//===----------------------------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is dual licensed under the MIT and the University of Illinois Open // Source Licenses. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #ifndef ANY_HELPERS_H #define ANY_HELPERS_H #include <typeinfo> #include <type_traits> #include <cassert> namespace std { namespace experimental {} } #include "test_macros.h" #include "type_id.h" #if !defined(TEST_HAS_NO_RTTI) #define RTTI_ASSERT(X) assert(X) #else #define RTTI_ASSERT(X) #endif template <class T> struct IsSmallObject : public std::integral_constant<bool , sizeof(T) <= (sizeof(void*)*3) && std::alignment_of<void*>::value % std::alignment_of<T>::value == 0 && std::is_nothrow_move_constructible<T>::value > {}; template <class T> bool containsType(std::any const& a) { #if !defined(TEST_HAS_NO_RTTI) return a.type() == typeid(T); #else return a.has_value() && std::any_cast<T>(&a) != nullptr; #endif } // Return 'true' if 'Type' will be considered a small type by 'any' template <class Type> bool isSmallType() { return IsSmallObject<Type>::value; } // Assert that an object is empty. If the object used to contain an object // of type 'LastType' check that it can no longer be accessed. template <class LastType = int> void assertEmpty(std::any const& a) { using namespace std; assert(!a.has_value()); RTTI_ASSERT(a.type() == typeid(void)); assert(any_cast<LastType const>(&a) == nullptr); } template <class Type> constexpr auto has_value_member(int) -> decltype(std::declval<Type&>().value, true) { return true; } template <class> constexpr bool has_value_member(long) { return false; } // Assert that an 'any' object stores the specified 'Type' and 'value'. template <class Type> std::enable_if_t<has_value_member<Type>(0)> _LIBCPP_AVAILABILITY_THROW_BAD_ANY_CAST assertContains(std::any const& a, int value) { assert(a.has_value()); assert(containsType<Type>(a)); assert(std::any_cast<Type const &>(a).value == value); } template <class Type, class Value> std::enable_if_t<!has_value_member<Type>(0)> _LIBCPP_AVAILABILITY_THROW_BAD_ANY_CAST assertContains(std::any const& a, Value value) { assert(a.has_value()); assert(containsType<Type>(a)); assert(std::any_cast<Type const &>(a) == value); } // Modify the value of a "test type" stored within an any to the specified // 'value'. template <class Type> _LIBCPP_AVAILABILITY_THROW_BAD_ANY_CAST void modifyValue(std::any& a, int value) { using namespace std; using namespace std::experimental; assert(a.has_value()); assert(containsType<Type>(a)); any_cast<Type&>(a).value = value; } // A test type that will trigger the small object optimization within 'any'. template <int Dummy = 0> struct small_type { static int count; static int copied; static int moved; static int const_copied; static int non_const_copied; static void reset() { small_type::copied = 0; small_type::moved = 0; small_type::const_copied = 0; small_type::non_const_copied = 0; } int value; explicit small_type(int val = 0) : value(val) { ++count; } explicit small_type(int, int val, int) : value(val) { ++count; } small_type(std::initializer_list<int> il) : value(*il.begin()) { ++count; } small_type(small_type const & other) noexcept { value = other.value; ++count; ++copied; ++const_copied; } small_type(small_type& other) noexcept { value = other.value; ++count; ++copied; ++non_const_copied; } small_type(small_type && other) noexcept { value = other.value; other.value = 0; ++count; ++moved; } ~small_type() { value = -1; --count; } private: small_type& operator=(small_type const&) = delete; small_type& operator=(small_type&&) = delete; }; template <int Dummy> int small_type<Dummy>::count = 0; template <int Dummy> int small_type<Dummy>::copied = 0; template <int Dummy> int small_type<Dummy>::moved = 0; template <int Dummy> int small_type<Dummy>::const_copied = 0; template <int Dummy> int small_type<Dummy>::non_const_copied = 0; typedef small_type<> small; typedef small_type<1> small1; typedef small_type<2> small2; // A test type that will NOT trigger the small object optimization in any. template <int Dummy = 0> struct large_type { static int count; static int copied; static int moved; static int const_copied; static int non_const_copied; static void reset() { large_type::copied = 0; large_type::moved = 0; large_type::const_copied = 0; large_type::non_const_copied = 0; } int value; large_type(int val = 0) : value(val) { ++count; data[0] = 0; } large_type(int, int val, int) : value(val) { ++count; data[0] = 0; } large_type(std::initializer_list<int> il) : value(*il.begin()) { ++count; } large_type(large_type const & other) { value = other.value; ++count; ++copied; ++const_copied; } large_type(large_type & other) { value = other.value; ++count; ++copied; ++non_const_copied; } large_type(large_type && other) { value = other.value; other.value = 0; ++count; ++moved; } ~large_type() { value = 0; --count; } private: large_type& operator=(large_type const&) = delete; large_type& operator=(large_type &&) = delete; int data[10]; }; template <int Dummy> int large_type<Dummy>::count = 0; template <int Dummy> int large_type<Dummy>::copied = 0; template <int Dummy> int large_type<Dummy>::moved = 0; template <int Dummy> int large_type<Dummy>::const_copied = 0; template <int Dummy> int large_type<Dummy>::non_const_copied = 0; typedef large_type<> large; typedef large_type<1> large1; typedef large_type<2> large2; // The exception type thrown by 'small_throws_on_copy', 'large_throws_on_copy' // and 'throws_on_move'. struct my_any_exception {}; void throwMyAnyExpression() { #if !defined(TEST_HAS_NO_EXCEPTIONS) throw my_any_exception(); #else assert(false && "Exceptions are disabled"); #endif } // A test type that will trigger the small object optimization within 'any'. // this type throws if it is copied. struct small_throws_on_copy { static int count; static int copied; static int moved; static void reset() { count = copied = moved = 0; } int value; explicit small_throws_on_copy(int val = 0) : value(val) { ++count; } explicit small_throws_on_copy(int, int val, int) : value(val) { ++count; } small_throws_on_copy(small_throws_on_copy const &) { throwMyAnyExpression(); } small_throws_on_copy(small_throws_on_copy && other) throw() { value = other.value; ++count; ++moved; } ~small_throws_on_copy() { --count; } private: small_throws_on_copy& operator=(small_throws_on_copy const&) = delete; small_throws_on_copy& operator=(small_throws_on_copy &&) = delete; }; int small_throws_on_copy::count = 0; int small_throws_on_copy::copied = 0; int small_throws_on_copy::moved = 0; // A test type that will NOT trigger the small object optimization within 'any'. // this type throws if it is copied. struct large_throws_on_copy { static int count; static int copied; static int moved; static void reset() { count = copied = moved = 0; } int value = 0; explicit large_throws_on_copy(int val = 0) : value(val) { data[0] = 0; ++count; } explicit large_throws_on_copy(int, int val, int) : value(val) { data[0] = 0; ++count; } large_throws_on_copy(large_throws_on_copy const &) { throwMyAnyExpression(); } large_throws_on_copy(large_throws_on_copy && other) throw() { value = other.value; ++count; ++moved; } ~large_throws_on_copy() { --count; } private: large_throws_on_copy& operator=(large_throws_on_copy const&) = delete; large_throws_on_copy& operator=(large_throws_on_copy &&) = delete; int data[10]; }; int large_throws_on_copy::count = 0; int large_throws_on_copy::copied = 0; int large_throws_on_copy::moved = 0; // A test type that throws when it is moved. This object will NOT trigger // the small object optimization in 'any'. struct throws_on_move { static int count; static int copied; static int moved; static void reset() { count = copied = moved = 0; } int value; explicit throws_on_move(int val = 0) : value(val) { ++count; } explicit throws_on_move(int, int val, int) : value(val) { ++count; } throws_on_move(throws_on_move const & other) { value = other.value; ++count; ++copied; } throws_on_move(throws_on_move &&) { throwMyAnyExpression(); } ~throws_on_move() { --count; } private: throws_on_move& operator=(throws_on_move const&) = delete; throws_on_move& operator=(throws_on_move &&) = delete; }; int throws_on_move::count = 0; int throws_on_move::copied = 0; int throws_on_move::moved = 0; struct small_tracked_t { small_tracked_t() : arg_types(&makeArgumentID<>()) {} small_tracked_t(small_tracked_t const&) noexcept : arg_types(&makeArgumentID<small_tracked_t const&>()) {} small_tracked_t(small_tracked_t &&) noexcept : arg_types(&makeArgumentID<small_tracked_t &&>()) {} template <class ...Args> explicit small_tracked_t(Args&&...) : arg_types(&makeArgumentID<Args...>()) {} template <class ...Args> explicit small_tracked_t(std::initializer_list<int>, Args&&...) : arg_types(&makeArgumentID<std::initializer_list<int>, Args...>()) {} TypeID const* arg_types; }; static_assert(IsSmallObject<small_tracked_t>::value, "must be small"); struct large_tracked_t { large_tracked_t() : arg_types(&makeArgumentID<>()) { dummy[0] = 42; } large_tracked_t(large_tracked_t const&) noexcept : arg_types(&makeArgumentID<large_tracked_t const&>()) {} large_tracked_t(large_tracked_t &&) noexcept : arg_types(&makeArgumentID<large_tracked_t &&>()) {} template <class ...Args> explicit large_tracked_t(Args&&...) : arg_types(&makeArgumentID<Args...>()) {} template <class ...Args> explicit large_tracked_t(std::initializer_list<int>, Args&&...) : arg_types(&makeArgumentID<std::initializer_list<int>, Args...>()) {} TypeID const* arg_types; int dummy[10]; }; static_assert(!IsSmallObject<large_tracked_t>::value, "must be small"); template <class Type, class ...Args> void assertArgsMatch(std::any const& a) { using namespace std; using namespace std::experimental; assert(a.has_value()); assert(containsType<Type>(a)); assert(any_cast<Type const &>(a).arg_types == &makeArgumentID<Args...>()); }; #endif