//===----------------------------------------------------------------------===//// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===//// #ifndef FILESYSTEM_COMMON_H #define FILESYSTEM_COMMON_H #include "__config" #include "filesystem" #include "array" #include "chrono" #include "cstdlib" #include "climits" #include <unistd.h> #include <sys/stat.h> #include <sys/statvfs.h> #include <sys/time.h> // for ::utimes as used in __last_write_time #include <fcntl.h> /* values for fchmodat */ #include "../include/apple_availability.h" #if !defined(__APPLE__) // We can use the presence of UTIME_OMIT to detect platforms that provide // utimensat. #if defined(UTIME_OMIT) #define _LIBCPP_USE_UTIMENSAT #endif #endif #if defined(__GNUC__) #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wunused-function" #endif _LIBCPP_BEGIN_NAMESPACE_FILESYSTEM namespace detail { namespace { static string format_string_imp(const char* msg, ...) { // we might need a second shot at this, so pre-emptivly make a copy struct GuardVAList { va_list& target; bool active = true; GuardVAList(va_list& target) : target(target), active(true) {} void clear() { if (active) va_end(target); active = false; } ~GuardVAList() { if (active) va_end(target); } }; va_list args; va_start(args, msg); GuardVAList args_guard(args); va_list args_cp; va_copy(args_cp, args); GuardVAList args_copy_guard(args_cp); std::string result; array<char, 256> local_buff; size_t size_with_null = local_buff.size(); auto ret = ::vsnprintf(local_buff.data(), size_with_null, msg, args_cp); args_copy_guard.clear(); // handle empty expansion if (ret == 0) return result; if (static_cast<size_t>(ret) < size_with_null) { result.assign(local_buff.data(), static_cast<size_t>(ret)); return result; } // we did not provide a long enough buffer on our first attempt. The // return value is the number of bytes (excluding the null byte) that are // needed for formatting. size_with_null = static_cast<size_t>(ret) + 1; result.__resize_default_init(size_with_null - 1); ret = ::vsnprintf(&result[0], size_with_null, msg, args); _LIBCPP_ASSERT(static_cast<size_t>(ret) == (size_with_null - 1), "TODO"); return result; } const char* unwrap(string const& s) { return s.c_str(); } const char* unwrap(path const& p) { return p.native().c_str(); } template <class Arg> Arg const& unwrap(Arg const& a) { static_assert(!is_class<Arg>::value, "cannot pass class here"); return a; } template <class... Args> string format_string(const char* fmt, Args const&... args) { return format_string_imp(fmt, unwrap(args)...); } error_code capture_errno() { _LIBCPP_ASSERT(errno, "Expected errno to be non-zero"); return error_code(errno, generic_category()); } template <class T> T error_value(); template <> _LIBCPP_CONSTEXPR_AFTER_CXX11 void error_value<void>() {} template <> bool error_value<bool>() { return false; } template <> uintmax_t error_value<uintmax_t>() { return uintmax_t(-1); } template <> _LIBCPP_CONSTEXPR_AFTER_CXX11 file_time_type error_value<file_time_type>() { return file_time_type::min(); } template <> path error_value<path>() { return {}; } template <class T> struct ErrorHandler { const char* func_name; error_code* ec = nullptr; const path* p1 = nullptr; const path* p2 = nullptr; ErrorHandler(const char* fname, error_code* ec, const path* p1 = nullptr, const path* p2 = nullptr) : func_name(fname), ec(ec), p1(p1), p2(p2) { if (ec) ec->clear(); } T report(const error_code& m_ec) const { if (ec) { *ec = m_ec; return error_value<T>(); } string what = string("in ") + func_name; switch (bool(p1) + bool(p2)) { case 0: __throw_filesystem_error(what, m_ec); case 1: __throw_filesystem_error(what, *p1, m_ec); case 2: __throw_filesystem_error(what, *p1, *p2, m_ec); } _LIBCPP_UNREACHABLE(); } template <class... Args> T report(const error_code& m_ec, const char* msg, Args const&... args) const { if (ec) { *ec = m_ec; return error_value<T>(); } string what = string("in ") + func_name + ": " + format_string(msg, args...); switch (bool(p1) + bool(p2)) { case 0: __throw_filesystem_error(what, m_ec); case 1: __throw_filesystem_error(what, *p1, m_ec); case 2: __throw_filesystem_error(what, *p1, *p2, m_ec); } _LIBCPP_UNREACHABLE(); } T report(errc const& err) const { return report(make_error_code(err)); } template <class... Args> T report(errc const& err, const char* msg, Args const&... args) const { return report(make_error_code(err), msg, args...); } private: ErrorHandler(ErrorHandler const&) = delete; ErrorHandler& operator=(ErrorHandler const&) = delete; }; using chrono::duration; using chrono::duration_cast; using TimeSpec = struct ::timespec; using StatT = struct ::stat; template <class FileTimeT, class TimeT, bool IsFloat = is_floating_point<typename FileTimeT::rep>::value> struct time_util_base { using rep = typename FileTimeT::rep; using fs_duration = typename FileTimeT::duration; using fs_seconds = duration<rep>; using fs_nanoseconds = duration<rep, nano>; using fs_microseconds = duration<rep, micro>; static constexpr rep max_seconds = duration_cast<fs_seconds>(FileTimeT::duration::max()).count(); static constexpr rep max_nsec = duration_cast<fs_nanoseconds>(FileTimeT::duration::max() - fs_seconds(max_seconds)) .count(); static constexpr rep min_seconds = duration_cast<fs_seconds>(FileTimeT::duration::min()).count(); static constexpr rep min_nsec_timespec = duration_cast<fs_nanoseconds>( (FileTimeT::duration::min() - fs_seconds(min_seconds)) + fs_seconds(1)) .count(); private: #if _LIBCPP_STD_VER > 11 && !defined(_LIBCPP_HAS_NO_CXX14_CONSTEXPR) static constexpr fs_duration get_min_nsecs() { return duration_cast<fs_duration>( fs_nanoseconds(min_nsec_timespec) - duration_cast<fs_nanoseconds>(fs_seconds(1))); } // Static assert that these values properly round trip. static_assert(fs_seconds(min_seconds) + get_min_nsecs() == FileTimeT::duration::min(), "value doesn't roundtrip"); static constexpr bool check_range() { // This kinda sucks, but it's what happens when we don't have __int128_t. if (sizeof(TimeT) == sizeof(rep)) { typedef duration<long long, ratio<3600 * 24 * 365> > Years; return duration_cast<Years>(fs_seconds(max_seconds)) > Years(250) && duration_cast<Years>(fs_seconds(min_seconds)) < Years(-250); } return max_seconds >= numeric_limits<TimeT>::max() && min_seconds <= numeric_limits<TimeT>::min(); } static_assert(check_range(), "the representable range is unacceptable small"); #endif }; template <class FileTimeT, class TimeT> struct time_util_base<FileTimeT, TimeT, true> { using rep = typename FileTimeT::rep; using fs_duration = typename FileTimeT::duration; using fs_seconds = duration<rep>; using fs_nanoseconds = duration<rep, nano>; using fs_microseconds = duration<rep, micro>; static const rep max_seconds; static const rep max_nsec; static const rep min_seconds; static const rep min_nsec_timespec; }; template <class FileTimeT, class TimeT> const typename FileTimeT::rep time_util_base<FileTimeT, TimeT, true>::max_seconds = duration_cast<fs_seconds>(FileTimeT::duration::max()).count(); template <class FileTimeT, class TimeT> const typename FileTimeT::rep time_util_base<FileTimeT, TimeT, true>::max_nsec = duration_cast<fs_nanoseconds>(FileTimeT::duration::max() - fs_seconds(max_seconds)) .count(); template <class FileTimeT, class TimeT> const typename FileTimeT::rep time_util_base<FileTimeT, TimeT, true>::min_seconds = duration_cast<fs_seconds>(FileTimeT::duration::min()).count(); template <class FileTimeT, class TimeT> const typename FileTimeT::rep time_util_base<FileTimeT, TimeT, true>::min_nsec_timespec = duration_cast<fs_nanoseconds>((FileTimeT::duration::min() - fs_seconds(min_seconds)) + fs_seconds(1)) .count(); template <class FileTimeT, class TimeT, class TimeSpecT> struct time_util : time_util_base<FileTimeT, TimeT> { using Base = time_util_base<FileTimeT, TimeT>; using Base::max_nsec; using Base::max_seconds; using Base::min_nsec_timespec; using Base::min_seconds; using typename Base::fs_duration; using typename Base::fs_microseconds; using typename Base::fs_nanoseconds; using typename Base::fs_seconds; public: template <class CType, class ChronoType> static _LIBCPP_CONSTEXPR_AFTER_CXX11 bool checked_set(CType* out, ChronoType time) { using Lim = numeric_limits<CType>; if (time > Lim::max() || time < Lim::min()) return false; *out = static_cast<CType>(time); return true; } static _LIBCPP_CONSTEXPR_AFTER_CXX11 bool is_representable(TimeSpecT tm) { if (tm.tv_sec >= 0) { return tm.tv_sec < max_seconds || (tm.tv_sec == max_seconds && tm.tv_nsec <= max_nsec); } else if (tm.tv_sec == (min_seconds - 1)) { return tm.tv_nsec >= min_nsec_timespec; } else { return tm.tv_sec >= min_seconds; } } static _LIBCPP_CONSTEXPR_AFTER_CXX11 bool is_representable(FileTimeT tm) { auto secs = duration_cast<fs_seconds>(tm.time_since_epoch()); auto nsecs = duration_cast<fs_nanoseconds>(tm.time_since_epoch() - secs); if (nsecs.count() < 0) { secs = secs + fs_seconds(1); nsecs = nsecs + fs_seconds(1); } using TLim = numeric_limits<TimeT>; if (secs.count() >= 0) return secs.count() <= TLim::max(); return secs.count() >= TLim::min(); } static _LIBCPP_CONSTEXPR_AFTER_CXX11 FileTimeT convert_from_timespec(TimeSpecT tm) { if (tm.tv_sec >= 0 || tm.tv_nsec == 0) { return FileTimeT(fs_seconds(tm.tv_sec) + duration_cast<fs_duration>(fs_nanoseconds(tm.tv_nsec))); } else { // tm.tv_sec < 0 auto adj_subsec = duration_cast<fs_duration>(fs_seconds(1) - fs_nanoseconds(tm.tv_nsec)); auto Dur = fs_seconds(tm.tv_sec + 1) - adj_subsec; return FileTimeT(Dur); } } template <class SubSecT> static _LIBCPP_CONSTEXPR_AFTER_CXX11 bool set_times_checked(TimeT* sec_out, SubSecT* subsec_out, FileTimeT tp) { auto dur = tp.time_since_epoch(); auto sec_dur = duration_cast<fs_seconds>(dur); auto subsec_dur = duration_cast<fs_nanoseconds>(dur - sec_dur); // The tv_nsec and tv_usec fields must not be negative so adjust accordingly if (subsec_dur.count() < 0) { if (sec_dur.count() > min_seconds) { sec_dur = sec_dur - fs_seconds(1); subsec_dur = subsec_dur + fs_seconds(1); } else { subsec_dur = fs_nanoseconds::zero(); } } return checked_set(sec_out, sec_dur.count()) && checked_set(subsec_out, subsec_dur.count()); } static _LIBCPP_CONSTEXPR_AFTER_CXX11 bool convert_to_timespec(TimeSpecT& dest, FileTimeT tp) { if (!is_representable(tp)) return false; return set_times_checked(&dest.tv_sec, &dest.tv_nsec, tp); } }; using fs_time = time_util<file_time_type, time_t, TimeSpec>; #if defined(__APPLE__) TimeSpec extract_mtime(StatT const& st) { return st.st_mtimespec; } TimeSpec extract_atime(StatT const& st) { return st.st_atimespec; } #else TimeSpec extract_mtime(StatT const& st) { return st.st_mtim; } TimeSpec extract_atime(StatT const& st) { return st.st_atim; } #endif // allow the utimes implementation to compile even it we're not going // to use it. bool posix_utimes(const path& p, std::array<TimeSpec, 2> const& TS, error_code& ec) { using namespace chrono; auto Convert = [](long nsec) { using int_type = decltype(std::declval< ::timeval>().tv_usec); auto dur = duration_cast<microseconds>(nanoseconds(nsec)).count(); return static_cast<int_type>(dur); }; struct ::timeval ConvertedTS[2] = {{TS[0].tv_sec, Convert(TS[0].tv_nsec)}, {TS[1].tv_sec, Convert(TS[1].tv_nsec)}}; if (::utimes(p.c_str(), ConvertedTS) == -1) { ec = capture_errno(); return true; } return false; } #if defined(_LIBCPP_USE_UTIMENSAT) bool posix_utimensat(const path& p, std::array<TimeSpec, 2> const& TS, error_code& ec) { if (::utimensat(AT_FDCWD, p.c_str(), TS.data(), 0) == -1) { ec = capture_errno(); return true; } return false; } #endif bool set_file_times(const path& p, std::array<TimeSpec, 2> const& TS, error_code& ec) { #if !defined(_LIBCPP_USE_UTIMENSAT) return posix_utimes(p, TS, ec); #else return posix_utimensat(p, TS, ec); #endif } } // namespace } // end namespace detail _LIBCPP_END_NAMESPACE_FILESYSTEM #endif // FILESYSTEM_COMMON_H