//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // UNSUPPORTED: libcpp-no-exceptions // UNSUPPORTED: libcpp-has-no-threads // <condition_variable> // class condition_variable_any; // RUN: %build // RUN: %run 1 // RUN: %run 2 // RUN: %run 3 // RUN: %run 4 // RUN: %run 5 // RUN: %run 6 // ----------------------------------------------------------------------------- // Overview // Check that std::terminate is called if wait(...) fails to meet its post // conditions. This can happen when reacquiring the mutex throws // an exception. // // The following methods are tested within this file // 1. void wait(Lock& lock); // 2. void wait(Lock& lock, Pred); // 3. void wait_for(Lock& lock, Duration); // 4. void wait_for(Lock& lock, Duration, Pred); // 5. void wait_until(Lock& lock, TimePoint); // 6. void wait_until(Lock& lock, TimePoint, Pred); // // Plan // 1 Create a mutex type, 'ThrowingMutex', that throws when the lock is acquired // for the *second* time. // // 2 Replace the terminate handler with one that exits with a '0' exit code. // // 3 Create a 'condition_variable_any' object 'cv' and a 'ThrowingMutex' // object 'm' and lock 'm'. // // 4 Start a thread 'T2' that will notify 'cv' once 'm' has been unlocked. // // 5 From the main thread call the specified wait method on 'cv' with 'm'. // When 'T2' notifies 'cv' and the wait method attempts to re-lock // 'm' an exception will be thrown from 'm.lock()'. // // 6 Check that control flow does not return from the wait method and that // terminate is called (If the program exits with a 0 exit code we know // that terminate has been called) #include <condition_variable> #include <atomic> #include <thread> #include <chrono> #include <string> #include <cstdlib> #include <cassert> void my_terminate() { std::_Exit(0); // Use _Exit to prevent cleanup from taking place. } // The predicate used in the cv.wait calls. bool pred = false; bool pred_function() { return pred == true; } class ThrowingMutex { std::atomic_bool locked; unsigned state = 0; ThrowingMutex(const ThrowingMutex&) = delete; ThrowingMutex& operator=(const ThrowingMutex&) = delete; public: ThrowingMutex() { locked = false; } ~ThrowingMutex() = default; void lock() { locked = true; if (++state == 2) { assert(pred); // Check that we actually waited until we were signaled. throw 1; // this throw should end up calling terminate() } } void unlock() { locked = false; } bool isLocked() const { return locked == true; } }; ThrowingMutex mut; std::condition_variable_any cv; void signal_me() { while (mut.isLocked()) {} // wait until T1 releases mut inside the cv.wait call. pred = true; cv.notify_one(); } typedef std::chrono::system_clock Clock; typedef std::chrono::milliseconds MS; int main(int argc, char** argv) { assert(argc == 2); int id = std::stoi(argv[1]); assert(id >= 1 && id <= 6); std::set_terminate(my_terminate); // set terminate after std::stoi because it can throw. MS wait(250); try { mut.lock(); assert(pred == false); std::thread(signal_me).detach(); switch (id) { case 1: cv.wait(mut); break; case 2: cv.wait(mut, pred_function); break; case 3: cv.wait_for(mut, wait); break; case 4: cv.wait_for(mut, wait, pred_function); break; case 5: cv.wait_until(mut, Clock::now() + wait); break; case 6: cv.wait_until(mut, Clock::now() + wait, pred_function); break; default: assert(false); } } catch (...) {} assert(false); }