// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "build/build_config.h" #include <stddef.h> #include <stdint.h> #include <memory> #include "base/message_loop/message_loop.h" #include "base/pickle.h" #include "base/run_loop.h" #include "base/threading/thread.h" #include "ipc/ipc_message.h" #include "ipc/ipc_test_base.h" #include "ipc/message_filter.h" // Get basic type definitions. #define IPC_MESSAGE_IMPL #include "ipc/ipc_channel_proxy_unittest_messages.h" // Generate constructors. #include "ipc/struct_constructor_macros.h" #include "ipc/ipc_channel_proxy_unittest_messages.h" // Generate destructors. #include "ipc/struct_destructor_macros.h" #include "ipc/ipc_channel_proxy_unittest_messages.h" // Generate param traits write methods. #include "ipc/param_traits_write_macros.h" namespace IPC { #include "ipc/ipc_channel_proxy_unittest_messages.h" } // namespace IPC // Generate param traits read methods. #include "ipc/param_traits_read_macros.h" namespace IPC { #include "ipc/ipc_channel_proxy_unittest_messages.h" } // namespace IPC // Generate param traits log methods. #include "ipc/param_traits_log_macros.h" namespace IPC { #include "ipc/ipc_channel_proxy_unittest_messages.h" } // namespace IPC namespace { void CreateRunLoopAndRun(base::RunLoop** run_loop_ptr) { base::RunLoop run_loop; *run_loop_ptr = &run_loop; run_loop.Run(); *run_loop_ptr = nullptr; } class QuitListener : public IPC::Listener { public: QuitListener() = default; bool OnMessageReceived(const IPC::Message& message) override { IPC_BEGIN_MESSAGE_MAP(QuitListener, message) IPC_MESSAGE_HANDLER(WorkerMsg_Quit, OnQuit) IPC_MESSAGE_HANDLER(TestMsg_BadMessage, OnBadMessage) IPC_END_MESSAGE_MAP() return true; } void OnBadMessageReceived(const IPC::Message& message) override { bad_message_received_ = true; } void OnChannelError() override { CHECK(quit_message_received_); } void OnQuit() { quit_message_received_ = true; run_loop_->QuitWhenIdle(); } void OnBadMessage(const BadType& bad_type) { // Should never be called since IPC wouldn't be deserialized correctly. CHECK(false); } bool bad_message_received_ = false; bool quit_message_received_ = false; base::RunLoop* run_loop_ = nullptr; }; class ChannelReflectorListener : public IPC::Listener { public: ChannelReflectorListener() = default; void Init(IPC::Channel* channel) { DCHECK(!channel_); channel_ = channel; } bool OnMessageReceived(const IPC::Message& message) override { IPC_BEGIN_MESSAGE_MAP(ChannelReflectorListener, message) IPC_MESSAGE_HANDLER(TestMsg_Bounce, OnTestBounce) IPC_MESSAGE_HANDLER(TestMsg_SendBadMessage, OnSendBadMessage) IPC_MESSAGE_HANDLER(AutomationMsg_Bounce, OnAutomationBounce) IPC_MESSAGE_HANDLER(WorkerMsg_Bounce, OnBounce) IPC_MESSAGE_HANDLER(WorkerMsg_Quit, OnQuit) IPC_END_MESSAGE_MAP() return true; } void OnTestBounce() { channel_->Send(new TestMsg_Bounce()); } void OnSendBadMessage() { channel_->Send(new TestMsg_BadMessage(BadType())); } void OnAutomationBounce() { channel_->Send(new AutomationMsg_Bounce()); } void OnBounce() { channel_->Send(new WorkerMsg_Bounce()); } void OnQuit() { channel_->Send(new WorkerMsg_Quit()); run_loop_->QuitWhenIdle(); } base::RunLoop* run_loop_ = nullptr; private: IPC::Channel* channel_ = nullptr; }; class MessageCountFilter : public IPC::MessageFilter { public: enum FilterEvent { NONE, FILTER_ADDED, CHANNEL_CONNECTED, CHANNEL_ERROR, CHANNEL_CLOSING, FILTER_REMOVED }; MessageCountFilter() = default; MessageCountFilter(uint32_t supported_message_class) : supported_message_class_(supported_message_class), is_global_filter_(false) {} void OnFilterAdded(IPC::Channel* channel) override { EXPECT_TRUE(channel); EXPECT_EQ(NONE, last_filter_event_); last_filter_event_ = FILTER_ADDED; } void OnChannelConnected(int32_t peer_pid) override { EXPECT_EQ(FILTER_ADDED, last_filter_event_); EXPECT_NE(static_cast<int32_t>(base::kNullProcessId), peer_pid); last_filter_event_ = CHANNEL_CONNECTED; } void OnChannelError() override { EXPECT_EQ(CHANNEL_CONNECTED, last_filter_event_); last_filter_event_ = CHANNEL_ERROR; } void OnChannelClosing() override { // We may or may not have gotten OnChannelError; if not, the last event has // to be OnChannelConnected. EXPECT_NE(FILTER_REMOVED, last_filter_event_); if (last_filter_event_ != CHANNEL_ERROR) EXPECT_EQ(CHANNEL_CONNECTED, last_filter_event_); last_filter_event_ = CHANNEL_CLOSING; } void OnFilterRemoved() override { // A filter may be removed at any time, even before the channel is connected // (and thus before OnFilterAdded is ever able to dispatch.) The only time // we won't see OnFilterRemoved is immediately after OnFilterAdded, because // OnChannelConnected is always the next event to fire after that. EXPECT_NE(FILTER_ADDED, last_filter_event_); last_filter_event_ = FILTER_REMOVED; } bool OnMessageReceived(const IPC::Message& message) override { // We should always get the OnFilterAdded and OnChannelConnected events // prior to any messages. EXPECT_EQ(CHANNEL_CONNECTED, last_filter_event_); if (!is_global_filter_) { EXPECT_EQ(supported_message_class_, IPC_MESSAGE_CLASS(message)); } ++messages_received_; if (!message_filtering_enabled_) return false; bool handled = true; IPC_BEGIN_MESSAGE_MAP(MessageCountFilter, message) IPC_MESSAGE_HANDLER(TestMsg_BadMessage, OnBadMessage) IPC_MESSAGE_UNHANDLED(handled = false) IPC_END_MESSAGE_MAP() return handled; } void OnBadMessage(const BadType& bad_type) { // Should never be called since IPC wouldn't be deserialized correctly. CHECK(false); } bool GetSupportedMessageClasses( std::vector<uint32_t>* supported_message_classes) const override { if (is_global_filter_) return false; supported_message_classes->push_back(supported_message_class_); return true; } void set_message_filtering_enabled(bool enabled) { message_filtering_enabled_ = enabled; } size_t messages_received() const { return messages_received_; } FilterEvent last_filter_event() const { return last_filter_event_; } private: ~MessageCountFilter() override = default; size_t messages_received_ = 0; uint32_t supported_message_class_ = 0; bool is_global_filter_ = true; FilterEvent last_filter_event_ = NONE; bool message_filtering_enabled_ = false; }; class IPCChannelProxyTest : public IPCChannelMojoTestBase { public: IPCChannelProxyTest() = default; ~IPCChannelProxyTest() override = default; void SetUp() override { IPCChannelMojoTestBase::SetUp(); Init("ChannelProxyClient"); thread_.reset(new base::Thread("ChannelProxyTestServerThread")); base::Thread::Options options; options.message_loop_type = base::MessageLoop::TYPE_IO; thread_->StartWithOptions(options); listener_.reset(new QuitListener()); channel_proxy_ = IPC::ChannelProxy::Create( TakeHandle().release(), IPC::Channel::MODE_SERVER, listener_.get(), thread_->task_runner(), base::ThreadTaskRunnerHandle::Get()); } void TearDown() override { channel_proxy_.reset(); thread_.reset(); listener_.reset(); IPCChannelMojoTestBase::TearDown(); } void SendQuitMessageAndWaitForIdle() { sender()->Send(new WorkerMsg_Quit); CreateRunLoopAndRun(&listener_->run_loop_); EXPECT_TRUE(WaitForClientShutdown()); } bool DidListenerGetBadMessage() { return listener_->bad_message_received_; } IPC::ChannelProxy* channel_proxy() { return channel_proxy_.get(); } IPC::Sender* sender() { return channel_proxy_.get(); } private: std::unique_ptr<base::Thread> thread_; std::unique_ptr<QuitListener> listener_; std::unique_ptr<IPC::ChannelProxy> channel_proxy_; }; TEST_F(IPCChannelProxyTest, MessageClassFilters) { // Construct a filter per message class. std::vector<scoped_refptr<MessageCountFilter>> class_filters; class_filters.push_back( base::MakeRefCounted<MessageCountFilter>(TestMsgStart)); class_filters.push_back( base::MakeRefCounted<MessageCountFilter>(AutomationMsgStart)); for (size_t i = 0; i < class_filters.size(); ++i) channel_proxy()->AddFilter(class_filters[i].get()); // Send a message for each class; each filter should receive just one message. sender()->Send(new TestMsg_Bounce); sender()->Send(new AutomationMsg_Bounce); // Send some messages not assigned to a specific or valid message class. sender()->Send(new WorkerMsg_Bounce); // Each filter should have received just the one sent message of the // corresponding class. SendQuitMessageAndWaitForIdle(); for (size_t i = 0; i < class_filters.size(); ++i) EXPECT_EQ(1U, class_filters[i]->messages_received()); } TEST_F(IPCChannelProxyTest, GlobalAndMessageClassFilters) { // Add a class and global filter. scoped_refptr<MessageCountFilter> class_filter( new MessageCountFilter(TestMsgStart)); class_filter->set_message_filtering_enabled(false); channel_proxy()->AddFilter(class_filter.get()); scoped_refptr<MessageCountFilter> global_filter(new MessageCountFilter()); global_filter->set_message_filtering_enabled(false); channel_proxy()->AddFilter(global_filter.get()); // A message of class Test should be seen by both the global filter and // Test-specific filter. sender()->Send(new TestMsg_Bounce); // A message of a different class should be seen only by the global filter. sender()->Send(new AutomationMsg_Bounce); // Flush all messages. SendQuitMessageAndWaitForIdle(); // The class filter should have received only the class-specific message. EXPECT_EQ(1U, class_filter->messages_received()); // The global filter should have received both messages, as well as the final // QUIT message. EXPECT_EQ(3U, global_filter->messages_received()); } TEST_F(IPCChannelProxyTest, FilterRemoval) { // Add a class and global filter. scoped_refptr<MessageCountFilter> class_filter( new MessageCountFilter(TestMsgStart)); scoped_refptr<MessageCountFilter> global_filter(new MessageCountFilter()); // Add and remove both types of filters. channel_proxy()->AddFilter(class_filter.get()); channel_proxy()->AddFilter(global_filter.get()); channel_proxy()->RemoveFilter(global_filter.get()); channel_proxy()->RemoveFilter(class_filter.get()); // Send some messages; they should not be seen by either filter. sender()->Send(new TestMsg_Bounce); sender()->Send(new AutomationMsg_Bounce); // Ensure that the filters were removed and did not receive any messages. SendQuitMessageAndWaitForIdle(); EXPECT_EQ(MessageCountFilter::FILTER_REMOVED, global_filter->last_filter_event()); EXPECT_EQ(MessageCountFilter::FILTER_REMOVED, class_filter->last_filter_event()); EXPECT_EQ(0U, class_filter->messages_received()); EXPECT_EQ(0U, global_filter->messages_received()); } TEST_F(IPCChannelProxyTest, BadMessageOnListenerThread) { scoped_refptr<MessageCountFilter> class_filter( new MessageCountFilter(TestMsgStart)); class_filter->set_message_filtering_enabled(false); channel_proxy()->AddFilter(class_filter.get()); sender()->Send(new TestMsg_SendBadMessage()); SendQuitMessageAndWaitForIdle(); EXPECT_TRUE(DidListenerGetBadMessage()); } TEST_F(IPCChannelProxyTest, BadMessageOnIPCThread) { scoped_refptr<MessageCountFilter> class_filter( new MessageCountFilter(TestMsgStart)); class_filter->set_message_filtering_enabled(true); channel_proxy()->AddFilter(class_filter.get()); sender()->Send(new TestMsg_SendBadMessage()); SendQuitMessageAndWaitForIdle(); EXPECT_TRUE(DidListenerGetBadMessage()); } class IPCChannelBadMessageTest : public IPCChannelMojoTestBase { public: void SetUp() override { IPCChannelMojoTestBase::SetUp(); Init("ChannelProxyClient"); listener_.reset(new QuitListener()); CreateChannel(listener_.get()); ASSERT_TRUE(ConnectChannel()); } void TearDown() override { IPCChannelMojoTestBase::TearDown(); listener_.reset(); } void SendQuitMessageAndWaitForIdle() { sender()->Send(new WorkerMsg_Quit); CreateRunLoopAndRun(&listener_->run_loop_); EXPECT_TRUE(WaitForClientShutdown()); } bool DidListenerGetBadMessage() { return listener_->bad_message_received_; } private: std::unique_ptr<QuitListener> listener_; }; TEST_F(IPCChannelBadMessageTest, BadMessage) { sender()->Send(new TestMsg_SendBadMessage()); SendQuitMessageAndWaitForIdle(); EXPECT_TRUE(DidListenerGetBadMessage()); } DEFINE_IPC_CHANNEL_MOJO_TEST_CLIENT(ChannelProxyClient) { ChannelReflectorListener listener; Connect(&listener); listener.Init(channel()); CreateRunLoopAndRun(&listener.run_loop_); Close(); } } // namespace