//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // <unordered_map> // template <class Key, class T, class Hash = hash<Key>, class Pred = equal_to<Key>, // class Alloc = allocator<pair<const Key, T>>> // class unordered_multimap // void rehash(size_type n); #include <unordered_map> #include <string> #include <set> #include <cassert> #include <cfloat> #include <cmath> #include <cstddef> #include "test_macros.h" #include "min_allocator.h" template <class C> void rehash_postcondition(const C& c, size_t n) { assert(c.bucket_count() >= c.size() / c.max_load_factor() && c.bucket_count() >= n); } template <class C> void test(const C& c) { assert(c.size() == 6); typedef std::pair<typename C::const_iterator, typename C::const_iterator> Eq; Eq eq = c.equal_range(1); assert(std::distance(eq.first, eq.second) == 2); typename C::const_iterator i = eq.first; { std::set<std::string> s; s.insert("one"); s.insert("four"); for ( int n = 0; n < 2; ++n ) { assert(i->first == 1); assert(s.find(i->second) != s.end()); s.erase(s.find(i->second)); ++i; } } eq = c.equal_range(2); assert(std::distance(eq.first, eq.second) == 2); i = eq.first; { std::set<std::string> s; s.insert("two"); s.insert("four"); for ( int n = 0; n < 2; ++n ) { assert(i->first == 2); assert(s.find(i->second) != s.end()); s.erase(s.find(i->second)); ++i; } } eq = c.equal_range(3); assert(std::distance(eq.first, eq.second) == 1); i = eq.first; assert(i->first == 3); assert(i->second == "three"); eq = c.equal_range(4); assert(std::distance(eq.first, eq.second) == 1); i = eq.first; assert(i->first == 4); assert(i->second == "four"); assert(static_cast<std::size_t>(std::distance(c.begin(), c.end())) == c.size()); assert(static_cast<std::size_t>(std::distance(c.cbegin(), c.cend())) == c.size()); assert(std::fabs(c.load_factor() - (float)c.size()/c.bucket_count()) < FLT_EPSILON); } int main() { { typedef std::unordered_multimap<int, std::string> C; typedef std::pair<int, std::string> P; P a[] = { P(1, "one"), P(2, "two"), P(3, "three"), P(4, "four"), P(1, "four"), P(2, "four"), }; C c(a, a + sizeof(a)/sizeof(a[0])); test(c); assert(c.bucket_count() >= 7); c.rehash(3); rehash_postcondition(c, 3); LIBCPP_ASSERT(c.bucket_count() == 7); test(c); c.max_load_factor(2); c.rehash(3); rehash_postcondition(c, 3); LIBCPP_ASSERT(c.bucket_count() == 3); test(c); c.rehash(31); rehash_postcondition(c, 31); LIBCPP_ASSERT(c.bucket_count() == 31); test(c); } #if TEST_STD_VER >= 11 { typedef std::unordered_multimap<int, std::string, std::hash<int>, std::equal_to<int>, min_allocator<std::pair<const int, std::string>>> C; typedef std::pair<int, std::string> P; P a[] = { P(1, "one"), P(2, "two"), P(3, "three"), P(4, "four"), P(1, "four"), P(2, "four"), }; C c(a, a + sizeof(a)/sizeof(a[0])); test(c); assert(c.bucket_count() >= 7); c.rehash(3); rehash_postcondition(c, 3); LIBCPP_ASSERT(c.bucket_count() == 7); test(c); c.max_load_factor(2); c.rehash(3); rehash_postcondition(c, 3); LIBCPP_ASSERT(c.bucket_count() == 3); test(c); c.rehash(31); rehash_postcondition(c, 31); LIBCPP_ASSERT(c.bucket_count() == 31); test(c); } #endif }