//===-------------------------- hash.cpp ----------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "__hash_table" #include "algorithm" #include "stdexcept" #include "type_traits" #ifdef __clang__ #pragma clang diagnostic ignored "-Wtautological-constant-out-of-range-compare" #endif _LIBCPP_BEGIN_NAMESPACE_STD namespace { // handle all next_prime(i) for i in [1, 210), special case 0 const unsigned small_primes[] = { 0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211 }; // potential primes = 210*k + indices[i], k >= 1 // these numbers are not divisible by 2, 3, 5 or 7 // (or any integer 2 <= j <= 10 for that matter). const unsigned indices[] = { 1, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 179, 181, 187, 191, 193, 197, 199, 209 }; } // Returns: If n == 0, returns 0. Else returns the lowest prime number that // is greater than or equal to n. // // The algorithm creates a list of small primes, plus an open-ended list of // potential primes. All prime numbers are potential prime numbers. However // some potential prime numbers are not prime. In an ideal world, all potential // prime numbers would be prime. Candidate prime numbers are chosen as the next // highest potential prime. Then this number is tested for prime by dividing it // by all potential prime numbers less than the sqrt of the candidate. // // This implementation defines potential primes as those numbers not divisible // by 2, 3, 5, and 7. Other (common) implementations define potential primes // as those not divisible by 2. A few other implementations define potential // primes as those not divisible by 2 or 3. By raising the number of small // primes which the potential prime is not divisible by, the set of potential // primes more closely approximates the set of prime numbers. And thus there // are fewer potential primes to search, and fewer potential primes to divide // against. template <size_t _Sz = sizeof(size_t)> inline _LIBCPP_INLINE_VISIBILITY typename enable_if<_Sz == 4, void>::type __check_for_overflow(size_t N) { #ifndef _LIBCPP_NO_EXCEPTIONS if (N > 0xFFFFFFFB) throw overflow_error("__next_prime overflow"); #else (void)N; #endif } template <size_t _Sz = sizeof(size_t)> inline _LIBCPP_INLINE_VISIBILITY typename enable_if<_Sz == 8, void>::type __check_for_overflow(size_t N) { #ifndef _LIBCPP_NO_EXCEPTIONS if (N > 0xFFFFFFFFFFFFFFC5ull) throw overflow_error("__next_prime overflow"); #else (void)N; #endif } size_t __next_prime(size_t n) { const size_t L = 210; const size_t N = sizeof(small_primes) / sizeof(small_primes[0]); // If n is small enough, search in small_primes if (n <= small_primes[N-1]) return *std::lower_bound(small_primes, small_primes + N, n); // Else n > largest small_primes // Check for overflow __check_for_overflow(n); // Start searching list of potential primes: L * k0 + indices[in] const size_t M = sizeof(indices) / sizeof(indices[0]); // Select first potential prime >= n // Known a-priori n >= L size_t k0 = n / L; size_t in = static_cast<size_t>(std::lower_bound(indices, indices + M, n - k0 * L) - indices); n = L * k0 + indices[in]; while (true) { // Divide n by all primes or potential primes (i) until: // 1. The division is even, so try next potential prime. // 2. The i > sqrt(n), in which case n is prime. // It is known a-priori that n is not divisible by 2, 3, 5 or 7, // so don't test those (j == 5 -> divide by 11 first). And the // potential primes start with 211, so don't test against the last // small prime. for (size_t j = 5; j < N - 1; ++j) { const std::size_t p = small_primes[j]; const std::size_t q = n / p; if (q < p) return n; if (n == q * p) goto next; } // n wasn't divisible by small primes, try potential primes { size_t i = 211; while (true) { std::size_t q = n / i; if (q < i) return n; if (n == q * i) break; i += 10; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 8; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 8; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 6; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 4; q = n / i; if (q < i) return n; if (n == q * i) break; i += 2; q = n / i; if (q < i) return n; if (n == q * i) break; i += 10; q = n / i; if (q < i) return n; if (n == q * i) break; // This will loop i to the next "plane" of potential primes i += 2; } } next: // n is not prime. Increment n to next potential prime. if (++in == M) { ++k0; in = 0; } n = L * k0 + indices[in]; } } _LIBCPP_END_NAMESPACE_STD