// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef IPC_IPC_CHANNEL_PROXY_H_ #define IPC_IPC_CHANNEL_PROXY_H_ #include <stdint.h> #include <map> #include <memory> #include <string> #include <vector> #include "base/callback.h" #include "base/component_export.h" #include "base/memory/ref_counted.h" #include "base/sequence_checker.h" #include "base/synchronization/lock.h" #include "build/build_config.h" #include "ipc/ipc_channel.h" #include "ipc/ipc_channel_handle.h" #include "ipc/ipc_listener.h" #include "ipc/ipc_sender.h" #include "mojo/public/cpp/bindings/associated_interface_ptr.h" #include "mojo/public/cpp/bindings/associated_interface_request.h" #include "mojo/public/cpp/bindings/scoped_interface_endpoint_handle.h" #include "mojo/public/cpp/bindings/thread_safe_interface_ptr.h" namespace base { class SingleThreadTaskRunner; } namespace IPC { class ChannelFactory; class MessageFilter; class MessageFilterRouter; //----------------------------------------------------------------------------- // IPC::ChannelProxy // // This class is a helper class that is useful when you wish to run an IPC // channel on a background thread. It provides you with the option of either // handling IPC messages on that background thread or having them dispatched to // your main thread (the thread on which the IPC::ChannelProxy is created). // // The API for an IPC::ChannelProxy is very similar to that of an IPC::Channel. // When you send a message to an IPC::ChannelProxy, the message is routed to // the background thread, where it is then passed to the IPC::Channel's Send // method. This means that you can send a message from your thread and your // message will be sent over the IPC channel when possible instead of being // delayed until your thread returns to its message loop. (Often IPC messages // will queue up on the IPC::Channel when there is a lot of traffic, and the // channel will not get cycles to flush its message queue until the thread, on // which it is running, returns to its message loop.) // // An IPC::ChannelProxy can have a MessageFilter associated with it, which will // be notified of incoming messages on the IPC::Channel's thread. This gives // the consumer of IPC::ChannelProxy the ability to respond to incoming // messages on this background thread instead of on their own thread, which may // be bogged down with other processing. The result can be greatly improved // latency for messages that can be handled on a background thread. // // The consumer of IPC::ChannelProxy is responsible for allocating the Thread // instance where the IPC::Channel will be created and operated. // // Thread-safe send // // If a particular |Channel| implementation has a thread-safe |Send()| operation // then ChannelProxy skips the inter-thread hop and calls |Send()| directly. In // this case the |channel_| variable is touched by multiple threads so // |channel_lifetime_lock_| is used to protect it. The locking overhead is only // paid if the underlying channel supports thread-safe |Send|. // class COMPONENT_EXPORT(IPC) ChannelProxy : public Sender { public: #if defined(ENABLE_IPC_FUZZER) // Interface for a filter to be imposed on outgoing messages which can // re-write the message. Used for testing. class OutgoingMessageFilter { public: virtual Message* Rewrite(Message* message) = 0; }; #endif // Initializes a channel proxy. The channel_handle and mode parameters are // passed directly to the underlying IPC::Channel. The listener is called on // the thread that creates the ChannelProxy. The filter's OnMessageReceived // method is called on the thread where the IPC::Channel is running. The // filter may be null if the consumer is not interested in handling messages // on the background thread. Any message not handled by the filter will be // dispatched to the listener. The given task runner correspond to a thread // on which IPC::Channel is created and used (e.g. IO thread). static std::unique_ptr<ChannelProxy> Create( const IPC::ChannelHandle& channel_handle, Channel::Mode mode, Listener* listener, const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner, const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner); static std::unique_ptr<ChannelProxy> Create( std::unique_ptr<ChannelFactory> factory, Listener* listener, const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner, const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner); // Constructs a ChannelProxy without initializing it. ChannelProxy( Listener* listener, const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner, const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner); ~ChannelProxy() override; // Initializes the channel proxy. Only call this once to initialize a channel // proxy that was not initialized in its constructor. If |create_pipe_now| is // true, the pipe is created synchronously. Otherwise it's created on the IO // thread. void Init(const IPC::ChannelHandle& channel_handle, Channel::Mode mode, bool create_pipe_now); void Init(std::unique_ptr<ChannelFactory> factory, bool create_pipe_now); // Pause the channel. Subsequent calls to Send() will be internally queued // until Unpause() is called. Queued messages will not be sent until the // channel is flushed. void Pause(); // Unpause the channel. If |flush| is true the channel will be flushed as soon // as it's unpaused (see Flush() below.) Otherwise you must explicitly call // Flush() to flush messages which were queued while the channel was paused. void Unpause(bool flush); // Flush the channel. This sends any messages which were queued before calling // Connect. Only useful if Unpause(false) was called previously. void Flush(); // Close the IPC::Channel. This operation completes asynchronously, once the // background thread processes the command to close the channel. It is ok to // call this method multiple times. Redundant calls are ignored. // // WARNING: MessageFilter objects held by the ChannelProxy is also // released asynchronously, and it may in fact have its final reference // released on the background thread. The caller should be careful to deal // with / allow for this possibility. void Close(); // Send a message asynchronously. The message is routed to the background // thread where it is passed to the IPC::Channel's Send method. bool Send(Message* message) override; // Used to intercept messages as they are received on the background thread. // // Ordinarily, messages sent to the ChannelProxy are routed to the matching // listener on the worker thread. This API allows code to intercept messages // before they are sent to the worker thread. // If you call this before the target process is launched, then you're // guaranteed to not miss any messages. But if you call this anytime after, // then some messages might be missed since the filter is added internally on // the IO thread. void AddFilter(MessageFilter* filter); void RemoveFilter(MessageFilter* filter); using GenericAssociatedInterfaceFactory = base::Callback<void(mojo::ScopedInterfaceEndpointHandle)>; // Adds a generic associated interface factory to bind incoming interface // requests directly on the IO thread. MUST be called either before Init() or // before the remote end of the Channel is able to send messages (e.g. before // its process is launched.) void AddGenericAssociatedInterfaceForIOThread( const std::string& name, const GenericAssociatedInterfaceFactory& factory); template <typename Interface> using AssociatedInterfaceFactory = base::Callback<void(mojo::AssociatedInterfaceRequest<Interface>)>; // Helper to bind an IO-thread associated interface factory, inferring the // interface name from the callback argument's type. MUST be called before // Init(). template <typename Interface> void AddAssociatedInterfaceForIOThread( const AssociatedInterfaceFactory<Interface>& factory) { AddGenericAssociatedInterfaceForIOThread( Interface::Name_, base::Bind(&ChannelProxy::BindAssociatedInterfaceRequest<Interface>, factory)); } // Requests an associated interface from the remote endpoint. void GetGenericRemoteAssociatedInterface( const std::string& name, mojo::ScopedInterfaceEndpointHandle handle); // Template helper to request associated interfaces from the remote endpoint. template <typename Interface> void GetRemoteAssociatedInterface( mojo::AssociatedInterfacePtr<Interface>* proxy) { auto request = mojo::MakeRequest(proxy); GetGenericRemoteAssociatedInterface(Interface::Name_, request.PassHandle()); } #if defined(ENABLE_IPC_FUZZER) void set_outgoing_message_filter(OutgoingMessageFilter* filter) { outgoing_message_filter_ = filter; } #endif // Creates a ThreadSafeAssociatedInterfacePtr for |Interface|. This object // may be used to send messages on the interface from any thread and those // messages will remain ordered with respect to other messages sent on the // same thread over other ThreadSafeAssociatedInterfacePtrs associated with // the same Channel. template <typename Interface> void GetThreadSafeRemoteAssociatedInterface( scoped_refptr<mojo::ThreadSafeAssociatedInterfacePtr<Interface>>* out_ptr) { mojo::AssociatedInterfacePtrInfo<Interface> ptr_info; auto request = mojo::MakeRequest(&ptr_info); GetGenericRemoteAssociatedInterface(Interface::Name_, request.PassHandle()); *out_ptr = mojo::ThreadSafeAssociatedInterfacePtr<Interface>::Create( std::move(ptr_info), ipc_task_runner()); } base::SingleThreadTaskRunner* ipc_task_runner() const { return context_->ipc_task_runner(); } const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner_refptr() const { return context_->ipc_task_runner_refptr(); } // Called to clear the pointer to the IPC task runner when it's going away. void ClearIPCTaskRunner(); protected: class Context; // A subclass uses this constructor if it needs to add more information // to the internal state. explicit ChannelProxy(Context* context); // Used internally to hold state that is referenced on the IPC thread. class Context : public base::RefCountedThreadSafe<Context>, public Listener { public: Context(Listener* listener, const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner, const scoped_refptr<base::SingleThreadTaskRunner>& listener_task_runner); void ClearIPCTaskRunner(); base::SingleThreadTaskRunner* ipc_task_runner() const { return ipc_task_runner_.get(); } const scoped_refptr<base::SingleThreadTaskRunner>& ipc_task_runner_refptr() const { return ipc_task_runner_; } scoped_refptr<base::SingleThreadTaskRunner> listener_task_runner() { return listener_task_runner_; } // Dispatches a message on the listener thread. void OnDispatchMessage(const Message& message); // Sends |message| from appropriate thread. void Send(Message* message); protected: friend class base::RefCountedThreadSafe<Context>; ~Context() override; // IPC::Listener methods: bool OnMessageReceived(const Message& message) override; void OnChannelConnected(int32_t peer_pid) override; void OnChannelError() override; void OnAssociatedInterfaceRequest( const std::string& interface_name, mojo::ScopedInterfaceEndpointHandle handle) override; // Like OnMessageReceived but doesn't try the filters. bool OnMessageReceivedNoFilter(const Message& message); // Gives the filters a chance at processing |message|. // Returns true if the message was processed, false otherwise. bool TryFilters(const Message& message); void PauseChannel(); void UnpauseChannel(bool flush); void FlushChannel(); // Like Open and Close, but called on the IPC thread. virtual void OnChannelOpened(); virtual void OnChannelClosed(); // Called on the consumers thread when the ChannelProxy is closed. At that // point the consumer is telling us that they don't want to receive any // more messages, so we honor that wish by forgetting them! virtual void Clear(); private: friend class ChannelProxy; friend class IpcSecurityTestUtil; // Create the Channel void CreateChannel(std::unique_ptr<ChannelFactory> factory); // Methods called on the IO thread. void OnSendMessage(std::unique_ptr<Message> message_ptr); void OnAddFilter(); void OnRemoveFilter(MessageFilter* filter); // Methods called on the listener thread. void AddFilter(MessageFilter* filter); void OnDispatchConnected(); void OnDispatchError(); void OnDispatchBadMessage(const Message& message); void OnDispatchAssociatedInterfaceRequest( const std::string& interface_name, mojo::ScopedInterfaceEndpointHandle handle); void ClearChannel(); mojom::Channel& thread_safe_channel() { return thread_safe_channel_->proxy(); } void AddGenericAssociatedInterfaceForIOThread( const std::string& name, const GenericAssociatedInterfaceFactory& factory); scoped_refptr<base::SingleThreadTaskRunner> listener_task_runner_; Listener* listener_; // List of filters. This is only accessed on the IPC thread. std::vector<scoped_refptr<MessageFilter> > filters_; scoped_refptr<base::SingleThreadTaskRunner> ipc_task_runner_; // Note, channel_ may be set on the Listener thread or the IPC thread. // But once it has been set, it must only be read or cleared on the IPC // thread. // One exception is the thread-safe send. See the class comment. std::unique_ptr<Channel> channel_; bool channel_connected_called_; // Lock for |channel_| value. This is only relevant in the context of // thread-safe send. base::Lock channel_lifetime_lock_; // Routes a given message to a proper subset of |filters_|, depending // on which message classes a filter might support. std::unique_ptr<MessageFilterRouter> message_filter_router_; // Holds filters between the AddFilter call on the listerner thread and the // IPC thread when they're added to filters_. std::vector<scoped_refptr<MessageFilter> > pending_filters_; // Lock for pending_filters_. base::Lock pending_filters_lock_; // Cached copy of the peer process ID. Set on IPC but read on both IPC and // listener threads. base::ProcessId peer_pid_; base::Lock peer_pid_lock_; // A thread-safe mojom::Channel interface we use to make remote interface // requests from the proxy thread. std::unique_ptr<mojo::ThreadSafeForwarder<mojom::Channel>> thread_safe_channel_; // Holds associated interface binders added by // AddGenericAssociatedInterfaceForIOThread until the underlying channel has // been initialized. base::Lock pending_io_thread_interfaces_lock_; std::vector<std::pair<std::string, GenericAssociatedInterfaceFactory>> pending_io_thread_interfaces_; }; Context* context() { return context_.get(); } #if defined(ENABLE_IPC_FUZZER) OutgoingMessageFilter* outgoing_message_filter() const { return outgoing_message_filter_; } #endif bool did_init() const { return did_init_; } // A Send() which doesn't DCHECK if the message is synchronous. void SendInternal(Message* message); private: friend class IpcSecurityTestUtil; template <typename Interface> static void BindAssociatedInterfaceRequest( const AssociatedInterfaceFactory<Interface>& factory, mojo::ScopedInterfaceEndpointHandle handle) { factory.Run(mojo::AssociatedInterfaceRequest<Interface>(std::move(handle))); } // Always called once immediately after Init. virtual void OnChannelInit(); // By maintaining this indirection (ref-counted) to our internal state, we // can safely be destroyed while the background thread continues to do stuff // that involves this data. scoped_refptr<Context> context_; // Whether the channel has been initialized. bool did_init_; #if defined(ENABLE_IPC_FUZZER) OutgoingMessageFilter* outgoing_message_filter_; #endif SEQUENCE_CHECKER(sequence_checker_); }; } // namespace IPC #endif // IPC_IPC_CHANNEL_PROXY_H_