition==USET_SPAN_NOT_CONTAINED) { return spanNot(s, length); } int32_t spanLength=spanSet.span(s, length, USET_SPAN_CONTAINED); if(spanLength==length) { return length; } // Consider strings; they may overlap with the span. OffsetList offsets; if(spanCondition==USET_SPAN_CONTAINED) { // Use offset list to try all possibilities. offsets.setMaxLength(maxLength16); } int32_t pos=spanLength, rest=length-pos; int32_t i, stringsLength=strings.size(); for(;;) { if(spanCondition==USET_SPAN_CONTAINED) { for(i=0; i<stringsLength; ++i) { int32_t overlap=spanLengths[i]; if(overlap==ALL_CP_CONTAINED) { continue; // Irrelevant string. } const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); const UChar *s16=string.getBuffer(); int32_t length16=string.length(); // Try to match this string at pos-overlap..pos. if(overlap>=LONG_SPAN) { overlap=length16; // While contained: No point matching fully inside the code point span. U16_BACK_1(s16, 0, overlap); // Length of the string minus the last code point. } if(overlap>spanLength) { overlap=spanLength; } int32_t inc=length16-overlap; // Keep overlap+inc==length16. for(;;) { if(inc>rest) { break; } // Try to match if the increment is not listed already. if(!offsets.containsOffset(inc) && matches16CPB(s, pos-overlap, length, s16, length16)) { if(inc==rest) { return length; // Reached the end of the string. } offsets.addOffset(inc); } if(overlap==0) { break; } --overlap; ++inc; } } } else /* USET_SPAN_SIMPLE */ { int32_t maxInc=0, maxOverlap=0; for(i=0; i<stringsLength; ++i) { int32_t overlap=spanLengths[i]; // For longest match, we do need to try to match even an all-contained string // to find the match from the earliest start. const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); const UChar *s16=string.getBuffer(); int32_t length16=string.length(); // Try to match this string at pos-overlap..pos. if(overlap>=LONG_SPAN) { overlap=length16; // Longest match: Need to match fully inside the code point span // to find the match from the earliest start. } if(overlap>spanLength) { overlap=spanLength; } int32_t inc=length16-overlap; // Keep overlap+inc==length16. for(;;) { if(inc>rest || overlap<maxOverlap) { break; } // Try to match if the string is longer or starts earlier. if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && matches16CPB(s, pos-overlap, length, s16, length16) ) { maxInc=inc; // Longest match from earliest start. maxOverlap=overlap; break; } --overlap; ++inc; } } if(maxInc!=0 || maxOverlap!=0) { // Longest-match algorithm, and there was a string match. // Simply continue after it. pos+=maxInc; rest-=maxInc; if(rest==0) { return length; // Reached the end of the string. } spanLength=0; // Match strings from after a string match. continue; } } // Finished trying to match all strings at pos. if(spanLength!=0 || pos==0) { // The position is after an unlimited code point span (spanLength!=0), // not after a string match. // The only position where spanLength==0 after a span is pos==0. // Otherwise, an unlimited code point span is only tried again when no // strings match, and if such a non-initial span fails we stop. if(offsets.isEmpty()) { return pos; // No strings matched after a span. } // Match strings from after the next string match. } else { // The position is after a string match (or a single code point). if(offsets.isEmpty()) { // No more strings matched after a previous string match. // Try another code point span from after the last string match. spanLength=spanSet.span(s+pos, rest, USET_SPAN_CONTAINED); if( spanLength==rest || // Reached the end of the string, or spanLength==0 // neither strings nor span progressed. ) { return pos+spanLength; } pos+=spanLength; rest-=spanLength; continue; // spanLength>0: Match strings from after a span. } else { // Try to match only one code point from after a string match if some // string matched beyond it, so that we try all possible positions // and don't overshoot. spanLength=spanOne(spanSet, s+pos, rest); if(spanLength>0) { if(spanLength==rest) { return length; // Reached the end of the string. } // Match strings after this code point. // There cannot be any increments below it because UnicodeSet strings // contain multiple code points. pos+=spanLength; rest-=spanLength; offsets.shift(spanLength); spanLength=0; continue; // Match strings from after a single code point. } // Match strings from after the next string match. } } int32_t minOffset=offsets.popMinimum(); pos+=minOffset; rest-=minOffset; spanLength=0; // Match strings from after a string match. } } int32_t UnicodeSetStringSpan::spanBack(const UChar *s, int32_t length, USetSpanCondition spanCondition) const { if(spanCondition==USET_SPAN_NOT_CONTAINED) { return spanNotBack(s, length); } int32_t pos=spanSet.spanBack(s, length, USET_SPAN_CONTAINED); if(pos==0) { return 0; } int32_t spanLength=length-pos; // Consider strings; they may overlap with the span. OffsetList offsets; if(spanCondition==USET_SPAN_CONTAINED) { // Use offset list to try all possibilities. offsets.setMaxLength(maxLength16); } int32_t i, stringsLength=strings.size(); uint8_t *spanBackLengths=spanLengths; if(all) { spanBackLengths+=stringsLength; } for(;;) { if(spanCondition==USET_SPAN_CONTAINED) { for(i=0; i<stringsLength; ++i) { int32_t overlap=spanBackLengths[i]; if(overlap==ALL_CP_CONTAINED) { continue; // Irrelevant string. } const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); const UChar *s16=string.getBuffer(); int32_t length16=string.length(); // Try to match this string at pos-(length16-overlap)..pos-length16. if(overlap>=LONG_SPAN) { overlap=length16; // While contained: No point matching fully inside the code point span. int32_t len1=0; U16_FWD_1(s16, len1, overlap); overlap-=len1; // Length of the string minus the first code point. } if(overlap>spanLength) { overlap=spanLength; } int32_t dec=length16-overlap; // Keep dec+overlap==length16. for(;;) { if(dec>pos) { break; } // Try to match if the decrement is not listed already. if(!offsets.containsOffset(dec) && matches16CPB(s, pos-dec, length, s16, length16)) { if(dec==pos) { return 0; // Reached the start of the string. } offsets.addOffset(dec); } if(overlap==0) { break; } --overlap; ++dec; } } } else /* USET_SPAN_SIMPLE */ { int32_t maxDec=0, maxOverlap=0; for(i=0; i<stringsLength; ++i) { int32_t overlap=spanBackLengths[i]; // For longest match, we do need to try to match even an all-contained string // to find the match from the latest end. const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); const UChar *s16=string.getBuffer(); int32_t length16=string.length(); // Try to match this string at pos-(length16-overlap)..pos-length16. if(overlap>=LONG_SPAN) { overlap=length16; // Longest match: Need to match fully inside the code point span // to find the match from the latest end. } if(overlap>spanLength) { overlap=spanLength; } int32_t dec=length16-overlap; // Keep dec+overlap==length16. for(;;) { if(dec>pos || overlap<maxOverlap) { break; } // Try to match if the string is longer or ends later. if( (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && matches16CPB(s, pos-dec, length, s16, length16) ) { maxDec=dec; // Longest match from latest end. maxOverlap=overlap; break; } --overlap; ++dec; } } if(maxDec!=0 || maxOverlap!=0) { // Longest-match algorithm, and there was a string match. // Simply continue before it. pos-=maxDec; if(pos==0) { return 0; // Reached the start of the string. } spanLength=0; // Match strings from before a string match. continue; } } // Finished trying to match all strings at pos. if(spanLength!=0 || pos==length) { // The position is before an unlimited code point span (spanLength!=0), // not before a string match. // The only position where spanLength==0 before a span is pos==length. // Otherwise, an unlimited code point span is only tried again when no // strings match, and if such a non-initial span fails we stop. if(offsets.isEmpty()) { return pos; // No strings matched before a span. } // Match strings from before the next string match. } else { // The position is before a string match (or a single code point). if(offsets.isEmpty()) { // No more strings matched before a previous string match. // Try another code point span from before the last string match. int32_t oldPos=pos; pos=spanSet.spanBack(s, oldPos, USET_SPAN_CONTAINED); spanLength=oldPos-pos; if( pos==0 || // Reached the start of the string, or spanLength==0 // neither strings nor span progressed. ) { return pos; } continue; // spanLength>0: Match strings from before a span. } else { // Try to match only one code point from before a string match if some // string matched beyond it, so that we try all possible positions // and don't overshoot. spanLength=spanOneBack(spanSet, s, pos); if(spanLength>0) { if(spanLength==pos) { return 0; // Reached the start of the string. } // Match strings before this code point. // There cannot be any decrements below it because UnicodeSet strings // contain multiple code points. pos-=spanLength; offsets.shift(spanLength); spanLength=0; continue; // Match strings from before a single code point. } // Match strings from before the next string match. } } pos-=offsets.popMinimum(); spanLength=0; // Match strings from before a string match. } } int32_t UnicodeSetStringSpan::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { if(spanCondition==USET_SPAN_NOT_CONTAINED) { return spanNotUTF8(s, length); } int32_t spanLength=spanSet.spanUTF8((const char *)s, length, USET_SPAN_CONTAINED); if(spanLength==length) { return length; } // Consider strings; they may overlap with the span. OffsetList offsets; if(spanCondition==USET_SPAN_CONTAINED) { // Use offset list to try all possibilities. offsets.setMaxLength(maxLength8); } int32_t pos=spanLength, rest=length-pos; int32_t i, stringsLength=strings.size(); uint8_t *spanUTF8Lengths=spanLengths; if(all) { spanUTF8Lengths+=2*stringsLength; } for(;;) { const uint8_t *s8=utf8; int32_t length8; if(spanCondition==USET_SPAN_CONTAINED) { for(i=0; i<stringsLength; ++i) { length8=utf8Lengths[i]; if(length8==0) { continue; // String not representable in UTF-8. } int32_t overlap=spanUTF8Lengths[i]; if(overlap==ALL_CP_CONTAINED) { s8+=length8; continue; // Irrelevant string. } // Try to match this string at pos-overlap..pos. if(overlap>=LONG_SPAN) { overlap=length8; // While contained: No point matching fully inside the code point span. U8_BACK_1(s8, 0, overlap); // Length of the string minus the last code point. } if(overlap>spanLength) { overlap=spanLength; } int32_t inc=length8-overlap; // Keep overlap+inc==length8. for(;;) { if(inc>rest) { break; } // Try to match if the increment is not listed already. // Match at code point boundaries. (The UTF-8 strings were converted // from UTF-16 and are guaranteed to be well-formed.) if(!U8_IS_TRAIL(s[pos-overlap]) && !offsets.containsOffset(inc) && matches8(s+pos-overlap, s8, length8)) { if(inc==rest) { return length; // Reached the end of the string. } offsets.addOffset(inc); } if(overlap==0) { break; } --overlap; ++inc; } s8+=length8; } } else /* USET_SPAN_SIMPLE */ { int32_t maxInc=0, maxOverlap=0; for(i=0; i<stringsLength; ++i) { length8=utf8Lengths[i]; if(length8==0) { continue; // String not representable in UTF-8. } int32_t overlap=spanUTF8Lengths[i]; // For longest match, we do need to try to match even an all-contained string // to find the match from the earliest start. // Try to match this string at pos-overlap..pos. if(overlap>=LONG_SPAN) { overlap=length8; // Longest match: Need to match fully inside the code point span // to find the match from the earliest start. } if(overlap>spanLength) { overlap=spanLength; } int32_t inc=length8-overlap; // Keep overlap+inc==length8. for(;;) { if(inc>rest || overlap<maxOverlap) { break; } // Try to match if the string is longer or starts earlier. // Match at code point boundaries. (The UTF-8 strings were converted // from UTF-16 and are guaranteed to be well-formed.) if(!U8_IS_TRAIL(s[pos-overlap]) && (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ inc>maxInc) && matches8(s+pos-overlap, s8, length8)) { maxInc=inc; // Longest match from earliest start. maxOverlap=overlap; break; } --overlap; ++inc; } s8+=length8; } if(maxInc!=0 || maxOverlap!=0) { // Longest-match algorithm, and there was a string match. // Simply continue after it. pos+=maxInc; rest-=maxInc; if(rest==0) { return length; // Reached the end of the string. } spanLength=0; // Match strings from after a string match. continue; } } // Finished trying to match all strings at pos. if(spanLength!=0 || pos==0) { // The position is after an unlimited code point span (spanLength!=0), // not after a string match. // The only position where spanLength==0 after a span is pos==0. // Otherwise, an unlimited code point span is only tried again when no // strings match, and if such a non-initial span fails we stop. if(offsets.isEmpty()) { return pos; // No strings matched after a span. } // Match strings from after the next string match. } else { // The position is after a string match (or a single code point). if(offsets.isEmpty()) { // No more strings matched after a previous string match. // Try another code point span from after the last string match. spanLength=spanSet.spanUTF8((const char *)s+pos, rest, USET_SPAN_CONTAINED); if( spanLength==rest || // Reached the end of the string, or spanLength==0 // neither strings nor span progressed. ) { return pos+spanLength; } pos+=spanLength; rest-=spanLength; continue; // spanLength>0: Match strings from after a span. } else { // Try to match only one code point from after a string match if some // string matched beyond it, so that we try all possible positions // and don't overshoot. spanLength=spanOneUTF8(spanSet, s+pos, rest); if(spanLength>0) { if(spanLength==rest) { return length; // Reached the end of the string. } // Match strings after this code point. // There cannot be any increments below it because UnicodeSet strings // contain multiple code points. pos+=spanLength; rest-=spanLength; offsets.shift(spanLength); spanLength=0; continue; // Match strings from after a single code point. } // Match strings from after the next string match. } } int32_t minOffset=offsets.popMinimum(); pos+=minOffset; rest-=minOffset; spanLength=0; // Match strings from after a string match. } } int32_t UnicodeSetStringSpan::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { if(spanCondition==USET_SPAN_NOT_CONTAINED) { return spanNotBackUTF8(s, length); } int32_t pos=spanSet.spanBackUTF8((const char *)s, length, USET_SPAN_CONTAINED); if(pos==0) { return 0; } int32_t spanLength=length-pos; // Consider strings; they may overlap with the span. OffsetList offsets; if(spanCondition==USET_SPAN_CONTAINED) { // Use offset list to try all possibilities. offsets.setMaxLength(maxLength8); } int32_t i, stringsLength=strings.size(); uint8_t *spanBackUTF8Lengths=spanLengths; if(all) { spanBackUTF8Lengths+=3*stringsLength; } for(;;) { const uint8_t *s8=utf8; int32_t length8; if(spanCondition==USET_SPAN_CONTAINED) { for(i=0; i<stringsLength; ++i) { length8=utf8Lengths[i]; if(length8==0) { continue; // String not representable in UTF-8. } int32_t overlap=spanBackUTF8Lengths[i]; if(overlap==ALL_CP_CONTAINED) { s8+=length8; continue; // Irrelevant string. } // Try to match this string at pos-(length8-overlap)..pos-length8. if(overlap>=LONG_SPAN) { overlap=length8; // While contained: No point matching fully inside the code point span. int32_t len1=0; U8_FWD_1(s8, len1, overlap); overlap-=len1; // Length of the string minus the first code point. } if(overlap>spanLength) { overlap=spanLength; } int32_t dec=length8-overlap; // Keep dec+overlap==length8. for(;;) { if(dec>pos) { break; } // Try to match if the decrement is not listed already. // Match at code point boundaries. (The UTF-8 strings were converted // from UTF-16 and are guaranteed to be well-formed.) if( !U8_IS_TRAIL(s[pos-dec]) && !offsets.containsOffset(dec) && matches8(s+pos-dec, s8, length8) ) { if(dec==pos) { return 0; // Reached the start of the string. } offsets.addOffset(dec); } if(overlap==0) { break; } --overlap; ++dec; } s8+=length8; } } else /* USET_SPAN_SIMPLE */ { int32_t maxDec=0, maxOverlap=0; for(i=0; i<stringsLength; ++i) { length8=utf8Lengths[i]; if(length8==0) { continue; // String not representable in UTF-8. } int32_t overlap=spanBackUTF8Lengths[i]; // For longest match, we do need to try to match even an all-contained string // to find the match from the latest end. // Try to match this string at pos-(length8-overlap)..pos-length8. if(overlap>=LONG_SPAN) { overlap=length8; // Longest match: Need to match fully inside the code point span // to find the match from the latest end. } if(overlap>spanLength) { overlap=spanLength; } int32_t dec=length8-overlap; // Keep dec+overlap==length8. for(;;) { if(dec>pos || overlap<maxOverlap) { break; } // Try to match if the string is longer or ends later. // Match at code point boundaries. (The UTF-8 strings were converted // from UTF-16 and are guaranteed to be well-formed.) if( !U8_IS_TRAIL(s[pos-dec]) && (overlap>maxOverlap || /* redundant overlap==maxOverlap && */ dec>maxDec) && matches8(s+pos-dec, s8, length8) ) { maxDec=dec; // Longest match from latest end. maxOverlap=overlap; break; } --overlap; ++dec; } s8+=length8; } if(maxDec!=0 || maxOverlap!=0) { // Longest-match algorithm, and there was a string match. // Simply continue before it. pos-=maxDec; if(pos==0) { return 0; // Reached the start of the string. } spanLength=0; // Match strings from before a string match. continue; } } // Finished trying to match all strings at pos. if(spanLength!=0 || pos==length) { // The position is before an unlimited code point span (spanLength!=0), // not before a string match. // The only position where spanLength==0 before a span is pos==length. // Otherwise, an unlimited code point span is only tried again when no // strings match, and if such a non-initial span fails we stop. if(offsets.isEmpty()) { return pos; // No strings matched before a span. } // Match strings from before the next string match. } else { // The position is before a string match (or a single code point). if(offsets.isEmpty()) { // No more strings matched before a previous string match. // Try another code point span from before the last string match. int32_t oldPos=pos; pos=spanSet.spanBackUTF8((const char *)s, oldPos, USET_SPAN_CONTAINED); spanLength=oldPos-pos; if( pos==0 || // Reached the start of the string, or spanLength==0 // neither strings nor span progressed. ) { return pos; } continue; // spanLength>0: Match strings from before a span. } else { // Try to match only one code point from before a string match if some // string matched beyond it, so that we try all possible positions // and don't overshoot. spanLength=spanOneBackUTF8(spanSet, s, pos); if(spanLength>0) { if(spanLength==pos) { return 0; // Reached the start of the string. } // Match strings before this code point. // There cannot be any decrements below it because UnicodeSet strings // contain multiple code points. pos-=spanLength; offsets.shift(spanLength); spanLength=0; continue; // Match strings from before a single code point. } // Match strings from before the next string match. } } pos-=offsets.popMinimum(); spanLength=0; // Match strings from before a string match. } } /* * Algorithm for spanNot()==span(USET_SPAN_NOT_CONTAINED) * * Theoretical algorithm: * - Iterate through the string, and at each code point boundary: * + If the code point there is in the set, then return with the current position. * + If a set string matches at the current position, then return with the current position. * * Optimized implementation: * * (Same assumption as for span() above.) * * Create and cache a spanNotSet which contains all of the single code points * of the original set but none of its strings. * For each set string add its initial code point to the spanNotSet. * (Also add its final code point for spanNotBack().) * * - Loop: * + Do spanLength=spanNotSet.span(USET_SPAN_NOT_CONTAINED). * + If the current code point is in the original set, then * return the current position. * + If any set string matches at the current position, then * return the current position. * + If there is no match at the current position, neither for the code point there * nor for any set string, then skip this code point and continue the loop. * This happens for set-string-initial code points that were added to spanNotSet * when there is not actually a match for such a set string. */ int32_t UnicodeSetStringSpan::spanNot(const UChar *s, int32_t length) const { int32_t pos=0, rest=length; int32_t i, stringsLength=strings.size(); do { // Span until we find a code point from the set, // or a code point that starts or ends some string. i=pSpanNotSet->span(s+pos, rest, USET_SPAN_NOT_CONTAINED); if(i==rest) { return length; // Reached the end of the string. } pos+=i; rest-=i; // Check whether the current code point is in the original set, // without the string starts and ends. int32_t cpLength=spanOne(spanSet, s+pos, rest); if(cpLength>0) { return pos; // There is a set element at pos. } // Try to match the strings at pos. for(i=0; i<stringsLength; ++i) { if(spanLengths[i]==ALL_CP_CONTAINED) { continue; // Irrelevant string. } const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); const UChar *s16=string.getBuffer(); int32_t length16=string.length(); if(length16<=rest && matches16CPB(s, pos, length, s16, length16)) { return pos; // There is a set element at pos. } } // The span(while not contained) ended on a string start/end which is // not in the original set. Skip this code point and continue. // cpLength<0 pos-=cpLength; rest+=cpLength; } while(rest!=0); return length; // Reached the end of the string. } int32_t UnicodeSetStringSpan::spanNotBack(const UChar *s, int32_t length) const { int32_t pos=length; int32_t i, stringsLength=strings.size(); do { // Span until we find a code point from the set, // or a code point that starts or ends some string. pos=pSpanNotSet->spanBack(s, pos, USET_SPAN_NOT_CONTAINED); if(pos==0) { return 0; // Reached the start of the string. } // Check whether the current code point is in the original set, // without the string starts and ends. int32_t cpLength=spanOneBack(spanSet, s, pos); if(cpLength>0) { return pos; // There is a set element at pos. } // Try to match the strings at pos. for(i=0; i<stringsLength; ++i) { // Use spanLengths rather than a spanBackLengths pointer because // it is easier and we only need to know whether the string is irrelevant // which is the same in either array. if(spanLengths[i]==ALL_CP_CONTAINED) { continue; // Irrelevant string. } const UnicodeString &string=*(const UnicodeString *)strings.elementAt(i); const UChar *s16=string.getBuffer(); int32_t length16=string.length(); if(length16<=pos && matches16CPB(s, pos-length16, length, s16, length16)) { return pos; // There is a set element at pos. } } // The span(while not contained) ended on a string start/end which is // not in the original set. Skip this code point and continue. // cpLength<0 pos+=cpLength; } while(pos!=0); return 0; // Reached the start of the string. } int32_t UnicodeSetStringSpan::spanNotUTF8(const uint8_t *s, int32_t length) const { int32_t pos=0, rest=length; int32_t i, stringsLength=strings.size(); uint8_t *spanUTF8Lengths=spanLengths; if(all) { spanUTF8Lengths+=2*stringsLength; } do { // Span until we find a code point from the set, // or a code point that starts or ends some string. i=pSpanNotSet->spanUTF8((const char *)s+pos, rest, USET_SPAN_NOT_CONTAINED); if(i==rest) { return length; // Reached the end of the string. } pos+=i; rest-=i; // Check whether the current code point is in the original set, // without the string starts and ends. int32_t cpLength=spanOneUTF8(spanSet, s+pos, rest); if(cpLength>0) { return pos; // There is a set element at pos. } // Try to match the strings at pos. const uint8_t *s8=utf8; int32_t length8; for(i=0; i<stringsLength; ++i) { length8=utf8Lengths[i]; // ALL_CP_CONTAINED: Irrelevant string. if(length8!=0 && spanUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=rest && matches8(s+pos, s8, length8)) { return pos; // There is a set element at pos. } s8+=length8; } // The span(while not contained) ended on a string start/end which is // not in the original set. Skip this code point and continue. // cpLength<0 pos-=cpLength; rest+=cpLength; } while(rest!=0); return length; // Reached the end of the string. } int32_t UnicodeSetStringSpan::spanNotBackUTF8(const uint8_t *s, int32_t length) const { int32_t pos=length; int32_t i, stringsLength=strings.size(); uint8_t *spanBackUTF8Lengths=spanLengths; if(all) { spanBackUTF8Lengths+=3*stringsLength; } do { // Span until we find a code point from the set, // or a code point that starts or ends some string. pos=pSpanNotSet->spanBackUTF8((const char *)s, pos, USET_SPAN_NOT_CONTAINED); if(pos==0) { return 0; // Reached the start of the string. } // Check whether the current code point is in the original set, // without the string starts and ends. int32_t cpLength=spanOneBackUTF8(spanSet, s, pos); if(cpLength>0) { return pos; // There is a set element at pos. } // Try to match the strings at pos. const uint8_t *s8=utf8; int32_t length8; for(i=0; i<stringsLength; ++i) { length8=utf8Lengths[i]; // ALL_CP_CONTAINED: Irrelevant string. if(length8!=0 && spanBackUTF8Lengths[i]!=ALL_CP_CONTAINED && length8<=pos && matches8(s+pos-length8, s8, length8)) { return pos; // There is a set element at pos. } s8+=length8; } // The span(while not contained) ended on a string start/end which is // not in the original set. Skip this code point and continue. // cpLength<0 pos+=cpLength; } while(pos!=0); return 0; // Reached the start of the string. } U_NAMESPACE_END