//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include <string> #include <tuple> #include <type_traits> #include <vector> #include "benchmark/benchmark.h" #include "test_macros.h" namespace internal { template <class D, class E, size_t I> struct EnumValue : std::integral_constant<E, static_cast<E>(I)> { static std::string name() { return std::string("_") + D::Names[I]; } }; template <class D, class E, size_t ...Idxs> constexpr auto makeEnumValueTuple(std::index_sequence<Idxs...>) { return std::make_tuple(EnumValue<D, E, Idxs>{}...); } template <class B> static auto skip(const B& Bench, int) -> decltype(Bench.skip()) { return Bench.skip(); } template <class B> static auto skip(const B& Bench, char) { return false; } template <class B, class Args, size_t... Is> void makeBenchmarkFromValuesImpl(const Args& A, std::index_sequence<Is...>) { for (auto& V : A) { B Bench{std::get<Is>(V)...}; if (!internal::skip(Bench, 0)) { benchmark::RegisterBenchmark(Bench.name().c_str(), [=](benchmark::State& S) { Bench.run(S); }); } } } template <class B, class... Args> void makeBenchmarkFromValues(const std::vector<std::tuple<Args...> >& A) { makeBenchmarkFromValuesImpl<B>(A, std::index_sequence_for<Args...>()); } template <template <class...> class B, class Args, class... U> void makeBenchmarkImpl(const Args& A, std::tuple<U...> t) { makeBenchmarkFromValues<B<U...> >(A); } template <template <class...> class B, class Args, class... U, class... T, class... Tuples> void makeBenchmarkImpl(const Args& A, std::tuple<U...>, std::tuple<T...>, Tuples... rest) { (internal::makeBenchmarkImpl<B>(A, std::tuple<U..., T>(), rest...), ...); } template <class R, class T> void allValueCombinations(R& Result, const T& Final) { return Result.push_back(Final); } template <class R, class T, class V, class... Vs> void allValueCombinations(R& Result, const T& Prev, const V& Value, const Vs&... Values) { for (const auto& E : Value) { allValueCombinations(Result, std::tuple_cat(Prev, std::make_tuple(E)), Values...); } } } // namespace internal // CRTP class that enables using enum types as a dimension for // makeCartesianProductBenchmark below. // The type passed to `B` will be a std::integral_constant<E, e>, with the // additional static function `name()` that returns the stringified name of the // label. // // Eg: // enum class MyEnum { A, B }; // struct AllMyEnum : EnumValuesAsTuple<AllMyEnum, MyEnum, 2> { // static constexpr absl::string_view Names[] = {"A", "B"}; // }; template <class Derived, class EnumType, size_t NumLabels> using EnumValuesAsTuple = decltype(internal::makeEnumValueTuple<Derived, EnumType>( std::make_index_sequence<NumLabels>{})); // Instantiates B<T0, T1, ..., TN> where <Ti...> are the combinations in the // cartesian product of `Tuples...`, and pass (arg0, ..., argN) as constructor // arguments where `(argi...)` are the combination in the cartesian product of // the runtime values of `A...`. // B<T...> requires: // - std::string name(args...): The name of the benchmark. // - void run(benchmark::State&, args...): The body of the benchmark. // It can also optionally provide: // - bool skip(args...): When `true`, skips the combination. Default is false. // // Returns int to facilitate registration. The return value is unspecified. template <template <class...> class B, class... Tuples, class... Args> int makeCartesianProductBenchmark(const Args&... A) { std::vector<std::tuple<typename Args::value_type...> > V; internal::allValueCombinations(V, std::tuple<>(), A...); internal::makeBenchmarkImpl<B>(V, std::tuple<>(), Tuples()...); return 0; } template <class B, class... Args> int makeCartesianProductBenchmark(const Args&... A) { std::vector<std::tuple<typename Args::value_type...> > V; internal::allValueCombinations(V, std::tuple<>(), A...); internal::makeBenchmarkFromValues<B>(V); return 0; } // When `opaque` is true, this function hides the runtime state of `value` from // the optimizer. // It returns `value`. template <class T> TEST_ALWAYS_INLINE inline T maybeOpaque(T value, bool opaque) { if (opaque) benchmark::DoNotOptimize(value); return value; }