// Copyright 2016 Ismael Jimenez Martinez. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Source project : https://github.com/ismaelJimenez/cpp.leastsq // Adapted to be used with google benchmark #include "benchmark/benchmark.h" #include <algorithm> #include <cmath> #include "check.h" #include "complexity.h" namespace benchmark { // Internal function to calculate the different scalability forms BigOFunc* FittingCurve(BigO complexity) { static const double kLog2E = 1.44269504088896340736; switch (complexity) { case oN: return [](int64_t n) -> double { return static_cast<double>(n); }; case oNSquared: return [](int64_t n) -> double { return std::pow(n, 2); }; case oNCubed: return [](int64_t n) -> double { return std::pow(n, 3); }; case oLogN: /* Note: can't use log2 because Android's GNU STL lacks it */ return [](int64_t n) { return kLog2E * log(static_cast<double>(n)); }; case oNLogN: /* Note: can't use log2 because Android's GNU STL lacks it */ return [](int64_t n) { return kLog2E * n * log(static_cast<double>(n)); }; case o1: default: return [](int64_t) { return 1.0; }; } } // Function to return an string for the calculated complexity std::string GetBigOString(BigO complexity) { switch (complexity) { case oN: return "N"; case oNSquared: return "N^2"; case oNCubed: return "N^3"; case oLogN: return "lgN"; case oNLogN: return "NlgN"; case o1: return "(1)"; default: return "f(N)"; } } // Find the coefficient for the high-order term in the running time, by // minimizing the sum of squares of relative error, for the fitting curve // given by the lambda expression. // - n : Vector containing the size of the benchmark tests. // - time : Vector containing the times for the benchmark tests. // - fitting_curve : lambda expression (e.g. [](int64_t n) {return n; };). // For a deeper explanation on the algorithm logic, please refer to // https://en.wikipedia.org/wiki/Least_squares#Least_squares,_regression_analysis_and_statistics LeastSq MinimalLeastSq(const std::vector<int64_t>& n, const std::vector<double>& time, BigOFunc* fitting_curve) { double sigma_gn = 0.0; double sigma_gn_squared = 0.0; double sigma_time = 0.0; double sigma_time_gn = 0.0; // Calculate least square fitting parameter for (size_t i = 0; i < n.size(); ++i) { double gn_i = fitting_curve(n[i]); sigma_gn += gn_i; sigma_gn_squared += gn_i * gn_i; sigma_time += time[i]; sigma_time_gn += time[i] * gn_i; } LeastSq result; result.complexity = oLambda; // Calculate complexity. result.coef = sigma_time_gn / sigma_gn_squared; // Calculate RMS double rms = 0.0; for (size_t i = 0; i < n.size(); ++i) { double fit = result.coef * fitting_curve(n[i]); rms += pow((time[i] - fit), 2); } // Normalized RMS by the mean of the observed values double mean = sigma_time / n.size(); result.rms = sqrt(rms / n.size()) / mean; return result; } // Find the coefficient for the high-order term in the running time, by // minimizing the sum of squares of relative error. // - n : Vector containing the size of the benchmark tests. // - time : Vector containing the times for the benchmark tests. // - complexity : If different than oAuto, the fitting curve will stick to // this one. If it is oAuto, it will be calculated the best // fitting curve. LeastSq MinimalLeastSq(const std::vector<int64_t>& n, const std::vector<double>& time, const BigO complexity) { CHECK_EQ(n.size(), time.size()); CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two // benchmark runs are given CHECK_NE(complexity, oNone); LeastSq best_fit; if (complexity == oAuto) { std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed}; // Take o1 as default best fitting curve best_fit = MinimalLeastSq(n, time, FittingCurve(o1)); best_fit.complexity = o1; // Compute all possible fitting curves and stick to the best one for (const auto& fit : fit_curves) { LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit)); if (current_fit.rms < best_fit.rms) { best_fit = current_fit; best_fit.complexity = fit; } } } else { best_fit = MinimalLeastSq(n, time, FittingCurve(complexity)); best_fit.complexity = complexity; } return best_fit; } std::vector<BenchmarkReporter::Run> ComputeBigO( const std::vector<BenchmarkReporter::Run>& reports) { typedef BenchmarkReporter::Run Run; std::vector<Run> results; if (reports.size() < 2) return results; // Accumulators. std::vector<int64_t> n; std::vector<double> real_time; std::vector<double> cpu_time; // Populate the accumulators. for (const Run& run : reports) { CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?"; n.push_back(run.complexity_n); real_time.push_back(run.real_accumulated_time / run.iterations); cpu_time.push_back(run.cpu_accumulated_time / run.iterations); } LeastSq result_cpu; LeastSq result_real; if (reports[0].complexity == oLambda) { result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda); result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda); } else { result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity); result_real = MinimalLeastSq(n, real_time, result_cpu.complexity); } std::string run_name = reports[0].benchmark_name().substr( 0, reports[0].benchmark_name().find('/')); // Get the data from the accumulator to BenchmarkReporter::Run's. Run big_o; big_o.run_name = run_name; big_o.run_type = BenchmarkReporter::Run::RT_Aggregate; big_o.aggregate_name = "BigO"; big_o.iterations = 0; big_o.real_accumulated_time = result_real.coef; big_o.cpu_accumulated_time = result_cpu.coef; big_o.report_big_o = true; big_o.complexity = result_cpu.complexity; // All the time results are reported after being multiplied by the // time unit multiplier. But since RMS is a relative quantity it // should not be multiplied at all. So, here, we _divide_ it by the // multiplier so that when it is multiplied later the result is the // correct one. double multiplier = GetTimeUnitMultiplier(reports[0].time_unit); // Only add label to mean/stddev if it is same for all runs Run rms; rms.run_name = run_name; big_o.report_label = reports[0].report_label; rms.run_type = BenchmarkReporter::Run::RT_Aggregate; rms.aggregate_name = "RMS"; rms.report_label = big_o.report_label; rms.iterations = 0; rms.real_accumulated_time = result_real.rms / multiplier; rms.cpu_accumulated_time = result_cpu.rms / multiplier; rms.report_rms = true; rms.complexity = result_cpu.complexity; // don't forget to keep the time unit, or we won't be able to // recover the correct value. rms.time_unit = reports[0].time_unit; results.push_back(big_o); results.push_back(rms); return results; } } // end namespace benchmark