// © 2016 and later: Unicode, Inc. and others. // License & terms of use: http://www.unicode.org/copyright.html /* ************************************************************************** * Copyright (C) 2002-2016 International Business Machines Corporation * and others. All rights reserved. ************************************************************************** */ // // file: rematch.cpp // // Contains the implementation of class RegexMatcher, // which is one of the main API classes for the ICU regular expression package. // #include "unicode/utypes.h" #if !UCONFIG_NO_REGULAR_EXPRESSIONS #include "unicode/regex.h" #include "unicode/uniset.h" #include "unicode/uchar.h" #include "unicode/ustring.h" #include "unicode/rbbi.h" #include "unicode/utf.h" #include "unicode/utf16.h" #include "uassert.h" #include "cmemory.h" #include "cstr.h" #include "uvector.h" #include "uvectr32.h" #include "uvectr64.h" #include "regeximp.h" #include "regexst.h" #include "regextxt.h" #include "ucase.h" // #include <malloc.h> // Needed for heapcheck testing U_NAMESPACE_BEGIN // Default limit for the size of the back track stack, to avoid system // failures causedby heap exhaustion. Units are in 32 bit words, not bytes. // This value puts ICU's limits higher than most other regexp implementations, // which use recursion rather than the heap, and take more storage per // backtrack point. // static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000; // Time limit counter constant. // Time limits for expression evaluation are in terms of quanta of work by // the engine, each of which is 10,000 state saves. // This constant determines that state saves per tick number. static const int32_t TIMER_INITIAL_VALUE = 10000; // Test for any of the Unicode line terminating characters. static inline UBool isLineTerminator(UChar32 c) { if (c & ~(0x0a | 0x0b | 0x0c | 0x0d | 0x85 | 0x2028 | 0x2029)) { return false; } return (c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029; } //----------------------------------------------------------------------------- // // Constructor and Destructor // //----------------------------------------------------------------------------- RegexMatcher::RegexMatcher(const RegexPattern *pat) { fDeferredStatus = U_ZERO_ERROR; init(fDeferredStatus); if (U_FAILURE(fDeferredStatus)) { return; } if (pat==NULL) { fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR; return; } fPattern = pat; init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus); } RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input, uint32_t flags, UErrorCode &status) { init(status); if (U_FAILURE(status)) { return; } UParseError pe; fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); fPattern = fPatternOwned; UText inputText = UTEXT_INITIALIZER; utext_openConstUnicodeString(&inputText, &input, &status); init2(&inputText, status); utext_close(&inputText); fInputUniStrMaybeMutable = TRUE; } RegexMatcher::RegexMatcher(UText *regexp, UText *input, uint32_t flags, UErrorCode &status) { init(status); if (U_FAILURE(status)) { return; } UParseError pe; fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); if (U_FAILURE(status)) { return; } fPattern = fPatternOwned; init2(input, status); } RegexMatcher::RegexMatcher(const UnicodeString ®exp, uint32_t flags, UErrorCode &status) { init(status); if (U_FAILURE(status)) { return; } UParseError pe; fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); if (U_FAILURE(status)) { return; } fPattern = fPatternOwned; init2(RegexStaticSets::gStaticSets->fEmptyText, status); } RegexMatcher::RegexMatcher(UText *regexp, uint32_t flags, UErrorCode &status) { init(status); if (U_FAILURE(status)) { return; } UParseError pe; fPatternOwned = RegexPattern::compile(regexp, flags, pe, status); if (U_FAILURE(status)) { return; } fPattern = fPatternOwned; init2(RegexStaticSets::gStaticSets->fEmptyText, status); } RegexMatcher::~RegexMatcher() { delete fStack; if (fData != fSmallData) { uprv_free(fData); fData = NULL; } if (fPatternOwned) { delete fPatternOwned; fPatternOwned = NULL; fPattern = NULL; } if (fInput) { delete fInput; } if (fInputText) { utext_close(fInputText); } if (fAltInputText) { utext_close(fAltInputText); } #if UCONFIG_NO_BREAK_ITERATION==0 delete fWordBreakItr; #endif } // // init() common initialization for use by all constructors. // Initialize all fields, get the object into a consistent state. // This must be done even when the initial status shows an error, // so that the object is initialized sufficiently well for the destructor // to run safely. // void RegexMatcher::init(UErrorCode &status) { fPattern = NULL; fPatternOwned = NULL; fFrameSize = 0; fRegionStart = 0; fRegionLimit = 0; fAnchorStart = 0; fAnchorLimit = 0; fLookStart = 0; fLookLimit = 0; fActiveStart = 0; fActiveLimit = 0; fTransparentBounds = FALSE; fAnchoringBounds = TRUE; fMatch = FALSE; fMatchStart = 0; fMatchEnd = 0; fLastMatchEnd = -1; fAppendPosition = 0; fHitEnd = FALSE; fRequireEnd = FALSE; fStack = NULL; fFrame = NULL; fTimeLimit = 0; fTime = 0; fTickCounter = 0; fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY; fCallbackFn = NULL; fCallbackContext = NULL; fFindProgressCallbackFn = NULL; fFindProgressCallbackContext = NULL; fTraceDebug = FALSE; fDeferredStatus = status; fData = fSmallData; fWordBreakItr = NULL; fStack = NULL; fInputText = NULL; fAltInputText = NULL; fInput = NULL; fInputLength = 0; fInputUniStrMaybeMutable = FALSE; } // // init2() Common initialization for use by RegexMatcher constructors, part 2. // This handles the common setup to be done after the Pattern is available. // void RegexMatcher::init2(UText *input, UErrorCode &status) { if (U_FAILURE(status)) { fDeferredStatus = status; return; } if (fPattern->fDataSize > UPRV_LENGTHOF(fSmallData)) { fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t)); if (fData == NULL) { status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; return; } } fStack = new UVector64(status); if (fStack == NULL) { status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; return; } reset(input); setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status); if (U_FAILURE(status)) { fDeferredStatus = status; return; } } static const UChar BACKSLASH = 0x5c; static const UChar DOLLARSIGN = 0x24; static const UChar LEFTBRACKET = 0x7b; static const UChar RIGHTBRACKET = 0x7d; //-------------------------------------------------------------------------------- // // appendReplacement // //-------------------------------------------------------------------------------- RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest, const UnicodeString &replacement, UErrorCode &status) { UText replacementText = UTEXT_INITIALIZER; utext_openConstUnicodeString(&replacementText, &replacement, &status); if (U_SUCCESS(status)) { UText resultText = UTEXT_INITIALIZER; utext_openUnicodeString(&resultText, &dest, &status); if (U_SUCCESS(status)) { appendReplacement(&resultText, &replacementText, status); utext_close(&resultText); } utext_close(&replacementText); } return *this; } // // appendReplacement, UText mode // RegexMatcher &RegexMatcher::appendReplacement(UText *dest, UText *replacement, UErrorCode &status) { if (U_FAILURE(status)) { return *this; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return *this; } if (fMatch == FALSE) { status = U_REGEX_INVALID_STATE; return *this; } // Copy input string from the end of previous match to start of current match int64_t destLen = utext_nativeLength(dest); if (fMatchStart > fAppendPosition) { if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, (int32_t)(fMatchStart-fAppendPosition), &status); } else { int32_t len16; if (UTEXT_USES_U16(fInputText)) { len16 = (int32_t)(fMatchStart-fAppendPosition); } else { UErrorCode lengthStatus = U_ZERO_ERROR; len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus); } UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); if (inputChars == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return *this; } utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status); destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status); uprv_free(inputChars); } } fAppendPosition = fMatchEnd; // scan the replacement text, looking for substitutions ($n) and \escapes. // TODO: optimize this loop by efficiently scanning for '$' or '\', // move entire ranges not containing substitutions. UTEXT_SETNATIVEINDEX(replacement, 0); for (UChar32 c = UTEXT_NEXT32(replacement); U_SUCCESS(status) && c != U_SENTINEL; c = UTEXT_NEXT32(replacement)) { if (c == BACKSLASH) { // Backslash Escape. Copy the following char out without further checks. // Note: Surrogate pairs don't need any special handling // The second half wont be a '$' or a '\', and // will move to the dest normally on the next // loop iteration. c = UTEXT_CURRENT32(replacement); if (c == U_SENTINEL) { break; } if (c==0x55/*U*/ || c==0x75/*u*/) { // We have a \udddd or \Udddddddd escape sequence. int32_t offset = 0; struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement); UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context); if (escapedChar != (UChar32)0xFFFFFFFF) { if (U_IS_BMP(escapedChar)) { UChar c16 = (UChar)escapedChar; destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); } else { UChar surrogate[2]; surrogate[0] = U16_LEAD(escapedChar); surrogate[1] = U16_TRAIL(escapedChar); if (U_SUCCESS(status)) { destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); } } // TODO: Report errors for mal-formed \u escapes? // As this is, the original sequence is output, which may be OK. if (context.lastOffset == offset) { (void)UTEXT_PREVIOUS32(replacement); } else if (context.lastOffset != offset-1) { utext_moveIndex32(replacement, offset - context.lastOffset - 1); } } } else { (void)UTEXT_NEXT32(replacement); // Plain backslash escape. Just put out the escaped character. if (U_IS_BMP(c)) { UChar c16 = (UChar)c; destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); } else { UChar surrogate[2]; surrogate[0] = U16_LEAD(c); surrogate[1] = U16_TRAIL(c); if (U_SUCCESS(status)) { destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); } } } } else if (c != DOLLARSIGN) { // Normal char, not a $. Copy it out without further checks. if (U_IS_BMP(c)) { UChar c16 = (UChar)c; destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status); } else { UChar surrogate[2]; surrogate[0] = U16_LEAD(c); surrogate[1] = U16_TRAIL(c); if (U_SUCCESS(status)) { destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status); } } } else { // We've got a $. Pick up a capture group name or number if one follows. // Consume digits so long as the resulting group number <= the number of // number of capture groups in the pattern. int32_t groupNum = 0; int32_t numDigits = 0; UChar32 nextChar = utext_current32(replacement); if (nextChar == LEFTBRACKET) { // Scan for a Named Capture Group, ${name}. UnicodeString groupName; utext_next32(replacement); while(U_SUCCESS(status) && nextChar != RIGHTBRACKET) { nextChar = utext_next32(replacement); if (nextChar == U_SENTINEL) { status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; } else if ((nextChar >= 0x41 && nextChar <= 0x5a) || // A..Z (nextChar >= 0x61 && nextChar <= 0x7a) || // a..z (nextChar >= 0x31 && nextChar <= 0x39)) { // 0..9 groupName.append(nextChar); } else if (nextChar == RIGHTBRACKET) { groupNum = uhash_geti(fPattern->fNamedCaptureMap, &groupName); if (groupNum == 0) { status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; } } else { // Character was something other than a name char or a closing '}' status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; } } } else if (u_isdigit(nextChar)) { // $n Scan for a capture group number int32_t numCaptureGroups = fPattern->fGroupMap->size(); for (;;) { nextChar = UTEXT_CURRENT32(replacement); if (nextChar == U_SENTINEL) { break; } if (u_isdigit(nextChar) == FALSE) { break; } int32_t nextDigitVal = u_charDigitValue(nextChar); if (groupNum*10 + nextDigitVal > numCaptureGroups) { // Don't consume the next digit if it makes the capture group number too big. if (numDigits == 0) { status = U_INDEX_OUTOFBOUNDS_ERROR; } break; } (void)UTEXT_NEXT32(replacement); groupNum=groupNum*10 + nextDigitVal; ++numDigits; } } else { // $ not followed by capture group name or number. status = U_REGEX_INVALID_CAPTURE_GROUP_NAME; } if (U_SUCCESS(status)) { destLen += appendGroup(groupNum, dest, status); } } // End of $ capture group handling } // End of per-character loop through the replacement string. return *this; } //-------------------------------------------------------------------------------- // // appendTail Intended to be used in conjunction with appendReplacement() // To the destination string, append everything following // the last match position from the input string. // // Note: Match ranges do not affect appendTail or appendReplacement // //-------------------------------------------------------------------------------- UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) { UErrorCode status = U_ZERO_ERROR; UText resultText = UTEXT_INITIALIZER; utext_openUnicodeString(&resultText, &dest, &status); if (U_SUCCESS(status)) { appendTail(&resultText, status); utext_close(&resultText); } return dest; } // // appendTail, UText mode // UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) { if (U_FAILURE(status)) { return dest; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return dest; } if (fInputLength > fAppendPosition) { if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { int64_t destLen = utext_nativeLength(dest); utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition, (int32_t)(fInputLength-fAppendPosition), &status); } else { int32_t len16; if (UTEXT_USES_U16(fInputText)) { len16 = (int32_t)(fInputLength-fAppendPosition); } else { len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status); status = U_ZERO_ERROR; // buffer overflow } UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16)); if (inputChars == NULL) { fDeferredStatus = U_MEMORY_ALLOCATION_ERROR; } else { utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated int64_t destLen = utext_nativeLength(dest); utext_replace(dest, destLen, destLen, inputChars, len16, &status); uprv_free(inputChars); } } } return dest; } //-------------------------------------------------------------------------------- // // end // //-------------------------------------------------------------------------------- int32_t RegexMatcher::end(UErrorCode &err) const { return end(0, err); } int64_t RegexMatcher::end64(UErrorCode &err) const { return end64(0, err); } int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const { if (U_FAILURE(err)) { return -1; } if (fMatch == FALSE) { err = U_REGEX_INVALID_STATE; return -1; } if (group < 0 || group > fPattern->fGroupMap->size()) { err = U_INDEX_OUTOFBOUNDS_ERROR; return -1; } int64_t e = -1; if (group == 0) { e = fMatchEnd; } else { // Get the position within the stack frame of the variables for // this capture group. int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); U_ASSERT(groupOffset < fPattern->fFrameSize); U_ASSERT(groupOffset >= 0); e = fFrame->fExtra[groupOffset + 1]; } return e; } int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const { return (int32_t)end64(group, err); } //-------------------------------------------------------------------------------- // // findProgressInterrupt This function is called once for each advance in the target // string from the find() function, and calls the user progress callback // function if there is one installed. // // Return: TRUE if the find operation is to be terminated. // FALSE if the find operation is to continue running. // //-------------------------------------------------------------------------------- UBool RegexMatcher::findProgressInterrupt(int64_t pos, UErrorCode &status) { if (fFindProgressCallbackFn && !(*fFindProgressCallbackFn)(fFindProgressCallbackContext, pos)) { status = U_REGEX_STOPPED_BY_CALLER; return TRUE; } return FALSE; } //-------------------------------------------------------------------------------- // // find() // //-------------------------------------------------------------------------------- UBool RegexMatcher::find() { if (U_FAILURE(fDeferredStatus)) { return FALSE; } UErrorCode status = U_ZERO_ERROR; UBool result = find(status); return result; } //-------------------------------------------------------------------------------- // // find() // //-------------------------------------------------------------------------------- UBool RegexMatcher::find(UErrorCode &status) { // Start at the position of the last match end. (Will be zero if the // matcher has been reset.) // if (U_FAILURE(status)) { return FALSE; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return FALSE; } if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { return findUsingChunk(status); } int64_t startPos = fMatchEnd; if (startPos==0) { startPos = fActiveStart; } if (fMatch) { // Save the position of any previous successful match. fLastMatchEnd = fMatchEnd; if (fMatchStart == fMatchEnd) { // Previous match had zero length. Move start position up one position // to avoid sending find() into a loop on zero-length matches. if (startPos >= fActiveLimit) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } UTEXT_SETNATIVEINDEX(fInputText, startPos); (void)UTEXT_NEXT32(fInputText); startPos = UTEXT_GETNATIVEINDEX(fInputText); } } else { if (fLastMatchEnd >= 0) { // A previous find() failed to match. Don't try again. // (without this test, a pattern with a zero-length match // could match again at the end of an input string.) fHitEnd = TRUE; return FALSE; } } // Compute the position in the input string beyond which a match can not begin, because // the minimum length match would extend past the end of the input. // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. // Be aware of possible overflows if making changes here. int64_t testStartLimit; if (UTEXT_USES_U16(fInputText)) { testStartLimit = fActiveLimit - fPattern->fMinMatchLen; if (startPos > testStartLimit) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } } else { // We don't know exactly how long the minimum match length is in native characters. // Treat anything > 0 as 1. testStartLimit = fActiveLimit - (fPattern->fMinMatchLen > 0 ? 1 : 0); } UChar32 c; U_ASSERT(startPos >= 0); switch (fPattern->fStartType) { case START_NO_INFO: // No optimization was found. // Try a match at each input position. for (;;) { MatchAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } if (startPos >= testStartLimit) { fHitEnd = TRUE; return FALSE; } UTEXT_SETNATIVEINDEX(fInputText, startPos); (void)UTEXT_NEXT32(fInputText); startPos = UTEXT_GETNATIVEINDEX(fInputText); // Note that it's perfectly OK for a pattern to have a zero-length // match at the end of a string, so we must make sure that the loop // runs with startPos == testStartLimit the last time through. if (findProgressInterrupt(startPos, status)) return FALSE; } U_ASSERT(FALSE); case START_START: // Matches are only possible at the start of the input string // (pattern begins with ^ or \A) if (startPos > fActiveStart) { fMatch = FALSE; return FALSE; } MatchAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } return fMatch; case START_SET: { // Match may start on any char from a pre-computed set. U_ASSERT(fPattern->fMinMatchLen > 0); UTEXT_SETNATIVEINDEX(fInputText, startPos); for (;;) { int64_t pos = startPos; c = UTEXT_NEXT32(fInputText); startPos = UTEXT_GETNATIVEINDEX(fInputText); // c will be -1 (U_SENTINEL) at end of text, in which case we // skip this next block (so we don't have a negative array index) // and handle end of text in the following block. if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) || (c>=256 && fPattern->fInitialChars->contains(c)))) { MatchAt(pos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } UTEXT_SETNATIVEINDEX(fInputText, pos); } if (startPos > testStartLimit) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } if (findProgressInterrupt(startPos, status)) return FALSE; } } U_ASSERT(FALSE); case START_STRING: case START_CHAR: { // Match starts on exactly one char. U_ASSERT(fPattern->fMinMatchLen > 0); UChar32 theChar = fPattern->fInitialChar; UTEXT_SETNATIVEINDEX(fInputText, startPos); for (;;) { int64_t pos = startPos; c = UTEXT_NEXT32(fInputText); startPos = UTEXT_GETNATIVEINDEX(fInputText); if (c == theChar) { MatchAt(pos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } UTEXT_SETNATIVEINDEX(fInputText, startPos); } if (startPos > testStartLimit) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } if (findProgressInterrupt(startPos, status)) return FALSE; } } U_ASSERT(FALSE); case START_LINE: { UChar32 ch; if (startPos == fAnchorStart) { MatchAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } UTEXT_SETNATIVEINDEX(fInputText, startPos); ch = UTEXT_NEXT32(fInputText); startPos = UTEXT_GETNATIVEINDEX(fInputText); } else { UTEXT_SETNATIVEINDEX(fInputText, startPos); ch = UTEXT_PREVIOUS32(fInputText); UTEXT_SETNATIVEINDEX(fInputText, startPos); } if (fPattern->fFlags & UREGEX_UNIX_LINES) { for (;;) { if (ch == 0x0a) { MatchAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } UTEXT_SETNATIVEINDEX(fInputText, startPos); } if (startPos >= testStartLimit) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } ch = UTEXT_NEXT32(fInputText); startPos = UTEXT_GETNATIVEINDEX(fInputText); // Note that it's perfectly OK for a pattern to have a zero-length // match at the end of a string, so we must make sure that the loop // runs with startPos == testStartLimit the last time through. if (findProgressInterrupt(startPos, status)) return FALSE; } } else { for (;;) { if (isLineTerminator(ch)) { if (ch == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) { (void)UTEXT_NEXT32(fInputText); startPos = UTEXT_GETNATIVEINDEX(fInputText); } MatchAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } UTEXT_SETNATIVEINDEX(fInputText, startPos); } if (startPos >= testStartLimit) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } ch = UTEXT_NEXT32(fInputText); startPos = UTEXT_GETNATIVEINDEX(fInputText); // Note that it's perfectly OK for a pattern to have a zero-length // match at the end of a string, so we must make sure that the loop // runs with startPos == testStartLimit the last time through. if (findProgressInterrupt(startPos, status)) return FALSE; } } } default: U_ASSERT(FALSE); } U_ASSERT(FALSE); return FALSE; } UBool RegexMatcher::find(int64_t start, UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return FALSE; } this->reset(); // Note: Reset() is specified by Java Matcher documentation. // This will reset the region to be the full input length. if (start < 0) { status = U_INDEX_OUTOFBOUNDS_ERROR; return FALSE; } int64_t nativeStart = start; if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { status = U_INDEX_OUTOFBOUNDS_ERROR; return FALSE; } fMatchEnd = nativeStart; return find(status); } //-------------------------------------------------------------------------------- // // findUsingChunk() -- like find(), but with the advance knowledge that the // entire string is available in the UText's chunk buffer. // //-------------------------------------------------------------------------------- UBool RegexMatcher::findUsingChunk(UErrorCode &status) { // Start at the position of the last match end. (Will be zero if the // matcher has been reset. // int32_t startPos = (int32_t)fMatchEnd; if (startPos==0) { startPos = (int32_t)fActiveStart; } const UChar *inputBuf = fInputText->chunkContents; if (fMatch) { // Save the position of any previous successful match. fLastMatchEnd = fMatchEnd; if (fMatchStart == fMatchEnd) { // Previous match had zero length. Move start position up one position // to avoid sending find() into a loop on zero-length matches. if (startPos >= fActiveLimit) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } U16_FWD_1(inputBuf, startPos, fInputLength); } } else { if (fLastMatchEnd >= 0) { // A previous find() failed to match. Don't try again. // (without this test, a pattern with a zero-length match // could match again at the end of an input string.) fHitEnd = TRUE; return FALSE; } } // Compute the position in the input string beyond which a match can not begin, because // the minimum length match would extend past the end of the input. // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int. // Be aware of possible overflows if making changes here. // Note: a match can begin at inputBuf + testLen; it is an inclusive limit. int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen); if (startPos > testLen) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } UChar32 c; U_ASSERT(startPos >= 0); switch (fPattern->fStartType) { case START_NO_INFO: // No optimization was found. // Try a match at each input position. for (;;) { MatchChunkAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } if (startPos >= testLen) { fHitEnd = TRUE; return FALSE; } U16_FWD_1(inputBuf, startPos, fActiveLimit); // Note that it's perfectly OK for a pattern to have a zero-length // match at the end of a string, so we must make sure that the loop // runs with startPos == testLen the last time through. if (findProgressInterrupt(startPos, status)) return FALSE; } U_ASSERT(FALSE); case START_START: // Matches are only possible at the start of the input string // (pattern begins with ^ or \A) if (startPos > fActiveStart) { fMatch = FALSE; return FALSE; } MatchChunkAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } return fMatch; case START_SET: { // Match may start on any char from a pre-computed set. U_ASSERT(fPattern->fMinMatchLen > 0); for (;;) { int32_t pos = startPos; U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++]; if ((c<256 && fPattern->fInitialChars8->contains(c)) || (c>=256 && fPattern->fInitialChars->contains(c))) { MatchChunkAt(pos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } } if (startPos > testLen) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } if (findProgressInterrupt(startPos, status)) return FALSE; } } U_ASSERT(FALSE); case START_STRING: case START_CHAR: { // Match starts on exactly one char. U_ASSERT(fPattern->fMinMatchLen > 0); UChar32 theChar = fPattern->fInitialChar; for (;;) { int32_t pos = startPos; U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++]; if (c == theChar) { MatchChunkAt(pos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } } if (startPos > testLen) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } if (findProgressInterrupt(startPos, status)) return FALSE; } } U_ASSERT(FALSE); case START_LINE: { UChar32 ch; if (startPos == fAnchorStart) { MatchChunkAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } U16_FWD_1(inputBuf, startPos, fActiveLimit); } if (fPattern->fFlags & UREGEX_UNIX_LINES) { for (;;) { ch = inputBuf[startPos-1]; if (ch == 0x0a) { MatchChunkAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } } if (startPos >= testLen) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } U16_FWD_1(inputBuf, startPos, fActiveLimit); // Note that it's perfectly OK for a pattern to have a zero-length // match at the end of a string, so we must make sure that the loop // runs with startPos == testLen the last time through. if (findProgressInterrupt(startPos, status)) return FALSE; } } else { for (;;) { ch = inputBuf[startPos-1]; if (isLineTerminator(ch)) { if (ch == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) { startPos++; } MatchChunkAt(startPos, FALSE, status); if (U_FAILURE(status)) { return FALSE; } if (fMatch) { return TRUE; } } if (startPos >= testLen) { fMatch = FALSE; fHitEnd = TRUE; return FALSE; } U16_FWD_1(inputBuf, startPos, fActiveLimit); // Note that it's perfectly OK for a pattern to have a zero-length // match at the end of a string, so we must make sure that the loop // runs with startPos == testLen the last time through. if (findProgressInterrupt(startPos, status)) return FALSE; } } } default: U_ASSERT(FALSE); } U_ASSERT(FALSE); return FALSE; } //-------------------------------------------------------------------------------- // // group() // //-------------------------------------------------------------------------------- UnicodeString RegexMatcher::group(UErrorCode &status) const { return group(0, status); } // Return immutable shallow clone UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const { return group(0, dest, group_len, status); } // Return immutable shallow clone UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const { group_len = 0; if (U_FAILURE(status)) { return dest; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; } else if (fMatch == FALSE) { status = U_REGEX_INVALID_STATE; } else if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { status = U_INDEX_OUTOFBOUNDS_ERROR; } if (U_FAILURE(status)) { return dest; } int64_t s, e; if (groupNum == 0) { s = fMatchStart; e = fMatchEnd; } else { int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); U_ASSERT(groupOffset < fPattern->fFrameSize); U_ASSERT(groupOffset >= 0); s = fFrame->fExtra[groupOffset]; e = fFrame->fExtra[groupOffset+1]; } if (s < 0) { // A capture group wasn't part of the match return utext_clone(dest, fInputText, FALSE, TRUE, &status); } U_ASSERT(s <= e); group_len = e - s; dest = utext_clone(dest, fInputText, FALSE, TRUE, &status); if (dest) UTEXT_SETNATIVEINDEX(dest, s); return dest; } UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const { UnicodeString result; int64_t groupStart = start64(groupNum, status); int64_t groupEnd = end64(groupNum, status); if (U_FAILURE(status) || groupStart == -1 || groupStart == groupEnd) { return result; } // Get the group length using a utext_extract preflight. // UText is actually pretty efficient at this when underlying encoding is UTF-16. int32_t length = utext_extract(fInputText, groupStart, groupEnd, NULL, 0, &status); if (status != U_BUFFER_OVERFLOW_ERROR) { return result; } status = U_ZERO_ERROR; UChar *buf = result.getBuffer(length); if (buf == NULL) { status = U_MEMORY_ALLOCATION_ERROR; } else { int32_t extractLength = utext_extract(fInputText, groupStart, groupEnd, buf, length, &status); result.releaseBuffer(extractLength); U_ASSERT(length == extractLength); } return result; } //-------------------------------------------------------------------------------- // // appendGroup() -- currently internal only, appends a group to a UText rather // than replacing its contents // //-------------------------------------------------------------------------------- int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const { if (U_FAILURE(status)) { return 0; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return 0; } int64_t destLen = utext_nativeLength(dest); if (fMatch == FALSE) { status = U_REGEX_INVALID_STATE; return utext_replace(dest, destLen, destLen, NULL, 0, &status); } if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) { status = U_INDEX_OUTOFBOUNDS_ERROR; return utext_replace(dest, destLen, destLen, NULL, 0, &status); } int64_t s, e; if (groupNum == 0) { s = fMatchStart; e = fMatchEnd; } else { int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1); U_ASSERT(groupOffset < fPattern->fFrameSize); U_ASSERT(groupOffset >= 0); s = fFrame->fExtra[groupOffset]; e = fFrame->fExtra[groupOffset+1]; } if (s < 0) { // A capture group wasn't part of the match return utext_replace(dest, destLen, destLen, NULL, 0, &status); } U_ASSERT(s <= e); int64_t deltaLen; if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { U_ASSERT(e <= fInputLength); deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status); } else { int32_t len16; if (UTEXT_USES_U16(fInputText)) { len16 = (int32_t)(e-s); } else { UErrorCode lengthStatus = U_ZERO_ERROR; len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus); } UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1)); if (groupChars == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return 0; } utext_extract(fInputText, s, e, groupChars, len16+1, &status); deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status); uprv_free(groupChars); } return deltaLen; } //-------------------------------------------------------------------------------- // // groupCount() // //-------------------------------------------------------------------------------- int32_t RegexMatcher::groupCount() const { return fPattern->fGroupMap->size(); } //-------------------------------------------------------------------------------- // // hasAnchoringBounds() // //-------------------------------------------------------------------------------- UBool RegexMatcher::hasAnchoringBounds() const { return fAnchoringBounds; } //-------------------------------------------------------------------------------- // // hasTransparentBounds() // //-------------------------------------------------------------------------------- UBool RegexMatcher::hasTransparentBounds() const { return fTransparentBounds; } //-------------------------------------------------------------------------------- // // hitEnd() // //-------------------------------------------------------------------------------- UBool RegexMatcher::hitEnd() const { return fHitEnd; } //-------------------------------------------------------------------------------- // // input() // //-------------------------------------------------------------------------------- const UnicodeString &RegexMatcher::input() const { if (!fInput) { UErrorCode status = U_ZERO_ERROR; int32_t len16; if (UTEXT_USES_U16(fInputText)) { len16 = (int32_t)fInputLength; } else { len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status); status = U_ZERO_ERROR; // overflow, length status } UnicodeString *result = new UnicodeString(len16, 0, 0); UChar *inputChars = result->getBuffer(len16); utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning result->releaseBuffer(len16); (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator= } return *fInput; } //-------------------------------------------------------------------------------- // // inputText() // //-------------------------------------------------------------------------------- UText *RegexMatcher::inputText() const { return fInputText; } //-------------------------------------------------------------------------------- // // getInput() -- like inputText(), but makes a clone or copies into another UText // //-------------------------------------------------------------------------------- UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const { if (U_FAILURE(status)) { return dest; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return dest; } if (dest) { if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status); } else { int32_t input16Len; if (UTEXT_USES_U16(fInputText)) { input16Len = (int32_t)fInputLength; } else { UErrorCode lengthStatus = U_ZERO_ERROR; input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error } UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len)); if (inputChars == NULL) { return dest; } status = U_ZERO_ERROR; utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning status = U_ZERO_ERROR; utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status); uprv_free(inputChars); } return dest; } else { return utext_clone(NULL, fInputText, FALSE, TRUE, &status); } } static UBool compat_SyncMutableUTextContents(UText *ut); static UBool compat_SyncMutableUTextContents(UText *ut) { UBool retVal = FALSE; // In the following test, we're really only interested in whether the UText should switch // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents // will still point to the correct data. if (utext_nativeLength(ut) != ut->nativeIndexingLimit) { UnicodeString *us=(UnicodeString *)ut->context; // Update to the latest length. // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit). int32_t newLength = us->length(); // Update the chunk description. // The buffer may have switched between stack- and heap-based. ut->chunkContents = us->getBuffer(); ut->chunkLength = newLength; ut->chunkNativeLimit = newLength; ut->nativeIndexingLimit = newLength; retVal = TRUE; } return retVal; } //-------------------------------------------------------------------------------- // // lookingAt() // //-------------------------------------------------------------------------------- UBool RegexMatcher::lookingAt(UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return FALSE; } if (fInputUniStrMaybeMutable) { if (compat_SyncMutableUTextContents(fInputText)) { fInputLength = utext_nativeLength(fInputText); reset(); } } else { resetPreserveRegion(); } if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { MatchChunkAt((int32_t)fActiveStart, FALSE, status); } else { MatchAt(fActiveStart, FALSE, status); } return fMatch; } UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return FALSE; } reset(); if (start < 0) { status = U_INDEX_OUTOFBOUNDS_ERROR; return FALSE; } if (fInputUniStrMaybeMutable) { if (compat_SyncMutableUTextContents(fInputText)) { fInputLength = utext_nativeLength(fInputText); reset(); } } int64_t nativeStart; nativeStart = start; if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { status = U_INDEX_OUTOFBOUNDS_ERROR; return FALSE; } if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { MatchChunkAt((int32_t)nativeStart, FALSE, status); } else { MatchAt(nativeStart, FALSE, status); } return fMatch; } //-------------------------------------------------------------------------------- // // matches() // //-------------------------------------------------------------------------------- UBool RegexMatcher::matches(UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return FALSE; } if (fInputUniStrMaybeMutable) { if (compat_SyncMutableUTextContents(fInputText)) { fInputLength = utext_nativeLength(fInputText); reset(); } } else { resetPreserveRegion(); } if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { MatchChunkAt((int32_t)fActiveStart, TRUE, status); } else { MatchAt(fActiveStart, TRUE, status); } return fMatch; } UBool RegexMatcher::matches(int64_t start, UErrorCode &status) { if (U_FAILURE(status)) { return FALSE; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return FALSE; } reset(); if (start < 0) { status = U_INDEX_OUTOFBOUNDS_ERROR; return FALSE; } if (fInputUniStrMaybeMutable) { if (compat_SyncMutableUTextContents(fInputText)) { fInputLength = utext_nativeLength(fInputText); reset(); } } int64_t nativeStart; nativeStart = start; if (nativeStart < fActiveStart || nativeStart > fActiveLimit) { status = U_INDEX_OUTOFBOUNDS_ERROR; return FALSE; } if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) { MatchChunkAt((int32_t)nativeStart, TRUE, status); } else { MatchAt(nativeStart, TRUE, status); } return fMatch; } //-------------------------------------------------------------------------------- // // pattern // //-------------------------------------------------------------------------------- const RegexPattern &RegexMatcher::pattern() const { return *fPattern; } //-------------------------------------------------------------------------------- // // region // //-------------------------------------------------------------------------------- RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) { if (U_FAILURE(status)) { return *this; } if (regionStart>regionLimit || regionStart<0 || regionLimit<0) { status = U_ILLEGAL_ARGUMENT_ERROR; } int64_t nativeStart = regionStart; int64_t nativeLimit = regionLimit; if (nativeStart > fInputLength || nativeLimit > fInputLength) { status = U_ILLEGAL_ARGUMENT_ERROR; } if (startIndex == -1) this->reset(); else resetPreserveRegion(); fRegionStart = nativeStart; fRegionLimit = nativeLimit; fActiveStart = nativeStart; fActiveLimit = nativeLimit; if (startIndex != -1) { if (startIndex < fActiveStart || startIndex > fActiveLimit) { status = U_INDEX_OUTOFBOUNDS_ERROR; } fMatchEnd = startIndex; } if (!fTransparentBounds) { fLookStart = nativeStart; fLookLimit = nativeLimit; } if (fAnchoringBounds) { fAnchorStart = nativeStart; fAnchorLimit = nativeLimit; } return *this; } RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) { return region(start, limit, -1, status); } //-------------------------------------------------------------------------------- // // regionEnd // //-------------------------------------------------------------------------------- int32_t RegexMatcher::regionEnd() const { return (int32_t)fRegionLimit; } int64_t RegexMatcher::regionEnd64() const { return fRegionLimit; } //-------------------------------------------------------------------------------- // // regionStart // //-------------------------------------------------------------------------------- int32_t RegexMatcher::regionStart() const { return (int32_t)fRegionStart; } int64_t RegexMatcher::regionStart64() const { return fRegionStart; } //-------------------------------------------------------------------------------- // // replaceAll // //-------------------------------------------------------------------------------- UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) { UText replacementText = UTEXT_INITIALIZER; UText resultText = UTEXT_INITIALIZER; UnicodeString resultString; if (U_FAILURE(status)) { return resultString; } utext_openConstUnicodeString(&replacementText, &replacement, &status); utext_openUnicodeString(&resultText, &resultString, &status); replaceAll(&replacementText, &resultText, status); utext_close(&resultText); utext_close(&replacementText); return resultString; } // // replaceAll, UText mode // UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) { if (U_FAILURE(status)) { return dest; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return dest; } if (dest == NULL) { UnicodeString emptyString; UText empty = UTEXT_INITIALIZER; utext_openUnicodeString(&empty, &emptyString, &status); dest = utext_clone(NULL, &empty, TRUE, FALSE, &status); utext_close(&empty); } if (U_SUCCESS(status)) { reset(); while (find()) { appendReplacement(dest, replacement, status); if (U_FAILURE(status)) { break; } } appendTail(dest, status); } return dest; } //-------------------------------------------------------------------------------- // // replaceFirst // //-------------------------------------------------------------------------------- UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) { UText replacementText = UTEXT_INITIALIZER; UText resultText = UTEXT_INITIALIZER; UnicodeString resultString; utext_openConstUnicodeString(&replacementText, &replacement, &status); utext_openUnicodeString(&resultText, &resultString, &status); replaceFirst(&replacementText, &resultText, status); utext_close(&resultText); utext_close(&replacementText); return resultString; } // // replaceFirst, UText mode // UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) { if (U_FAILURE(status)) { return dest; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return dest; } reset(); if (!find()) { return getInput(dest, status); } if (dest == NULL) { UnicodeString emptyString; UText empty = UTEXT_INITIALIZER; utext_openUnicodeString(&empty, &emptyString, &status); dest = utext_clone(NULL, &empty, TRUE, FALSE, &status); utext_close(&empty); } appendReplacement(dest, replacement, status); appendTail(dest, status); return dest; } //-------------------------------------------------------------------------------- // // requireEnd // //-------------------------------------------------------------------------------- UBool RegexMatcher::requireEnd() const { return fRequireEnd; } //-------------------------------------------------------------------------------- // // reset // //-------------------------------------------------------------------------------- RegexMatcher &RegexMatcher::reset() { fRegionStart = 0; fRegionLimit = fInputLength; fActiveStart = 0; fActiveLimit = fInputLength; fAnchorStart = 0; fAnchorLimit = fInputLength; fLookStart = 0; fLookLimit = fInputLength; resetPreserveRegion(); return *this; } void RegexMatcher::resetPreserveRegion() { fMatchStart = 0; fMatchEnd = 0; fLastMatchEnd = -1; fAppendPosition = 0; fMatch = FALSE; fHitEnd = FALSE; fRequireEnd = FALSE; fTime = 0; fTickCounter = TIMER_INITIAL_VALUE; //resetStack(); // more expensive than it looks... } RegexMatcher &RegexMatcher::reset(const UnicodeString &input) { fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus); if (fPattern->fNeedsAltInput) { fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus); } if (U_FAILURE(fDeferredStatus)) { return *this; } fInputLength = utext_nativeLength(fInputText); reset(); delete fInput; fInput = NULL; // Do the following for any UnicodeString. // This is for compatibility for those clients who modify the input string "live" during regex operations. fInputUniStrMaybeMutable = TRUE; if (fWordBreakItr != NULL) { #if UCONFIG_NO_BREAK_ITERATION==0 UErrorCode status = U_ZERO_ERROR; fWordBreakItr->setText(fInputText, status); #endif } return *this; } RegexMatcher &RegexMatcher::reset(UText *input) { if (fInputText != input) { fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus); if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus); if (U_FAILURE(fDeferredStatus)) { return *this; } fInputLength = utext_nativeLength(fInputText); delete fInput; fInput = NULL; if (fWordBreakItr != NULL) { #if UCONFIG_NO_BREAK_ITERATION==0 UErrorCode status = U_ZERO_ERROR; fWordBreakItr->setText(input, status); #endif } } reset(); fInputUniStrMaybeMutable = FALSE; return *this; } /*RegexMatcher &RegexMatcher::reset(const UChar *) { fDeferredStatus = U_INTERNAL_PROGRAM_ERROR; return *this; }*/ RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) { if (U_FAILURE(status)) { return *this; } reset(); // Reset also resets the region to be the entire string. if (position < 0 || position > fActiveLimit) { status = U_INDEX_OUTOFBOUNDS_ERROR; return *this; } fMatchEnd = position; return *this; } //-------------------------------------------------------------------------------- // // refresh // //-------------------------------------------------------------------------------- RegexMatcher &RegexMatcher::refreshInputText(UText *input, UErrorCode &status) { if (U_FAILURE(status)) { return *this; } if (input == NULL) { status = U_ILLEGAL_ARGUMENT_ERROR; return *this; } if (utext_nativeLength(fInputText) != utext_nativeLength(input)) { status = U_ILLEGAL_ARGUMENT_ERROR; return *this; } int64_t pos = utext_getNativeIndex(fInputText); // Shallow read-only clone of the new UText into the existing input UText fInputText = utext_clone(fInputText, input, FALSE, TRUE, &status); if (U_FAILURE(status)) { return *this; } utext_setNativeIndex(fInputText, pos); if (fAltInputText != NULL) { pos = utext_getNativeIndex(fAltInputText); fAltInputText = utext_clone(fAltInputText, input, FALSE, TRUE, &status); if (U_FAILURE(status)) { return *this; } utext_setNativeIndex(fAltInputText, pos); } return *this; } //-------------------------------------------------------------------------------- // // setTrace // //-------------------------------------------------------------------------------- void RegexMatcher::setTrace(UBool state) { fTraceDebug = state; } /** * UText, replace entire contents of the destination UText with a substring of the source UText. * * @param src The source UText * @param dest The destination UText. Must be writable. * May be NULL, in which case a new UText will be allocated. * @param start Start index of source substring. * @param limit Limit index of source substring. * @param status An error code. */ static UText *utext_extract_replace(UText *src, UText *dest, int64_t start, int64_t limit, UErrorCode *status) { if (U_FAILURE(*status)) { return dest; } if (start == limit) { if (dest) { utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, status); return dest; } else { return utext_openUChars(NULL, NULL, 0, status); } } int32_t length = utext_extract(src, start, limit, NULL, 0, status); if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { return dest; } *status = U_ZERO_ERROR; MaybeStackArray<UChar, 40> buffer; if (length >= buffer.getCapacity()) { UChar *newBuf = buffer.resize(length+1); // Leave space for terminating Nul. if (newBuf == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; } } utext_extract(src, start, limit, buffer.getAlias(), length+1, status); if (dest) { utext_replace(dest, 0, utext_nativeLength(dest), buffer.getAlias(), length, status); return dest; } // Caller did not provide a prexisting UText. // Open a new one, and have it adopt the text buffer storage. if (U_FAILURE(*status)) { return NULL; } int32_t ownedLength = 0; UChar *ownedBuf = buffer.orphanOrClone(length+1, ownedLength); if (ownedBuf == NULL) { *status = U_MEMORY_ALLOCATION_ERROR; return NULL; } UText *result = utext_openUChars(NULL, ownedBuf, length, status); if (U_FAILURE(*status)) { uprv_free(ownedBuf); return NULL; } result->providerProperties |= (1 << UTEXT_PROVIDER_OWNS_TEXT); return result; } //--------------------------------------------------------------------- // // split // //--------------------------------------------------------------------- int32_t RegexMatcher::split(const UnicodeString &input, UnicodeString dest[], int32_t destCapacity, UErrorCode &status) { UText inputText = UTEXT_INITIALIZER; utext_openConstUnicodeString(&inputText, &input, &status); if (U_FAILURE(status)) { return 0; } UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity); if (destText == NULL) { status = U_MEMORY_ALLOCATION_ERROR; return 0; } int32_t i; for (i = 0; i < destCapacity; i++) { destText[i] = utext_openUnicodeString(NULL, &dest[i], &status); } int32_t fieldCount = split(&inputText, destText, destCapacity, status); for (i = 0; i < destCapacity; i++) { utext_close(destText[i]); } uprv_free(destText); utext_close(&inputText); return fieldCount; } // // split, UText mode // int32_t RegexMatcher::split(UText *input, UText *dest[], int32_t destCapacity, UErrorCode &status) { // // Check arguements for validity // if (U_FAILURE(status)) { return 0; }; if (destCapacity < 1) { status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } // // Reset for the input text // reset(input); int64_t nextOutputStringStart = 0; if (fActiveLimit == 0) { return 0; } // // Loop through the input text, searching for the delimiter pattern // int32_t i; int32_t numCaptureGroups = fPattern->fGroupMap->size(); for (i=0; ; i++) { if (i>=destCapacity-1) { // There is one or zero output string left. // Fill the last output string with whatever is left from the input, then exit the loop. // ( i will be == destCapacity if we filled the output array while processing // capture groups of the delimiter expression, in which case we will discard the // last capture group saved in favor of the unprocessed remainder of the // input string.) i = destCapacity-1; if (fActiveLimit > nextOutputStringStart) { if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { if (dest[i]) { utext_replace(dest[i], 0, utext_nativeLength(dest[i]), input->chunkContents+nextOutputStringStart, (int32_t)(fActiveLimit-nextOutputStringStart), &status); } else { UText remainingText = UTEXT_INITIALIZER; utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, fActiveLimit-nextOutputStringStart, &status); dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); utext_close(&remainingText); } } else { UErrorCode lengthStatus = U_ZERO_ERROR; int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus); UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); if (remainingChars == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); if (dest[i]) { utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); } else { UText remainingText = UTEXT_INITIALIZER; utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); utext_close(&remainingText); } uprv_free(remainingChars); } } break; } if (find()) { // We found another delimiter. Move everything from where we started looking // up until the start of the delimiter into the next output string. if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { if (dest[i]) { utext_replace(dest[i], 0, utext_nativeLength(dest[i]), input->chunkContents+nextOutputStringStart, (int32_t)(fMatchStart-nextOutputStringStart), &status); } else { UText remainingText = UTEXT_INITIALIZER; utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, fMatchStart-nextOutputStringStart, &status); dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); utext_close(&remainingText); } } else { UErrorCode lengthStatus = U_ZERO_ERROR; int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus); UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); if (remainingChars == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status); if (dest[i]) { utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); } else { UText remainingText = UTEXT_INITIALIZER; utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); utext_close(&remainingText); } uprv_free(remainingChars); } nextOutputStringStart = fMatchEnd; // If the delimiter pattern has capturing parentheses, the captured // text goes out into the next n destination strings. int32_t groupNum; for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) { if (i >= destCapacity-2) { // Never fill the last available output string with capture group text. // It will filled with the last field, the remainder of the // unsplit input text. break; } i++; dest[i] = utext_extract_replace(fInputText, dest[i], start64(groupNum, status), end64(groupNum, status), &status); } if (nextOutputStringStart == fActiveLimit) { // The delimiter was at the end of the string. We're done, but first // we output one last empty string, for the empty field following // the delimiter at the end of input. if (i+1 < destCapacity) { ++i; if (dest[i] == NULL) { dest[i] = utext_openUChars(NULL, NULL, 0, &status); } else { static const UChar emptyString[] = {(UChar)0}; utext_replace(dest[i], 0, utext_nativeLength(dest[i]), emptyString, 0, &status); } } break; } } else { // We ran off the end of the input while looking for the next delimiter. // All the remaining text goes into the current output string. if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) { if (dest[i]) { utext_replace(dest[i], 0, utext_nativeLength(dest[i]), input->chunkContents+nextOutputStringStart, (int32_t)(fActiveLimit-nextOutputStringStart), &status); } else { UText remainingText = UTEXT_INITIALIZER; utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart, fActiveLimit-nextOutputStringStart, &status); dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); utext_close(&remainingText); } } else { UErrorCode lengthStatus = U_ZERO_ERROR; int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus); UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1)); if (remainingChars == NULL) { status = U_MEMORY_ALLOCATION_ERROR; break; } utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status); if (dest[i]) { utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status); } else { UText remainingText = UTEXT_INITIALIZER; utext_openUChars(&remainingText, remainingChars, remaining16Length, &status); dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status); utext_close(&remainingText); } uprv_free(remainingChars); } break; } if (U_FAILURE(status)) { break; } } // end of for loop return i+1; } //-------------------------------------------------------------------------------- // // start // //-------------------------------------------------------------------------------- int32_t RegexMatcher::start(UErrorCode &status) const { return start(0, status); } int64_t RegexMatcher::start64(UErrorCode &status) const { return start64(0, status); } //-------------------------------------------------------------------------------- // // start(int32_t group, UErrorCode &status) // //-------------------------------------------------------------------------------- int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const { if (U_FAILURE(status)) { return -1; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return -1; } if (fMatch == FALSE) { status = U_REGEX_INVALID_STATE; return -1; } if (group < 0 || group > fPattern->fGroupMap->size()) { status = U_INDEX_OUTOFBOUNDS_ERROR; return -1; } int64_t s; if (group == 0) { s = fMatchStart; } else { int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1); U_ASSERT(groupOffset < fPattern->fFrameSize); U_ASSERT(groupOffset >= 0); s = fFrame->fExtra[groupOffset]; } return s; } int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const { return (int32_t)start64(group, status); } //-------------------------------------------------------------------------------- // // useAnchoringBounds // //-------------------------------------------------------------------------------- RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) { fAnchoringBounds = b; fAnchorStart = (fAnchoringBounds ? fRegionStart : 0); fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength); return *this; } //-------------------------------------------------------------------------------- // // useTransparentBounds // //-------------------------------------------------------------------------------- RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) { fTransparentBounds = b; fLookStart = (fTransparentBounds ? 0 : fRegionStart); fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit); return *this; } //-------------------------------------------------------------------------------- // // setTimeLimit // //-------------------------------------------------------------------------------- void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) { if (U_FAILURE(status)) { return; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return; } if (limit < 0) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } fTimeLimit = limit; } //-------------------------------------------------------------------------------- // // getTimeLimit // //-------------------------------------------------------------------------------- int32_t RegexMatcher::getTimeLimit() const { return fTimeLimit; } //-------------------------------------------------------------------------------- // // setStackLimit // //-------------------------------------------------------------------------------- void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) { if (U_FAILURE(status)) { return; } if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return; } if (limit < 0) { status = U_ILLEGAL_ARGUMENT_ERROR; return; } // Reset the matcher. This is needed here in case there is a current match // whose final stack frame (containing the match results, pointed to by fFrame) // would be lost by resizing to a smaller stack size. reset(); if (limit == 0) { // Unlimited stack expansion fStack->setMaxCapacity(0); } else { // Change the units of the limit from bytes to ints, and bump the size up // to be big enough to hold at least one stack frame for the pattern, // if it isn't there already. int32_t adjustedLimit = limit / sizeof(int32_t); if (adjustedLimit < fPattern->fFrameSize) { adjustedLimit = fPattern->fFrameSize; } fStack->setMaxCapacity(adjustedLimit); } fStackLimit = limit; } //-------------------------------------------------------------------------------- // // getStackLimit // //-------------------------------------------------------------------------------- int32_t RegexMatcher::getStackLimit() const { return fStackLimit; } //-------------------------------------------------------------------------------- // // setMatchCallback // //-------------------------------------------------------------------------------- void RegexMatcher::setMatchCallback(URegexMatchCallback *callback, const void *context, UErrorCode &status) { if (U_FAILURE(status)) { return; } fCallbackFn = callback; fCallbackContext = context; } //-------------------------------------------------------------------------------- // // getMatchCallback // //-------------------------------------------------------------------------------- void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback, const void *&context, UErrorCode &status) { if (U_FAILURE(status)) { return; } callback = fCallbackFn; context = fCallbackContext; } //-------------------------------------------------------------------------------- // // setMatchCallback // //-------------------------------------------------------------------------------- void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback, const void *context, UErrorCode &status) { if (U_FAILURE(status)) { return; } fFindProgressCallbackFn = callback; fFindProgressCallbackContext = context; } //-------------------------------------------------------------------------------- // // getMatchCallback // //-------------------------------------------------------------------------------- void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback, const void *&context, UErrorCode &status) { if (U_FAILURE(status)) { return; } callback = fFindProgressCallbackFn; context = fFindProgressCallbackContext; } //================================================================================ // // Code following this point in this file is the internal // Match Engine Implementation. // //================================================================================ //-------------------------------------------------------------------------------- // // resetStack // Discard any previous contents of the state save stack, and initialize a // new stack frame to all -1. The -1s are needed for capture group limits, // where they indicate that a group has not yet matched anything. //-------------------------------------------------------------------------------- REStackFrame *RegexMatcher::resetStack() { // Discard any previous contents of the state save stack, and initialize a // new stack frame with all -1 data. The -1s are needed for capture group limits, // where they indicate that a group has not yet matched anything. fStack->removeAllElements(); REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus); if(U_FAILURE(fDeferredStatus)) { return NULL; } int32_t i; for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) { iFrame->fExtra[i] = -1; } return iFrame; } //-------------------------------------------------------------------------------- // // isWordBoundary // in perl, "xab..cd..", \b is true at positions 0,3,5,7 // For us, // If the current char is a combining mark, // \b is FALSE. // Else Scan backwards to the first non-combining char. // We are at a boundary if the this char and the original chars are // opposite in membership in \w set // // parameters: pos - the current position in the input buffer // // TODO: double-check edge cases at region boundaries. // //-------------------------------------------------------------------------------- UBool RegexMatcher::isWordBoundary(int64_t pos) { UBool isBoundary = FALSE; UBool cIsWord = FALSE; if (pos >= fLookLimit) { fHitEnd = TRUE; } else { // Determine whether char c at current position is a member of the word set of chars. // If we're off the end of the string, behave as though we're not at a word char. UTEXT_SETNATIVEINDEX(fInputText, pos); UChar32 c = UTEXT_CURRENT32(fInputText); if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { // Current char is a combining one. Not a boundary. return FALSE; } cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); } // Back up until we come to a non-combining char, determine whether // that char is a word char. UBool prevCIsWord = FALSE; for (;;) { if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) { break; } UChar32 prevChar = UTEXT_PREVIOUS32(fInputText); if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) || u_charType(prevChar) == U_FORMAT_CHAR)) { prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); break; } } isBoundary = cIsWord ^ prevCIsWord; return isBoundary; } UBool RegexMatcher::isChunkWordBoundary(int32_t pos) { UBool isBoundary = FALSE; UBool cIsWord = FALSE; const UChar *inputBuf = fInputText->chunkContents; if (pos >= fLookLimit) { fHitEnd = TRUE; } else { // Determine whether char c at current position is a member of the word set of chars. // If we're off the end of the string, behave as though we're not at a word char. UChar32 c; U16_GET(inputBuf, fLookStart, pos, fLookLimit, c); if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) { // Current char is a combining one. Not a boundary. return FALSE; } cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c); } // Back up until we come to a non-combining char, determine whether // that char is a word char. UBool prevCIsWord = FALSE; for (;;) { if (pos <= fLookStart) { break; } UChar32 prevChar; U16_PREV(inputBuf, fLookStart, pos, prevChar); if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND) || u_charType(prevChar) == U_FORMAT_CHAR)) { prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar); break; } } isBoundary = cIsWord ^ prevCIsWord; return isBoundary; } //-------------------------------------------------------------------------------- // // isUWordBoundary // // Test for a word boundary using RBBI word break. // // parameters: pos - the current position in the input buffer // //-------------------------------------------------------------------------------- UBool RegexMatcher::isUWordBoundary(int64_t pos) { UBool returnVal = FALSE; #if UCONFIG_NO_BREAK_ITERATION==0 // If we haven't yet created a break iterator for this matcher, do it now. if (fWordBreakItr == NULL) { fWordBreakItr = (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus); if (U_FAILURE(fDeferredStatus)) { return FALSE; } fWordBreakItr->setText(fInputText, fDeferredStatus); } if (pos >= fLookLimit) { fHitEnd = TRUE; returnVal = TRUE; // With Unicode word rules, only positions within the interior of "real" // words are not boundaries. All non-word chars stand by themselves, // with word boundaries on both sides. } else { if (!UTEXT_USES_U16(fInputText)) { // !!!: Would like a better way to do this! UErrorCode status = U_ZERO_ERROR; pos = utext_extract(fInputText, 0, pos, NULL, 0, &status); } returnVal = fWordBreakItr->isBoundary((int32_t)pos); } #endif return returnVal; } //-------------------------------------------------------------------------------- // // IncrementTime This function is called once each TIMER_INITIAL_VALUE state // saves. Increment the "time" counter, and call the // user callback function if there is one installed. // // If the match operation needs to be aborted, either for a time-out // or because the user callback asked for it, just set an error status. // The engine will pick that up and stop in its outer loop. // //-------------------------------------------------------------------------------- void RegexMatcher::IncrementTime(UErrorCode &status) { fTickCounter = TIMER_INITIAL_VALUE; fTime++; if (fCallbackFn != NULL) { if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) { status = U_REGEX_STOPPED_BY_CALLER; return; } } if (fTimeLimit > 0 && fTime >= fTimeLimit) { status = U_REGEX_TIME_OUT; } } //-------------------------------------------------------------------------------- // // StateSave // Make a new stack frame, initialized as a copy of the current stack frame. // Set the pattern index in the original stack frame from the operand value // in the opcode. Execution of the engine continues with the state in // the newly created stack frame // // Note that reserveBlock() may grow the stack, resulting in the // whole thing being relocated in memory. // // Parameters: // fp The top frame pointer when called. At return, a new // fame will be present // savePatIdx An index into the compiled pattern. Goes into the original // (not new) frame. If execution ever back-tracks out of the // new frame, this will be where we continue from in the pattern. // Return // The new frame pointer. // //-------------------------------------------------------------------------------- inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) { if (U_FAILURE(status)) { return fp; } // push storage for a new frame. int64_t *newFP = fStack->reserveBlock(fFrameSize, status); if (U_FAILURE(status)) { // Failure on attempted stack expansion. // Stack function set some other error code, change it to a more // specific one for regular expressions. status = U_REGEX_STACK_OVERFLOW; // We need to return a writable stack frame, so just return the // previous frame. The match operation will stop quickly // because of the error status, after which the frame will never // be looked at again. return fp; } fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack. // New stack frame = copy of old top frame. int64_t *source = (int64_t *)fp; int64_t *dest = newFP; for (;;) { *dest++ = *source++; if (source == newFP) { break; } } fTickCounter--; if (fTickCounter <= 0) { IncrementTime(status); // Re-initializes fTickCounter } fp->fPatIdx = savePatIdx; return (REStackFrame *)newFP; } #if defined(REGEX_DEBUG) namespace { UnicodeString StringFromUText(UText *ut) { UnicodeString result; for (UChar32 c = utext_next32From(ut, 0); c != U_SENTINEL; c = UTEXT_NEXT32(ut)) { result.append(c); } return result; } } #endif // REGEX_DEBUG //-------------------------------------------------------------------------------- // // MatchAt This is the actual matching engine. // // startIdx: begin matching a this index. // toEnd: if true, match must extend to end of the input region // //-------------------------------------------------------------------------------- void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) { UBool isMatch = FALSE; // True if the we have a match. int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards int32_t op; // Operation from the compiled pattern, split into int32_t opType; // the opcode int32_t opValue; // and the operand value. #ifdef REGEX_RUN_DEBUG if (fTraceDebug) { printf("MatchAt(startIdx=%ld)\n", startIdx); printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))()); printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))()); } #endif if (U_FAILURE(status)) { return; } // Cache frequently referenced items from the compiled pattern // int64_t *pat = fPattern->fCompiledPat->getBuffer(); const UChar *litText = fPattern->fLiteralText.getBuffer(); UVector *fSets = fPattern->fSets; fFrameSize = fPattern->fFrameSize; REStackFrame *fp = resetStack(); if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return; } fp->fPatIdx = 0; fp->fInputIdx = startIdx; // Zero out the pattern's static data int32_t i; for (i = 0; i<fPattern->fDataSize; i++) { fData[i] = 0; } // // Main loop for interpreting the compiled pattern. // One iteration of the loop per pattern operation performed. // for (;;) { op = (int32_t)pat[fp->fPatIdx]; opType = URX_TYPE(op); opValue = URX_VAL(op); #ifdef REGEX_RUN_DEBUG if (fTraceDebug) { UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); fPattern->dumpOp(fp->fPatIdx); } #endif fp->fPatIdx++; switch (opType) { case URX_NOP: break; case URX_BACKTRACK: // Force a backtrack. In some circumstances, the pattern compiler // will notice that the pattern can't possibly match anything, and will // emit one of these at that point. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_ONECHAR: if (fp->fInputIdx < fActiveLimit) { UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); if (c == opValue) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); break; } } else { fHitEnd = TRUE; } fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_STRING: { // Test input against a literal string. // Strings require two slots in the compiled pattern, one for the // offset to the string text, and one for the length. int32_t stringStartIdx = opValue; op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand fp->fPatIdx++; opType = URX_TYPE(op); int32_t stringLen = URX_VAL(op); U_ASSERT(opType == URX_STRING_LEN); U_ASSERT(stringLen >= 2); const UChar *patternString = litText+stringStartIdx; int32_t patternStringIndex = 0; UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 inputChar; UChar32 patternChar; UBool success = TRUE; while (patternStringIndex < stringLen) { if (UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) { success = FALSE; fHitEnd = TRUE; break; } inputChar = UTEXT_NEXT32(fInputText); U16_NEXT(patternString, patternStringIndex, stringLen, patternChar); if (patternChar != inputChar) { success = FALSE; break; } } if (success) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_STATE_SAVE: fp = StateSave(fp, opValue, status); break; case URX_END: // The match loop will exit via this path on a successful match, // when we reach the end of the pattern. if (toEnd && fp->fInputIdx != fActiveLimit) { // The pattern matched, but not to the end of input. Try some more. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } isMatch = TRUE; goto breakFromLoop; // Start and End Capture stack frame variables are laid out out like this: // fp->fExtra[opValue] - The start of a completed capture group // opValue+1 - The end of a completed capture group // opValue+2 - the start of a capture group whose end // has not yet been reached (and might not ever be). case URX_START_CAPTURE: U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); fp->fExtra[opValue+2] = fp->fInputIdx; break; case URX_END_CAPTURE: U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. fp->fExtra[opValue+1] = fp->fInputIdx; // End position U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); break; case URX_DOLLAR: // $, test for End of line // or for position before new line at end of input { if (fp->fInputIdx >= fAnchorLimit) { // We really are at the end of input. Success. fHitEnd = TRUE; fRequireEnd = TRUE; break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); // If we are positioned just before a new-line that is located at the // end of input, succeed. UChar32 c = UTEXT_NEXT32(fInputText); if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) { if (isLineTerminator(c)) { // If not in the middle of a CR/LF sequence if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && ((void)UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) { // At new-line at end of input. Success fHitEnd = TRUE; fRequireEnd = TRUE; break; } } } else { UChar32 nextC = UTEXT_NEXT32(fInputText); if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) { fHitEnd = TRUE; fRequireEnd = TRUE; break; // At CR/LF at end of input. Success } } fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. if (fp->fInputIdx >= fAnchorLimit) { // Off the end of input. Success. fHitEnd = TRUE; fRequireEnd = TRUE; break; } else { UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); // Either at the last character of input, or off the end. if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) { fHitEnd = TRUE; fRequireEnd = TRUE; break; } } // Not at end of input. Back-track out. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_DOLLAR_M: // $, test for End of line in multi-line mode { if (fp->fInputIdx >= fAnchorLimit) { // We really are at the end of input. Success. fHitEnd = TRUE; fRequireEnd = TRUE; break; } // If we are positioned just before a new-line, succeed. // It makes no difference where the new-line is within the input. UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_CURRENT32(fInputText); if (isLineTerminator(c)) { // At a line end, except for the odd chance of being in the middle of a CR/LF sequence // In multi-line mode, hitting a new-line just before the end of input does not // set the hitEnd or requireEnd flags if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) { break; } } // not at a new line. Fail. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode { if (fp->fInputIdx >= fAnchorLimit) { // We really are at the end of input. Success. fHitEnd = TRUE; fRequireEnd = TRUE; // Java set requireEnd in this case, even though break; // adding a new-line would not lose the match. } // If we are not positioned just before a new-line, the test fails; backtrack out. // It makes no difference where the new-line is within the input. UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); if (UTEXT_CURRENT32(fInputText) != 0x0a) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_CARET: // ^, test for start of line if (fp->fInputIdx != fAnchorStart) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_CARET_M: // ^, test for start of line in mulit-line mode { if (fp->fInputIdx == fAnchorStart) { // We are at the start input. Success. break; } // Check whether character just before the current pos is a new-line // unless we are at the end of input UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_PREVIOUS32(fInputText); if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) { // It's a new-line. ^ is true. Success. // TODO: what should be done with positions between a CR and LF? break; } // Not at the start of a line. Fail. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode { U_ASSERT(fp->fInputIdx >= fAnchorStart); if (fp->fInputIdx <= fAnchorStart) { // We are at the start input. Success. break; } // Check whether character just before the current pos is a new-line U_ASSERT(fp->fInputIdx <= fAnchorLimit); UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_PREVIOUS32(fInputText); if (c != 0x0a) { // Not at the start of a line. Back-track out. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_B: // Test for word boundaries { UBool success = isWordBoundary(fp->fInputIdx); success ^= (UBool)(opValue != 0); // flip sense for \B if (!success) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style { UBool success = isUWordBoundary(fp->fInputIdx); success ^= (UBool)(opValue != 0); // flip sense for \B if (!success) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_D: // Test for decimal digit { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster. UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); success ^= (UBool)(opValue != 0); // flip sense for \D if (success) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_G: // Test for position at end of previous match if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_BACKSLASH_H: // Test for \h, horizontal white space. { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); int8_t ctype = u_charType(c); UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB success ^= (UBool)(opValue != 0); // flip sense for \H if (success) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_R: // Test for \R, any line break sequence. { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); if (isLineTerminator(c)) { if (c == 0x0d && utext_current32(fInputText) == 0x0a) { utext_next32(fInputText); } fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_V: // \v, any single line ending character. { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); UBool success = isLineTerminator(c); success ^= (UBool)(opValue != 0); // flip sense for \V if (success) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_X: // Match a Grapheme, as defined by Unicode TR 29. // Differs slightly from Perl, which consumes combining marks independently // of context. { // Fail if at end of input if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); // Examine (and consume) the current char. // Dispatch into a little state machine, based on the char. UChar32 c; c = UTEXT_NEXT32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); UnicodeSet **sets = fPattern->fStaticSets; if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; if (sets[URX_GC_L]->contains(c)) goto GC_L; if (sets[URX_GC_LV]->contains(c)) goto GC_V; if (sets[URX_GC_LVT]->contains(c)) goto GC_T; if (sets[URX_GC_V]->contains(c)) goto GC_V; if (sets[URX_GC_T]->contains(c)) goto GC_T; goto GC_Extend; GC_L: if (fp->fInputIdx >= fActiveLimit) goto GC_Done; c = UTEXT_NEXT32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); if (sets[URX_GC_L]->contains(c)) goto GC_L; if (sets[URX_GC_LV]->contains(c)) goto GC_V; if (sets[URX_GC_LVT]->contains(c)) goto GC_T; if (sets[URX_GC_V]->contains(c)) goto GC_V; (void)UTEXT_PREVIOUS32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); goto GC_Extend; GC_V: if (fp->fInputIdx >= fActiveLimit) goto GC_Done; c = UTEXT_NEXT32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); if (sets[URX_GC_V]->contains(c)) goto GC_V; if (sets[URX_GC_T]->contains(c)) goto GC_T; (void)UTEXT_PREVIOUS32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); goto GC_Extend; GC_T: if (fp->fInputIdx >= fActiveLimit) goto GC_Done; c = UTEXT_NEXT32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); if (sets[URX_GC_T]->contains(c)) goto GC_T; (void)UTEXT_PREVIOUS32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); goto GC_Extend; GC_Extend: // Combining characters are consumed here for (;;) { if (fp->fInputIdx >= fActiveLimit) { break; } c = UTEXT_CURRENT32(fInputText); if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { break; } (void)UTEXT_NEXT32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } goto GC_Done; GC_Control: // Most control chars stand alone (don't combine with combining chars), // except for that CR/LF sequence is a single grapheme cluster. if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) { c = UTEXT_NEXT32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } GC_Done: if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; } break; } case URX_BACKSLASH_Z: // Test for end of Input if (fp->fInputIdx < fAnchorLimit) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } else { fHitEnd = TRUE; fRequireEnd = TRUE; } break; case URX_STATIC_SETREF: { // Test input character against one of the predefined sets // (Word Characters, for example) // The high bit of the op value is a flag for the match polarity. // 0: success if input char is in set. // 1: success if input char is not in set. if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); opValue &= ~URX_NEG_SET; U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); if (c < 256) { Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; if (s8->contains(c)) { success = !success; } } else { const UnicodeSet *s = fPattern->fStaticSets[opValue]; if (s->contains(c)) { success = !success; } } if (success) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { // the character wasn't in the set. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_STAT_SETREF_N: { // Test input character for NOT being a member of one of // the predefined sets (Word Characters, for example) if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); if (c < 256) { Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; if (s8->contains(c) == FALSE) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); break; } } else { const UnicodeSet *s = fPattern->fStaticSets[opValue]; if (s->contains(c) == FALSE) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); break; } } // the character wasn't in the set. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_SETREF: if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } else { UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); // There is input left. Pick up one char and test it for set membership. UChar32 c = UTEXT_NEXT32(fInputText); U_ASSERT(opValue > 0 && opValue < fSets->size()); if (c<256) { Regex8BitSet *s8 = &fPattern->fSets8[opValue]; if (s8->contains(c)) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); break; } } else { UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); if (s->contains(c)) { // The character is in the set. A Match. fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); break; } } // the character wasn't in the set. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_DOTANY: { // . matches anything, but stops at end-of-line. if (fp->fInputIdx >= fActiveLimit) { // At end of input. Match failed. Backtrack out. fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); // There is input left. Advance over one char, unless we've hit end-of-line UChar32 c = UTEXT_NEXT32(fInputText); if (isLineTerminator(c)) { // End of line in normal mode. . does not match. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } break; case URX_DOTANY_ALL: { // ., in dot-matches-all (including new lines) mode if (fp->fInputIdx >= fActiveLimit) { // At end of input. Match failed. Backtrack out. fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); // There is input left. Advance over one char, except if we are // at a cr/lf, advance over both of them. UChar32 c; c = UTEXT_NEXT32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); if (c==0x0d && fp->fInputIdx < fActiveLimit) { // In the case of a CR/LF, we need to advance over both. UChar32 nextc = UTEXT_CURRENT32(fInputText); if (nextc == 0x0a) { (void)UTEXT_NEXT32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } } } break; case URX_DOTANY_UNIX: { // '.' operator, matches all, but stops at end-of-line. // UNIX_LINES mode, so 0x0a is the only recognized line ending. if (fp->fInputIdx >= fActiveLimit) { // At end of input. Match failed. Backtrack out. fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); // There is input left. Advance over one char, unless we've hit end-of-line UChar32 c = UTEXT_NEXT32(fInputText); if (c == 0x0a) { // End of line in normal mode. '.' does not match the \n fp = (REStackFrame *)fStack->popFrame(fFrameSize); } else { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } } break; case URX_JMP: fp->fPatIdx = opValue; break; case URX_FAIL: isMatch = FALSE; goto breakFromLoop; case URX_JMP_SAV: U_ASSERT(opValue < fPattern->fCompiledPat->size()); fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current fp->fPatIdx = opValue; // Then JMP. break; case URX_JMP_SAV_X: // This opcode is used with (x)+, when x can match a zero length string. // Same as JMP_SAV, except conditional on the match having made forward progress. // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the // data address of the input position at the start of the loop. { U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); int32_t stoOp = (int32_t)pat[opValue-1]; U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); int32_t frameLoc = URX_VAL(stoOp); U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize); int64_t prevInputIdx = fp->fExtra[frameLoc]; U_ASSERT(prevInputIdx <= fp->fInputIdx); if (prevInputIdx < fp->fInputIdx) { // The match did make progress. Repeat the loop. fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current fp->fPatIdx = opValue; fp->fExtra[frameLoc] = fp->fInputIdx; } // If the input position did not advance, we do nothing here, // execution will fall out of the loop. } break; case URX_CTR_INIT: { U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); fp->fExtra[opValue] = 0; // Set the loop counter variable to zero // Pick up the three extra operands that CTR_INIT has, and // skip the pattern location counter past int32_t instrOperandLoc = (int32_t)fp->fPatIdx; fp->fPatIdx += 3; int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); int32_t minCount = (int32_t)pat[instrOperandLoc+1]; int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; U_ASSERT(minCount>=0); U_ASSERT(maxCount>=minCount || maxCount==-1); U_ASSERT(loopLoc>=fp->fPatIdx); if (minCount == 0) { fp = StateSave(fp, loopLoc+1, status); } if (maxCount == -1) { fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. } else if (maxCount == 0) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_CTR_LOOP: { U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); int32_t initOp = (int32_t)pat[opValue]; U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; int32_t minCount = (int32_t)pat[opValue+2]; int32_t maxCount = (int32_t)pat[opValue+3]; (*pCounter)++; if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { U_ASSERT(*pCounter == maxCount); break; } if (*pCounter >= minCount) { if (maxCount == -1) { // Loop has no hard upper bound. // Check that it is progressing through the input, break if it is not. int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; if (fp->fInputIdx == *pLastInputIdx) { break; } else { *pLastInputIdx = fp->fInputIdx; } } fp = StateSave(fp, fp->fPatIdx, status); } else { // Increment time-out counter. (StateSave() does it if count >= minCount) fTickCounter--; if (fTickCounter <= 0) { IncrementTime(status); // Re-initializes fTickCounter } } fp->fPatIdx = opValue + 4; // Loop back. } break; case URX_CTR_INIT_NG: { // Initialize a non-greedy loop U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); fp->fExtra[opValue] = 0; // Set the loop counter variable to zero // Pick up the three extra operands that CTR_INIT_NG has, and // skip the pattern location counter past int32_t instrOperandLoc = (int32_t)fp->fPatIdx; fp->fPatIdx += 3; int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); int32_t minCount = (int32_t)pat[instrOperandLoc+1]; int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; U_ASSERT(minCount>=0); U_ASSERT(maxCount>=minCount || maxCount==-1); U_ASSERT(loopLoc>fp->fPatIdx); if (maxCount == -1) { fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. } if (minCount == 0) { if (maxCount != 0) { fp = StateSave(fp, fp->fPatIdx, status); } fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block } } break; case URX_CTR_LOOP_NG: { // Non-greedy {min, max} loops U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); int32_t initOp = (int32_t)pat[opValue]; U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; int32_t minCount = (int32_t)pat[opValue+2]; int32_t maxCount = (int32_t)pat[opValue+3]; (*pCounter)++; if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { // The loop has matched the maximum permitted number of times. // Break out of here with no action. Matching will // continue with the following pattern. U_ASSERT(*pCounter == maxCount); break; } if (*pCounter < minCount) { // We haven't met the minimum number of matches yet. // Loop back for another one. fp->fPatIdx = opValue + 4; // Loop back. // Increment time-out counter. (StateSave() does it if count >= minCount) fTickCounter--; if (fTickCounter <= 0) { IncrementTime(status); // Re-initializes fTickCounter } } else { // We do have the minimum number of matches. // If there is no upper bound on the loop iterations, check that the input index // is progressing, and stop the loop if it is not. if (maxCount == -1) { int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; if (fp->fInputIdx == *pLastInputIdx) { break; } *pLastInputIdx = fp->fInputIdx; } // Loop Continuation: we will fall into the pattern following the loop // (non-greedy, don't execute loop body first), but first do // a state save to the top of the loop, so that a match failure // in the following pattern will try another iteration of the loop. fp = StateSave(fp, opValue + 4, status); } } break; case URX_STO_SP: U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); fData[opValue] = fStack->size(); break; case URX_LD_SP: { U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); int32_t newStackSize = (int32_t)fData[opValue]; U_ASSERT(newStackSize <= fStack->size()); int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; if (newFP == (int64_t *)fp) { break; } int32_t j; for (j=0; j<fFrameSize; j++) { newFP[j] = ((int64_t *)fp)[j]; } fp = (REStackFrame *)newFP; fStack->setSize(newStackSize); } break; case URX_BACKREF: { U_ASSERT(opValue < fFrameSize); int64_t groupStartIdx = fp->fExtra[opValue]; int64_t groupEndIdx = fp->fExtra[opValue+1]; U_ASSERT(groupStartIdx <= groupEndIdx); if (groupStartIdx < 0) { // This capture group has not participated in the match thus far, fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. break; } UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx); UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); // Note: if the capture group match was of an empty string the backref // match succeeds. Verified by testing: Perl matches succeed // in this case, so we do too. UBool success = TRUE; for (;;) { if (utext_getNativeIndex(fAltInputText) >= groupEndIdx) { success = TRUE; break; } if (utext_getNativeIndex(fInputText) >= fActiveLimit) { success = FALSE; fHitEnd = TRUE; break; } UChar32 captureGroupChar = utext_next32(fAltInputText); UChar32 inputChar = utext_next32(fInputText); if (inputChar != captureGroupChar) { success = FALSE; break; } } if (success) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKREF_I: { U_ASSERT(opValue < fFrameSize); int64_t groupStartIdx = fp->fExtra[opValue]; int64_t groupEndIdx = fp->fExtra[opValue+1]; U_ASSERT(groupStartIdx <= groupEndIdx); if (groupStartIdx < 0) { // This capture group has not participated in the match thus far, fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. break; } utext_setNativeIndex(fAltInputText, groupStartIdx); utext_setNativeIndex(fInputText, fp->fInputIdx); CaseFoldingUTextIterator captureGroupItr(*fAltInputText); CaseFoldingUTextIterator inputItr(*fInputText); // Note: if the capture group match was of an empty string the backref // match succeeds. Verified by testing: Perl matches succeed // in this case, so we do too. UBool success = TRUE; for (;;) { if (!captureGroupItr.inExpansion() && utext_getNativeIndex(fAltInputText) >= groupEndIdx) { success = TRUE; break; } if (!inputItr.inExpansion() && utext_getNativeIndex(fInputText) >= fActiveLimit) { success = FALSE; fHitEnd = TRUE; break; } UChar32 captureGroupChar = captureGroupItr.next(); UChar32 inputChar = inputItr.next(); if (inputChar != captureGroupChar) { success = FALSE; break; } } if (success && inputItr.inExpansion()) { // We otained a match by consuming part of a string obtained from // case-folding a single code point of the input text. // This does not count as an overall match. success = FALSE; } if (success) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_STO_INP_LOC: { U_ASSERT(opValue >= 0 && opValue < fFrameSize); fp->fExtra[opValue] = fp->fInputIdx; } break; case URX_JMPX: { int32_t instrOperandLoc = (int32_t)fp->fPatIdx; fp->fPatIdx += 1; int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize); int64_t savedInputIdx = fp->fExtra[dataLoc]; U_ASSERT(savedInputIdx <= fp->fInputIdx); if (savedInputIdx < fp->fInputIdx) { fp->fPatIdx = opValue; // JMP } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. } } break; case URX_LA_START: { // Entering a lookahead block. // Save Stack Ptr, Input Pos. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); fData[opValue] = fStack->size(); fData[opValue+1] = fp->fInputIdx; fActiveStart = fLookStart; // Set the match region change for fActiveLimit = fLookLimit; // transparent bounds. } break; case URX_LA_END: { // Leaving a look-ahead block. // restore Stack Ptr, Input Pos to positions they had on entry to block. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); int32_t stackSize = fStack->size(); int32_t newStackSize =(int32_t)fData[opValue]; U_ASSERT(stackSize >= newStackSize); if (stackSize > newStackSize) { // Copy the current top frame back to the new (cut back) top frame. // This makes the capture groups from within the look-ahead // expression available. int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; int32_t j; for (j=0; j<fFrameSize; j++) { newFP[j] = ((int64_t *)fp)[j]; } fp = (REStackFrame *)newFP; fStack->setSize(newStackSize); } fp->fInputIdx = fData[opValue+1]; // Restore the active region bounds in the input string; they may have // been changed because of transparent bounds on a Region. fActiveStart = fRegionStart; fActiveLimit = fRegionLimit; } break; case URX_ONECHAR_I: // Case insensitive one char. The char from the pattern is already case folded. // Input text is not, but case folding the input can not reduce two or more code // points to one. if (fp->fInputIdx < fActiveLimit) { UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 c = UTEXT_NEXT32(fInputText); if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); break; } } else { fHitEnd = TRUE; } fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_STRING_I: { // Case-insensitive test input against a literal string. // Strings require two slots in the compiled pattern, one for the // offset to the string text, and one for the length. // The compiled string has already been case folded. { const UChar *patternString = litText + opValue; int32_t patternStringIdx = 0; op = (int32_t)pat[fp->fPatIdx]; fp->fPatIdx++; opType = URX_TYPE(op); opValue = URX_VAL(op); U_ASSERT(opType == URX_STRING_LEN); int32_t patternStringLen = opValue; // Length of the string from the pattern. UChar32 cPattern; UChar32 cText; UBool success = TRUE; UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); CaseFoldingUTextIterator inputIterator(*fInputText); while (patternStringIdx < patternStringLen) { if (!inputIterator.inExpansion() && UTEXT_GETNATIVEINDEX(fInputText) >= fActiveLimit) { success = FALSE; fHitEnd = TRUE; break; } U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern); cText = inputIterator.next(); if (cText != cPattern) { success = FALSE; break; } } if (inputIterator.inExpansion()) { success = FALSE; } if (success) { fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } } break; case URX_LB_START: { // Entering a look-behind block. // Save Stack Ptr, Input Pos. // TODO: implement transparent bounds. Ticket #6067 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); fData[opValue] = fStack->size(); fData[opValue+1] = fp->fInputIdx; // Init the variable containing the start index for attempted matches. fData[opValue+2] = -1; // Save input string length, then reset to pin any matches to end at // the current position. fData[opValue+3] = fActiveLimit; fActiveLimit = fp->fInputIdx; } break; case URX_LB_CONT: { // Positive Look-Behind, at top of loop checking for matches of LB expression // at all possible input starting positions. // Fetch the min and max possible match lengths. They are the operands // of this op in the pattern. int32_t minML = (int32_t)pat[fp->fPatIdx++]; int32_t maxML = (int32_t)pat[fp->fPatIdx++]; if (!UTEXT_USES_U16(fInputText)) { // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. // The max length need not be exact; it just needs to be >= actual maximum. maxML *= 3; } U_ASSERT(minML <= maxML); U_ASSERT(minML >= 0); // Fetch (from data) the last input index where a match was attempted. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); int64_t &lbStartIdx = fData[opValue+2]; if (lbStartIdx < 0) { // First time through loop. lbStartIdx = fp->fInputIdx - minML; if (lbStartIdx > 0) { // move index to a code point boudary, if it's not on one already. UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); } } else { // 2nd through nth time through the loop. // Back up start position for match by one. if (lbStartIdx == 0) { (lbStartIdx)--; } else { UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); (void)UTEXT_PREVIOUS32(fInputText); lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); } } if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { // We have tried all potential match starting points without // getting a match. Backtrack out, and out of the // Look Behind altogether. fp = (REStackFrame *)fStack->popFrame(fFrameSize); int64_t restoreInputLen = fData[opValue+3]; U_ASSERT(restoreInputLen >= fActiveLimit); U_ASSERT(restoreInputLen <= fInputLength); fActiveLimit = restoreInputLen; break; } // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. // (successful match will fall off the end of the loop.) fp = StateSave(fp, fp->fPatIdx-3, status); fp->fInputIdx = lbStartIdx; } break; case URX_LB_END: // End of a look-behind block, after a successful match. { U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); if (fp->fInputIdx != fActiveLimit) { // The look-behind expression matched, but the match did not // extend all the way to the point that we are looking behind from. // FAIL out of here, which will take us back to the LB_CONT, which // will retry the match starting at another position or fail // the look-behind altogether, whichever is appropriate. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } // Look-behind match is good. Restore the orignal input string length, // which had been truncated to pin the end of the lookbehind match to the // position being looked-behind. int64_t originalInputLen = fData[opValue+3]; U_ASSERT(originalInputLen >= fActiveLimit); U_ASSERT(originalInputLen <= fInputLength); fActiveLimit = originalInputLen; } break; case URX_LBN_CONT: { // Negative Look-Behind, at top of loop checking for matches of LB expression // at all possible input starting positions. // Fetch the extra parameters of this op. int32_t minML = (int32_t)pat[fp->fPatIdx++]; int32_t maxML = (int32_t)pat[fp->fPatIdx++]; if (!UTEXT_USES_U16(fInputText)) { // utf-8 fix to maximum match length. The pattern compiler assumes utf-16. // The max length need not be exact; it just needs to be >= actual maximum. maxML *= 3; } int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; continueLoc = URX_VAL(continueLoc); U_ASSERT(minML <= maxML); U_ASSERT(minML >= 0); U_ASSERT(continueLoc > fp->fPatIdx); // Fetch (from data) the last input index where a match was attempted. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); int64_t &lbStartIdx = fData[opValue+2]; if (lbStartIdx < 0) { // First time through loop. lbStartIdx = fp->fInputIdx - minML; if (lbStartIdx > 0) { // move index to a code point boudary, if it's not on one already. UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); } } else { // 2nd through nth time through the loop. // Back up start position for match by one. if (lbStartIdx == 0) { (lbStartIdx)--; } else { UTEXT_SETNATIVEINDEX(fInputText, lbStartIdx); (void)UTEXT_PREVIOUS32(fInputText); lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText); } } if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { // We have tried all potential match starting points without // getting a match, which means that the negative lookbehind as // a whole has succeeded. Jump forward to the continue location int64_t restoreInputLen = fData[opValue+3]; U_ASSERT(restoreInputLen >= fActiveLimit); U_ASSERT(restoreInputLen <= fInputLength); fActiveLimit = restoreInputLen; fp->fPatIdx = continueLoc; break; } // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. // (successful match will cause a FAIL out of the loop altogether.) fp = StateSave(fp, fp->fPatIdx-4, status); fp->fInputIdx = lbStartIdx; } break; case URX_LBN_END: // End of a negative look-behind block, after a successful match. { U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); if (fp->fInputIdx != fActiveLimit) { // The look-behind expression matched, but the match did not // extend all the way to the point that we are looking behind from. // FAIL out of here, which will take us back to the LB_CONT, which // will retry the match starting at another position or succeed // the look-behind altogether, whichever is appropriate. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } // Look-behind expression matched, which means look-behind test as // a whole Fails // Restore the orignal input string length, which had been truncated // inorder to pin the end of the lookbehind match // to the position being looked-behind. int64_t originalInputLen = fData[opValue+3]; U_ASSERT(originalInputLen >= fActiveLimit); U_ASSERT(originalInputLen <= fInputLength); fActiveLimit = originalInputLen; // Restore original stack position, discarding any state saved // by the successful pattern match. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); int32_t newStackSize = (int32_t)fData[opValue]; U_ASSERT(fStack->size() > newStackSize); fStack->setSize(newStackSize); // FAIL, which will take control back to someplace // prior to entering the look-behind test. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_LOOP_SR_I: // Loop Initialization for the optimized implementation of // [some character set]* // This op scans through all matching input. // The following LOOP_C op emulates stack unwinding if the following pattern fails. { U_ASSERT(opValue > 0 && opValue < fSets->size()); Regex8BitSet *s8 = &fPattern->fSets8[opValue]; UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); // Loop through input, until either the input is exhausted or // we reach a character that is not a member of the set. int64_t ix = fp->fInputIdx; UTEXT_SETNATIVEINDEX(fInputText, ix); for (;;) { if (ix >= fActiveLimit) { fHitEnd = TRUE; break; } UChar32 c = UTEXT_NEXT32(fInputText); if (c<256) { if (s8->contains(c) == FALSE) { break; } } else { if (s->contains(c) == FALSE) { break; } } ix = UTEXT_GETNATIVEINDEX(fInputText); } // If there were no matching characters, skip over the loop altogether. // The loop doesn't run at all, a * op always succeeds. if (ix == fp->fInputIdx) { fp->fPatIdx++; // skip the URX_LOOP_C op. break; } // Peek ahead in the compiled pattern, to the URX_LOOP_C that // must follow. It's operand is the stack location // that holds the starting input index for the match of this [set]* int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); int32_t stackLoc = URX_VAL(loopcOp); U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); fp->fExtra[stackLoc] = fp->fInputIdx; fp->fInputIdx = ix; // Save State to the URX_LOOP_C op that follows this one, // so that match failures in the following code will return to there. // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. fp = StateSave(fp, fp->fPatIdx, status); fp->fPatIdx++; } break; case URX_LOOP_DOT_I: // Loop Initialization for the optimized implementation of .* // This op scans through all remaining input. // The following LOOP_C op emulates stack unwinding if the following pattern fails. { // Loop through input until the input is exhausted (we reach an end-of-line) // In DOTALL mode, we can just go straight to the end of the input. int64_t ix; if ((opValue & 1) == 1) { // Dot-matches-All mode. Jump straight to the end of the string. ix = fActiveLimit; fHitEnd = TRUE; } else { // NOT DOT ALL mode. Line endings do not match '.' // Scan forward until a line ending or end of input. ix = fp->fInputIdx; UTEXT_SETNATIVEINDEX(fInputText, ix); for (;;) { if (ix >= fActiveLimit) { fHitEnd = TRUE; break; } UChar32 c = UTEXT_NEXT32(fInputText); if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s if ((c == 0x0a) || // 0x0a is newline in both modes. (((opValue & 2) == 0) && // IF not UNIX_LINES mode isLineTerminator(c))) { // char is a line ending. Exit the scanning loop. break; } } ix = UTEXT_GETNATIVEINDEX(fInputText); } } // If there were no matching characters, skip over the loop altogether. // The loop doesn't run at all, a * op always succeeds. if (ix == fp->fInputIdx) { fp->fPatIdx++; // skip the URX_LOOP_C op. break; } // Peek ahead in the compiled pattern, to the URX_LOOP_C that // must follow. It's operand is the stack location // that holds the starting input index for the match of this .* int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); int32_t stackLoc = URX_VAL(loopcOp); U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); fp->fExtra[stackLoc] = fp->fInputIdx; fp->fInputIdx = ix; // Save State to the URX_LOOP_C op that follows this one, // so that match failures in the following code will return to there. // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. fp = StateSave(fp, fp->fPatIdx, status); fp->fPatIdx++; } break; case URX_LOOP_C: { U_ASSERT(opValue>=0 && opValue<fFrameSize); backSearchIndex = fp->fExtra[opValue]; U_ASSERT(backSearchIndex <= fp->fInputIdx); if (backSearchIndex == fp->fInputIdx) { // We've backed up the input idx to the point that the loop started. // The loop is done. Leave here without saving state. // Subsequent failures won't come back here. break; } // Set up for the next iteration of the loop, with input index // backed up by one from the last time through, // and a state save to this instruction in case the following code fails again. // (We're going backwards because this loop emulates stack unwinding, not // the initial scan forward.) U_ASSERT(fp->fInputIdx > 0); UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); UChar32 prevC = UTEXT_PREVIOUS32(fInputText); fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText); if (prevC == 0x0a && fp->fInputIdx > backSearchIndex && twoPrevC == 0x0d) { int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { // .*, stepping back over CRLF pair. fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText); } } fp = StateSave(fp, fp->fPatIdx-1, status); } break; default: // Trouble. The compiled pattern contains an entry with an // unrecognized type tag. U_ASSERT(FALSE); } if (U_FAILURE(status)) { isMatch = FALSE; break; } } breakFromLoop: fMatch = isMatch; if (isMatch) { fLastMatchEnd = fMatchEnd; fMatchStart = startIdx; fMatchEnd = fp->fInputIdx; } #ifdef REGEX_RUN_DEBUG if (fTraceDebug) { if (isMatch) { printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd); } else { printf("No match\n\n"); } } #endif fFrame = fp; // The active stack frame when the engine stopped. // Contains the capture group results that we need to // access later. return; } //-------------------------------------------------------------------------------- // // MatchChunkAt This is the actual matching engine. Like MatchAt, but with the // assumption that the entire string is available in the UText's // chunk buffer. For now, that means we can use int32_t indexes, // except for anything that needs to be saved (like group starts // and ends). // // startIdx: begin matching a this index. // toEnd: if true, match must extend to end of the input region // //-------------------------------------------------------------------------------- void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) { UBool isMatch = FALSE; // True if the we have a match. int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards int32_t op; // Operation from the compiled pattern, split into int32_t opType; // the opcode int32_t opValue; // and the operand value. #ifdef REGEX_RUN_DEBUG if (fTraceDebug) { printf("MatchAt(startIdx=%d)\n", startIdx); printf("Original Pattern: \"%s\"\n", CStr(StringFromUText(fPattern->fPattern))()); printf("Input String: \"%s\"\n\n", CStr(StringFromUText(fInputText))()); } #endif if (U_FAILURE(status)) { return; } // Cache frequently referenced items from the compiled pattern // int64_t *pat = fPattern->fCompiledPat->getBuffer(); const UChar *litText = fPattern->fLiteralText.getBuffer(); UVector *fSets = fPattern->fSets; const UChar *inputBuf = fInputText->chunkContents; fFrameSize = fPattern->fFrameSize; REStackFrame *fp = resetStack(); if (U_FAILURE(fDeferredStatus)) { status = fDeferredStatus; return; } fp->fPatIdx = 0; fp->fInputIdx = startIdx; // Zero out the pattern's static data int32_t i; for (i = 0; i<fPattern->fDataSize; i++) { fData[i] = 0; } // // Main loop for interpreting the compiled pattern. // One iteration of the loop per pattern operation performed. // for (;;) { op = (int32_t)pat[fp->fPatIdx]; opType = URX_TYPE(op); opValue = URX_VAL(op); #ifdef REGEX_RUN_DEBUG if (fTraceDebug) { UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx); printf("inputIdx=%ld inputChar=%x sp=%3ld activeLimit=%ld ", fp->fInputIdx, UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit); fPattern->dumpOp(fp->fPatIdx); } #endif fp->fPatIdx++; switch (opType) { case URX_NOP: break; case URX_BACKTRACK: // Force a backtrack. In some circumstances, the pattern compiler // will notice that the pattern can't possibly match anything, and will // emit one of these at that point. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_ONECHAR: if (fp->fInputIdx < fActiveLimit) { UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (c == opValue) { break; } } else { fHitEnd = TRUE; } fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_STRING: { // Test input against a literal string. // Strings require two slots in the compiled pattern, one for the // offset to the string text, and one for the length. int32_t stringStartIdx = opValue; int32_t stringLen; op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand fp->fPatIdx++; opType = URX_TYPE(op); stringLen = URX_VAL(op); U_ASSERT(opType == URX_STRING_LEN); U_ASSERT(stringLen >= 2); const UChar * pInp = inputBuf + fp->fInputIdx; const UChar * pInpLimit = inputBuf + fActiveLimit; const UChar * pPat = litText+stringStartIdx; const UChar * pEnd = pInp + stringLen; UBool success = TRUE; while (pInp < pEnd) { if (pInp >= pInpLimit) { fHitEnd = TRUE; success = FALSE; break; } if (*pInp++ != *pPat++) { success = FALSE; break; } } if (success) { fp->fInputIdx += stringLen; } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_STATE_SAVE: fp = StateSave(fp, opValue, status); break; case URX_END: // The match loop will exit via this path on a successful match, // when we reach the end of the pattern. if (toEnd && fp->fInputIdx != fActiveLimit) { // The pattern matched, but not to the end of input. Try some more. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } isMatch = TRUE; goto breakFromLoop; // Start and End Capture stack frame variables are laid out out like this: // fp->fExtra[opValue] - The start of a completed capture group // opValue+1 - The end of a completed capture group // opValue+2 - the start of a capture group whose end // has not yet been reached (and might not ever be). case URX_START_CAPTURE: U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); fp->fExtra[opValue+2] = fp->fInputIdx; break; case URX_END_CAPTURE: U_ASSERT(opValue >= 0 && opValue < fFrameSize-3); U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set. fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real. fp->fExtra[opValue+1] = fp->fInputIdx; // End position U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]); break; case URX_DOLLAR: // $, test for End of line // or for position before new line at end of input if (fp->fInputIdx < fAnchorLimit-2) { // We are no where near the end of input. Fail. // This is the common case. Keep it first. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } if (fp->fInputIdx >= fAnchorLimit) { // We really are at the end of input. Success. fHitEnd = TRUE; fRequireEnd = TRUE; break; } // If we are positioned just before a new-line that is located at the // end of input, succeed. if (fp->fInputIdx == fAnchorLimit-1) { UChar32 c; U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c); if (isLineTerminator(c)) { if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { // At new-line at end of input. Success fHitEnd = TRUE; fRequireEnd = TRUE; break; } } } else if (fp->fInputIdx == fAnchorLimit-2 && inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) { fHitEnd = TRUE; fRequireEnd = TRUE; break; // At CR/LF at end of input. Success } fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode. if (fp->fInputIdx >= fAnchorLimit-1) { // Either at the last character of input, or off the end. if (fp->fInputIdx == fAnchorLimit-1) { // At last char of input. Success if it's a new line. if (inputBuf[fp->fInputIdx] == 0x0a) { fHitEnd = TRUE; fRequireEnd = TRUE; break; } } else { // Off the end of input. Success. fHitEnd = TRUE; fRequireEnd = TRUE; break; } } // Not at end of input. Back-track out. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_DOLLAR_M: // $, test for End of line in multi-line mode { if (fp->fInputIdx >= fAnchorLimit) { // We really are at the end of input. Success. fHitEnd = TRUE; fRequireEnd = TRUE; break; } // If we are positioned just before a new-line, succeed. // It makes no difference where the new-line is within the input. UChar32 c = inputBuf[fp->fInputIdx]; if (isLineTerminator(c)) { // At a line end, except for the odd chance of being in the middle of a CR/LF sequence // In multi-line mode, hitting a new-line just before the end of input does not // set the hitEnd or requireEnd flags if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) { break; } } // not at a new line. Fail. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode { if (fp->fInputIdx >= fAnchorLimit) { // We really are at the end of input. Success. fHitEnd = TRUE; fRequireEnd = TRUE; // Java set requireEnd in this case, even though break; // adding a new-line would not lose the match. } // If we are not positioned just before a new-line, the test fails; backtrack out. // It makes no difference where the new-line is within the input. if (inputBuf[fp->fInputIdx] != 0x0a) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_CARET: // ^, test for start of line if (fp->fInputIdx != fAnchorStart) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_CARET_M: // ^, test for start of line in mulit-line mode { if (fp->fInputIdx == fAnchorStart) { // We are at the start input. Success. break; } // Check whether character just before the current pos is a new-line // unless we are at the end of input UChar c = inputBuf[fp->fInputIdx - 1]; if ((fp->fInputIdx < fAnchorLimit) && isLineTerminator(c)) { // It's a new-line. ^ is true. Success. // TODO: what should be done with positions between a CR and LF? break; } // Not at the start of a line. Fail. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode { U_ASSERT(fp->fInputIdx >= fAnchorStart); if (fp->fInputIdx <= fAnchorStart) { // We are at the start input. Success. break; } // Check whether character just before the current pos is a new-line U_ASSERT(fp->fInputIdx <= fAnchorLimit); UChar c = inputBuf[fp->fInputIdx - 1]; if (c != 0x0a) { // Not at the start of a line. Back-track out. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_B: // Test for word boundaries { UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx); success ^= (UBool)(opValue != 0); // flip sense for \B if (!success) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style { UBool success = isUWordBoundary(fp->fInputIdx); success ^= (UBool)(opValue != 0); // flip sense for \B if (!success) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_D: // Test for decimal digit { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster. UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER); success ^= (UBool)(opValue != 0); // flip sense for \D if (!success) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_G: // Test for position at end of previous match if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_BACKSLASH_H: // Test for \h, horizontal white space. { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); int8_t ctype = u_charType(c); UBool success = (ctype == U_SPACE_SEPARATOR || c == 9); // SPACE_SEPARATOR || TAB success ^= (UBool)(opValue != 0); // flip sense for \H if (!success) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_R: // Test for \R, any line break sequence. { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (isLineTerminator(c)) { if (c == 0x0d && fp->fInputIdx < fActiveLimit) { // Check for CR/LF sequence. Consume both together when found. UChar c2; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c2); if (c2 != 0x0a) { U16_PREV(inputBuf, 0, fp->fInputIdx, c2); } } } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_V: // Any single code point line ending. { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); UBool success = isLineTerminator(c); success ^= (UBool)(opValue != 0); // flip sense for \V if (!success) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKSLASH_X: // Match a Grapheme, as defined by Unicode TR 29. // Differs slightly from Perl, which consumes combining marks independently // of context. { // Fail if at end of input if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } // Examine (and consume) the current char. // Dispatch into a little state machine, based on the char. UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); UnicodeSet **sets = fPattern->fStaticSets; if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend; if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control; if (sets[URX_GC_L]->contains(c)) goto GC_L; if (sets[URX_GC_LV]->contains(c)) goto GC_V; if (sets[URX_GC_LVT]->contains(c)) goto GC_T; if (sets[URX_GC_V]->contains(c)) goto GC_V; if (sets[URX_GC_T]->contains(c)) goto GC_T; goto GC_Extend; GC_L: if (fp->fInputIdx >= fActiveLimit) goto GC_Done; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (sets[URX_GC_L]->contains(c)) goto GC_L; if (sets[URX_GC_LV]->contains(c)) goto GC_V; if (sets[URX_GC_LVT]->contains(c)) goto GC_T; if (sets[URX_GC_V]->contains(c)) goto GC_V; U16_PREV(inputBuf, 0, fp->fInputIdx, c); goto GC_Extend; GC_V: if (fp->fInputIdx >= fActiveLimit) goto GC_Done; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (sets[URX_GC_V]->contains(c)) goto GC_V; if (sets[URX_GC_T]->contains(c)) goto GC_T; U16_PREV(inputBuf, 0, fp->fInputIdx, c); goto GC_Extend; GC_T: if (fp->fInputIdx >= fActiveLimit) goto GC_Done; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (sets[URX_GC_T]->contains(c)) goto GC_T; U16_PREV(inputBuf, 0, fp->fInputIdx, c); goto GC_Extend; GC_Extend: // Combining characters are consumed here for (;;) { if (fp->fInputIdx >= fActiveLimit) { break; } U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (sets[URX_GC_EXTEND]->contains(c) == FALSE) { U16_BACK_1(inputBuf, 0, fp->fInputIdx); break; } } goto GC_Done; GC_Control: // Most control chars stand alone (don't combine with combining chars), // except for that CR/LF sequence is a single grapheme cluster. if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) { fp->fInputIdx++; } GC_Done: if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; } break; } case URX_BACKSLASH_Z: // Test for end of Input if (fp->fInputIdx < fAnchorLimit) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } else { fHitEnd = TRUE; fRequireEnd = TRUE; } break; case URX_STATIC_SETREF: { // Test input character against one of the predefined sets // (Word Characters, for example) // The high bit of the op value is a flag for the match polarity. // 0: success if input char is in set. // 1: success if input char is not in set. if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET); opValue &= ~URX_NEG_SET; U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (c < 256) { Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; if (s8->contains(c)) { success = !success; } } else { const UnicodeSet *s = fPattern->fStaticSets[opValue]; if (s->contains(c)) { success = !success; } } if (!success) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_STAT_SETREF_N: { // Test input character for NOT being a member of one of // the predefined sets (Word Characters, for example) if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } U_ASSERT(opValue > 0 && opValue < URX_LAST_SET); UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (c < 256) { Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue]; if (s8->contains(c) == FALSE) { break; } } else { const UnicodeSet *s = fPattern->fStaticSets[opValue]; if (s->contains(c) == FALSE) { break; } } fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_SETREF: { if (fp->fInputIdx >= fActiveLimit) { fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } U_ASSERT(opValue > 0 && opValue < fSets->size()); // There is input left. Pick up one char and test it for set membership. UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (c<256) { Regex8BitSet *s8 = &fPattern->fSets8[opValue]; if (s8->contains(c)) { // The character is in the set. A Match. break; } } else { UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); if (s->contains(c)) { // The character is in the set. A Match. break; } } // the character wasn't in the set. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_DOTANY: { // . matches anything, but stops at end-of-line. if (fp->fInputIdx >= fActiveLimit) { // At end of input. Match failed. Backtrack out. fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } // There is input left. Advance over one char, unless we've hit end-of-line UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (isLineTerminator(c)) { // End of line in normal mode. . does not match. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } } break; case URX_DOTANY_ALL: { // . in dot-matches-all (including new lines) mode if (fp->fInputIdx >= fActiveLimit) { // At end of input. Match failed. Backtrack out. fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } // There is input left. Advance over one char, except if we are // at a cr/lf, advance over both of them. UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (c==0x0d && fp->fInputIdx < fActiveLimit) { // In the case of a CR/LF, we need to advance over both. if (inputBuf[fp->fInputIdx] == 0x0a) { U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit); } } } break; case URX_DOTANY_UNIX: { // '.' operator, matches all, but stops at end-of-line. // UNIX_LINES mode, so 0x0a is the only recognized line ending. if (fp->fInputIdx >= fActiveLimit) { // At end of input. Match failed. Backtrack out. fHitEnd = TRUE; fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } // There is input left. Advance over one char, unless we've hit end-of-line UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (c == 0x0a) { // End of line in normal mode. '.' does not match the \n fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_JMP: fp->fPatIdx = opValue; break; case URX_FAIL: isMatch = FALSE; goto breakFromLoop; case URX_JMP_SAV: U_ASSERT(opValue < fPattern->fCompiledPat->size()); fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current fp->fPatIdx = opValue; // Then JMP. break; case URX_JMP_SAV_X: // This opcode is used with (x)+, when x can match a zero length string. // Same as JMP_SAV, except conditional on the match having made forward progress. // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the // data address of the input position at the start of the loop. { U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size()); int32_t stoOp = (int32_t)pat[opValue-1]; U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC); int32_t frameLoc = URX_VAL(stoOp); U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize); int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc]; U_ASSERT(prevInputIdx <= fp->fInputIdx); if (prevInputIdx < fp->fInputIdx) { // The match did make progress. Repeat the loop. fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current fp->fPatIdx = opValue; fp->fExtra[frameLoc] = fp->fInputIdx; } // If the input position did not advance, we do nothing here, // execution will fall out of the loop. } break; case URX_CTR_INIT: { U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); fp->fExtra[opValue] = 0; // Set the loop counter variable to zero // Pick up the three extra operands that CTR_INIT has, and // skip the pattern location counter past int32_t instrOperandLoc = (int32_t)fp->fPatIdx; fp->fPatIdx += 3; int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); int32_t minCount = (int32_t)pat[instrOperandLoc+1]; int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; U_ASSERT(minCount>=0); U_ASSERT(maxCount>=minCount || maxCount==-1); U_ASSERT(loopLoc>=fp->fPatIdx); if (minCount == 0) { fp = StateSave(fp, loopLoc+1, status); } if (maxCount == -1) { fp->fExtra[opValue+1] = fp->fInputIdx; // For loop breaking. } else if (maxCount == 0) { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_CTR_LOOP: { U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); int32_t initOp = (int32_t)pat[opValue]; U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT); int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; int32_t minCount = (int32_t)pat[opValue+2]; int32_t maxCount = (int32_t)pat[opValue+3]; (*pCounter)++; if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { U_ASSERT(*pCounter == maxCount); break; } if (*pCounter >= minCount) { if (maxCount == -1) { // Loop has no hard upper bound. // Check that it is progressing through the input, break if it is not. int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; if (fp->fInputIdx == *pLastInputIdx) { break; } else { *pLastInputIdx = fp->fInputIdx; } } fp = StateSave(fp, fp->fPatIdx, status); } else { // Increment time-out counter. (StateSave() does it if count >= minCount) fTickCounter--; if (fTickCounter <= 0) { IncrementTime(status); // Re-initializes fTickCounter } } fp->fPatIdx = opValue + 4; // Loop back. } break; case URX_CTR_INIT_NG: { // Initialize a non-greedy loop U_ASSERT(opValue >= 0 && opValue < fFrameSize-2); fp->fExtra[opValue] = 0; // Set the loop counter variable to zero // Pick up the three extra operands that CTR_INIT_NG has, and // skip the pattern location counter past int32_t instrOperandLoc = (int32_t)fp->fPatIdx; fp->fPatIdx += 3; int32_t loopLoc = URX_VAL(pat[instrOperandLoc]); int32_t minCount = (int32_t)pat[instrOperandLoc+1]; int32_t maxCount = (int32_t)pat[instrOperandLoc+2]; U_ASSERT(minCount>=0); U_ASSERT(maxCount>=minCount || maxCount==-1); U_ASSERT(loopLoc>fp->fPatIdx); if (maxCount == -1) { fp->fExtra[opValue+1] = fp->fInputIdx; // Save initial input index for loop breaking. } if (minCount == 0) { if (maxCount != 0) { fp = StateSave(fp, fp->fPatIdx, status); } fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block } } break; case URX_CTR_LOOP_NG: { // Non-greedy {min, max} loops U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2); int32_t initOp = (int32_t)pat[opValue]; U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG); int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)]; int32_t minCount = (int32_t)pat[opValue+2]; int32_t maxCount = (int32_t)pat[opValue+3]; (*pCounter)++; if ((uint64_t)*pCounter >= (uint32_t)maxCount && maxCount != -1) { // The loop has matched the maximum permitted number of times. // Break out of here with no action. Matching will // continue with the following pattern. U_ASSERT(*pCounter == maxCount); break; } if (*pCounter < minCount) { // We haven't met the minimum number of matches yet. // Loop back for another one. fp->fPatIdx = opValue + 4; // Loop back. fTickCounter--; if (fTickCounter <= 0) { IncrementTime(status); // Re-initializes fTickCounter } } else { // We do have the minimum number of matches. // If there is no upper bound on the loop iterations, check that the input index // is progressing, and stop the loop if it is not. if (maxCount == -1) { int64_t *pLastInputIdx = &fp->fExtra[URX_VAL(initOp) + 1]; if (fp->fInputIdx == *pLastInputIdx) { break; } *pLastInputIdx = fp->fInputIdx; } // Loop Continuation: we will fall into the pattern following the loop // (non-greedy, don't execute loop body first), but first do // a state save to the top of the loop, so that a match failure // in the following pattern will try another iteration of the loop. fp = StateSave(fp, opValue + 4, status); } } break; case URX_STO_SP: U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); fData[opValue] = fStack->size(); break; case URX_LD_SP: { U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize); int32_t newStackSize = (int32_t)fData[opValue]; U_ASSERT(newStackSize <= fStack->size()); int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; if (newFP == (int64_t *)fp) { break; } int32_t j; for (j=0; j<fFrameSize; j++) { newFP[j] = ((int64_t *)fp)[j]; } fp = (REStackFrame *)newFP; fStack->setSize(newStackSize); } break; case URX_BACKREF: { U_ASSERT(opValue < fFrameSize); int64_t groupStartIdx = fp->fExtra[opValue]; int64_t groupEndIdx = fp->fExtra[opValue+1]; U_ASSERT(groupStartIdx <= groupEndIdx); int64_t inputIndex = fp->fInputIdx; if (groupStartIdx < 0) { // This capture group has not participated in the match thus far, fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. break; } UBool success = TRUE; for (int64_t groupIndex = groupStartIdx; groupIndex < groupEndIdx; ++groupIndex,++inputIndex) { if (inputIndex >= fActiveLimit) { success = FALSE; fHitEnd = TRUE; break; } if (inputBuf[groupIndex] != inputBuf[inputIndex]) { success = FALSE; break; } } if (success && groupStartIdx < groupEndIdx && U16_IS_LEAD(inputBuf[groupEndIdx-1]) && inputIndex < fActiveLimit && U16_IS_TRAIL(inputBuf[inputIndex])) { // Capture group ended with an unpaired lead surrogate. // Back reference is not permitted to match lead only of a surrogatge pair. success = FALSE; } if (success) { fp->fInputIdx = inputIndex; } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_BACKREF_I: { U_ASSERT(opValue < fFrameSize); int64_t groupStartIdx = fp->fExtra[opValue]; int64_t groupEndIdx = fp->fExtra[opValue+1]; U_ASSERT(groupStartIdx <= groupEndIdx); if (groupStartIdx < 0) { // This capture group has not participated in the match thus far, fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match. break; } CaseFoldingUCharIterator captureGroupItr(inputBuf, groupStartIdx, groupEndIdx); CaseFoldingUCharIterator inputItr(inputBuf, fp->fInputIdx, fActiveLimit); // Note: if the capture group match was of an empty string the backref // match succeeds. Verified by testing: Perl matches succeed // in this case, so we do too. UBool success = TRUE; for (;;) { UChar32 captureGroupChar = captureGroupItr.next(); if (captureGroupChar == U_SENTINEL) { success = TRUE; break; } UChar32 inputChar = inputItr.next(); if (inputChar == U_SENTINEL) { success = FALSE; fHitEnd = TRUE; break; } if (inputChar != captureGroupChar) { success = FALSE; break; } } if (success && inputItr.inExpansion()) { // We otained a match by consuming part of a string obtained from // case-folding a single code point of the input text. // This does not count as an overall match. success = FALSE; } if (success) { fp->fInputIdx = inputItr.getIndex(); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_STO_INP_LOC: { U_ASSERT(opValue >= 0 && opValue < fFrameSize); fp->fExtra[opValue] = fp->fInputIdx; } break; case URX_JMPX: { int32_t instrOperandLoc = (int32_t)fp->fPatIdx; fp->fPatIdx += 1; int32_t dataLoc = URX_VAL(pat[instrOperandLoc]); U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize); int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc]; U_ASSERT(savedInputIdx <= fp->fInputIdx); if (savedInputIdx < fp->fInputIdx) { fp->fPatIdx = opValue; // JMP } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop. } } break; case URX_LA_START: { // Entering a lookahead block. // Save Stack Ptr, Input Pos. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); fData[opValue] = fStack->size(); fData[opValue+1] = fp->fInputIdx; fActiveStart = fLookStart; // Set the match region change for fActiveLimit = fLookLimit; // transparent bounds. } break; case URX_LA_END: { // Leaving a look-ahead block. // restore Stack Ptr, Input Pos to positions they had on entry to block. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); int32_t stackSize = fStack->size(); int32_t newStackSize = (int32_t)fData[opValue]; U_ASSERT(stackSize >= newStackSize); if (stackSize > newStackSize) { // Copy the current top frame back to the new (cut back) top frame. // This makes the capture groups from within the look-ahead // expression available. int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize; int32_t j; for (j=0; j<fFrameSize; j++) { newFP[j] = ((int64_t *)fp)[j]; } fp = (REStackFrame *)newFP; fStack->setSize(newStackSize); } fp->fInputIdx = fData[opValue+1]; // Restore the active region bounds in the input string; they may have // been changed because of transparent bounds on a Region. fActiveStart = fRegionStart; fActiveLimit = fRegionLimit; } break; case URX_ONECHAR_I: if (fp->fInputIdx < fActiveLimit) { UChar32 c; U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c); if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) { break; } } else { fHitEnd = TRUE; } fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; case URX_STRING_I: // Case-insensitive test input against a literal string. // Strings require two slots in the compiled pattern, one for the // offset to the string text, and one for the length. // The compiled string has already been case folded. { const UChar *patternString = litText + opValue; op = (int32_t)pat[fp->fPatIdx]; fp->fPatIdx++; opType = URX_TYPE(op); opValue = URX_VAL(op); U_ASSERT(opType == URX_STRING_LEN); int32_t patternStringLen = opValue; // Length of the string from the pattern. UChar32 cText; UChar32 cPattern; UBool success = TRUE; int32_t patternStringIdx = 0; CaseFoldingUCharIterator inputIterator(inputBuf, fp->fInputIdx, fActiveLimit); while (patternStringIdx < patternStringLen) { U16_NEXT(patternString, patternStringIdx, patternStringLen, cPattern); cText = inputIterator.next(); if (cText != cPattern) { success = FALSE; if (cText == U_SENTINEL) { fHitEnd = TRUE; } break; } } if (inputIterator.inExpansion()) { success = FALSE; } if (success) { fp->fInputIdx = inputIterator.getIndex(); } else { fp = (REStackFrame *)fStack->popFrame(fFrameSize); } } break; case URX_LB_START: { // Entering a look-behind block. // Save Stack Ptr, Input Pos. // TODO: implement transparent bounds. Ticket #6067 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); fData[opValue] = fStack->size(); fData[opValue+1] = fp->fInputIdx; // Init the variable containing the start index for attempted matches. fData[opValue+2] = -1; // Save input string length, then reset to pin any matches to end at // the current position. fData[opValue+3] = fActiveLimit; fActiveLimit = fp->fInputIdx; } break; case URX_LB_CONT: { // Positive Look-Behind, at top of loop checking for matches of LB expression // at all possible input starting positions. // Fetch the min and max possible match lengths. They are the operands // of this op in the pattern. int32_t minML = (int32_t)pat[fp->fPatIdx++]; int32_t maxML = (int32_t)pat[fp->fPatIdx++]; U_ASSERT(minML <= maxML); U_ASSERT(minML >= 0); // Fetch (from data) the last input index where a match was attempted. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); int64_t &lbStartIdx = fData[opValue+2]; if (lbStartIdx < 0) { // First time through loop. lbStartIdx = fp->fInputIdx - minML; if (lbStartIdx > 0 && lbStartIdx < fInputLength) { U16_SET_CP_START(inputBuf, 0, lbStartIdx); } } else { // 2nd through nth time through the loop. // Back up start position for match by one. if (lbStartIdx == 0) { lbStartIdx--; } else { U16_BACK_1(inputBuf, 0, lbStartIdx); } } if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { // We have tried all potential match starting points without // getting a match. Backtrack out, and out of the // Look Behind altogether. fp = (REStackFrame *)fStack->popFrame(fFrameSize); int64_t restoreInputLen = fData[opValue+3]; U_ASSERT(restoreInputLen >= fActiveLimit); U_ASSERT(restoreInputLen <= fInputLength); fActiveLimit = restoreInputLen; break; } // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. // (successful match will fall off the end of the loop.) fp = StateSave(fp, fp->fPatIdx-3, status); fp->fInputIdx = lbStartIdx; } break; case URX_LB_END: // End of a look-behind block, after a successful match. { U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); if (fp->fInputIdx != fActiveLimit) { // The look-behind expression matched, but the match did not // extend all the way to the point that we are looking behind from. // FAIL out of here, which will take us back to the LB_CONT, which // will retry the match starting at another position or fail // the look-behind altogether, whichever is appropriate. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } // Look-behind match is good. Restore the orignal input string length, // which had been truncated to pin the end of the lookbehind match to the // position being looked-behind. int64_t originalInputLen = fData[opValue+3]; U_ASSERT(originalInputLen >= fActiveLimit); U_ASSERT(originalInputLen <= fInputLength); fActiveLimit = originalInputLen; } break; case URX_LBN_CONT: { // Negative Look-Behind, at top of loop checking for matches of LB expression // at all possible input starting positions. // Fetch the extra parameters of this op. int32_t minML = (int32_t)pat[fp->fPatIdx++]; int32_t maxML = (int32_t)pat[fp->fPatIdx++]; int32_t continueLoc = (int32_t)pat[fp->fPatIdx++]; continueLoc = URX_VAL(continueLoc); U_ASSERT(minML <= maxML); U_ASSERT(minML >= 0); U_ASSERT(continueLoc > fp->fPatIdx); // Fetch (from data) the last input index where a match was attempted. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); int64_t &lbStartIdx = fData[opValue+2]; if (lbStartIdx < 0) { // First time through loop. lbStartIdx = fp->fInputIdx - minML; if (lbStartIdx > 0 && lbStartIdx < fInputLength) { U16_SET_CP_START(inputBuf, 0, lbStartIdx); } } else { // 2nd through nth time through the loop. // Back up start position for match by one. if (lbStartIdx == 0) { lbStartIdx--; // Because U16_BACK is unsafe starting at 0. } else { U16_BACK_1(inputBuf, 0, lbStartIdx); } } if (lbStartIdx < 0 || lbStartIdx < fp->fInputIdx - maxML) { // We have tried all potential match starting points without // getting a match, which means that the negative lookbehind as // a whole has succeeded. Jump forward to the continue location int64_t restoreInputLen = fData[opValue+3]; U_ASSERT(restoreInputLen >= fActiveLimit); U_ASSERT(restoreInputLen <= fInputLength); fActiveLimit = restoreInputLen; fp->fPatIdx = continueLoc; break; } // Save state to this URX_LB_CONT op, so failure to match will repeat the loop. // (successful match will cause a FAIL out of the loop altogether.) fp = StateSave(fp, fp->fPatIdx-4, status); fp->fInputIdx = lbStartIdx; } break; case URX_LBN_END: // End of a negative look-behind block, after a successful match. { U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); if (fp->fInputIdx != fActiveLimit) { // The look-behind expression matched, but the match did not // extend all the way to the point that we are looking behind from. // FAIL out of here, which will take us back to the LB_CONT, which // will retry the match starting at another position or succeed // the look-behind altogether, whichever is appropriate. fp = (REStackFrame *)fStack->popFrame(fFrameSize); break; } // Look-behind expression matched, which means look-behind test as // a whole Fails // Restore the orignal input string length, which had been truncated // inorder to pin the end of the lookbehind match // to the position being looked-behind. int64_t originalInputLen = fData[opValue+3]; U_ASSERT(originalInputLen >= fActiveLimit); U_ASSERT(originalInputLen <= fInputLength); fActiveLimit = originalInputLen; // Restore original stack position, discarding any state saved // by the successful pattern match. U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize); int32_t newStackSize = (int32_t)fData[opValue]; U_ASSERT(fStack->size() > newStackSize); fStack->setSize(newStackSize); // FAIL, which will take control back to someplace // prior to entering the look-behind test. fp = (REStackFrame *)fStack->popFrame(fFrameSize); } break; case URX_LOOP_SR_I: // Loop Initialization for the optimized implementation of // [some character set]* // This op scans through all matching input. // The following LOOP_C op emulates stack unwinding if the following pattern fails. { U_ASSERT(opValue > 0 && opValue < fSets->size()); Regex8BitSet *s8 = &fPattern->fSets8[opValue]; UnicodeSet *s = (UnicodeSet *)fSets->elementAt(opValue); // Loop through input, until either the input is exhausted or // we reach a character that is not a member of the set. int32_t ix = (int32_t)fp->fInputIdx; for (;;) { if (ix >= fActiveLimit) { fHitEnd = TRUE; break; } UChar32 c; U16_NEXT(inputBuf, ix, fActiveLimit, c); if (c<256) { if (s8->contains(c) == FALSE) { U16_BACK_1(inputBuf, 0, ix); break; } } else { if (s->contains(c) == FALSE) { U16_BACK_1(inputBuf, 0, ix); break; } } } // If there were no matching characters, skip over the loop altogether. // The loop doesn't run at all, a * op always succeeds. if (ix == fp->fInputIdx) { fp->fPatIdx++; // skip the URX_LOOP_C op. break; } // Peek ahead in the compiled pattern, to the URX_LOOP_C that // must follow. It's operand is the stack location // that holds the starting input index for the match of this [set]* int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); int32_t stackLoc = URX_VAL(loopcOp); U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); fp->fExtra[stackLoc] = fp->fInputIdx; fp->fInputIdx = ix; // Save State to the URX_LOOP_C op that follows this one, // so that match failures in the following code will return to there. // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. fp = StateSave(fp, fp->fPatIdx, status); fp->fPatIdx++; } break; case URX_LOOP_DOT_I: // Loop Initialization for the optimized implementation of .* // This op scans through all remaining input. // The following LOOP_C op emulates stack unwinding if the following pattern fails. { // Loop through input until the input is exhausted (we reach an end-of-line) // In DOTALL mode, we can just go straight to the end of the input. int32_t ix; if ((opValue & 1) == 1) { // Dot-matches-All mode. Jump straight to the end of the string. ix = (int32_t)fActiveLimit; fHitEnd = TRUE; } else { // NOT DOT ALL mode. Line endings do not match '.' // Scan forward until a line ending or end of input. ix = (int32_t)fp->fInputIdx; for (;;) { if (ix >= fActiveLimit) { fHitEnd = TRUE; break; } UChar32 c; U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++] if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s if ((c == 0x0a) || // 0x0a is newline in both modes. (((opValue & 2) == 0) && // IF not UNIX_LINES mode isLineTerminator(c))) { // char is a line ending. Put the input pos back to the // line ending char, and exit the scanning loop. U16_BACK_1(inputBuf, 0, ix); break; } } } } // If there were no matching characters, skip over the loop altogether. // The loop doesn't run at all, a * op always succeeds. if (ix == fp->fInputIdx) { fp->fPatIdx++; // skip the URX_LOOP_C op. break; } // Peek ahead in the compiled pattern, to the URX_LOOP_C that // must follow. It's operand is the stack location // that holds the starting input index for the match of this .* int32_t loopcOp = (int32_t)pat[fp->fPatIdx]; U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C); int32_t stackLoc = URX_VAL(loopcOp); U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize); fp->fExtra[stackLoc] = fp->fInputIdx; fp->fInputIdx = ix; // Save State to the URX_LOOP_C op that follows this one, // so that match failures in the following code will return to there. // Then bump the pattern idx so the LOOP_C is skipped on the way out of here. fp = StateSave(fp, fp->fPatIdx, status); fp->fPatIdx++; } break; case URX_LOOP_C: { U_ASSERT(opValue>=0 && opValue<fFrameSize); backSearchIndex = (int32_t)fp->fExtra[opValue]; U_ASSERT(backSearchIndex <= fp->fInputIdx); if (backSearchIndex == fp->fInputIdx) { // We've backed up the input idx to the point that the loop started. // The loop is done. Leave here without saving state. // Subsequent failures won't come back here. break; } // Set up for the next iteration of the loop, with input index // backed up by one from the last time through, // and a state save to this instruction in case the following code fails again. // (We're going backwards because this loop emulates stack unwinding, not // the initial scan forward.) U_ASSERT(fp->fInputIdx > 0); UChar32 prevC; U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit? if (prevC == 0x0a && fp->fInputIdx > backSearchIndex && inputBuf[fp->fInputIdx-1] == 0x0d) { int32_t prevOp = (int32_t)pat[fp->fPatIdx-2]; if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) { // .*, stepping back over CRLF pair. U16_BACK_1(inputBuf, 0, fp->fInputIdx); } } fp = StateSave(fp, fp->fPatIdx-1, status); } break; default: // Trouble. The compiled pattern contains an entry with an // unrecognized type tag. U_ASSERT(FALSE); } if (U_FAILURE(status)) { isMatch = FALSE; break; } } breakFromLoop: fMatch = isMatch; if (isMatch) { fLastMatchEnd = fMatchEnd; fMatchStart = startIdx; fMatchEnd = fp->fInputIdx; } #ifdef REGEX_RUN_DEBUG if (fTraceDebug) { if (isMatch) { printf("Match. start=%ld end=%ld\n\n", fMatchStart, fMatchEnd); } else { printf("No match\n\n"); } } #endif fFrame = fp; // The active stack frame when the engine stopped. // Contains the capture group results that we need to // access later. return; } UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher) U_NAMESPACE_END #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS