<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <!-- Material used from: HTML 4.01 specs: http://www.w3.org/TR/html401/ --> <html> <head> <META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"> <title><atomic> design</title> <link type="text/css" rel="stylesheet" href="menu.css"> <link type="text/css" rel="stylesheet" href="content.css"> </head> <body> <div id="menu"> <div> <a href="https://llvm.org/">LLVM Home</a> </div> <div class="submenu"> <label>libc++ Info</label> <a href="/index.html">About</a> </div> <div class="submenu"> <label>Quick Links</label> <a href="https://lists.llvm.org/mailman/listinfo/cfe-dev">cfe-dev</a> <a href="https://lists.llvm.org/mailman/listinfo/cfe-commits">cfe-commits</a> <a href="https://bugs.llvm.org/">Bug Reports</a> <a href="https://llvm.org/svn/llvm-project/libcxx/trunk/">Browse SVN</a> <a href="https://llvm.org/viewvc/llvm-project/libcxx/trunk/">Browse ViewVC</a> </div> </div> <div id="content"> <!--*********************************************************************--> <h1><atomic> design</h1> <!--*********************************************************************--> <p> The compiler supplies all of the intrinsics as described below. This list of intrinsics roughly parallels the requirements of the C and C++ atomics proposals. The C and C++ library implementations simply drop through to these intrinsics. Anything the platform does not support in hardware, the compiler arranges for a (compiler-rt) library call to be made which will do the job with a mutex, and in this case ignoring the memory ordering parameter (effectively implementing <tt>memory_order_seq_cst</tt>). </p> <p> Ultimate efficiency is preferred over run time error checking. Undefined behavior is acceptable when the inputs do not conform as defined below. </p> <blockquote><pre> <font color="#C80000">// In every intrinsic signature below, type* atomic_obj may be a pointer to a</font> <font color="#C80000">// volatile-qualified type.</font> <font color="#C80000">// Memory ordering values map to the following meanings:</font> <font color="#C80000">// memory_order_relaxed == 0</font> <font color="#C80000">// memory_order_consume == 1</font> <font color="#C80000">// memory_order_acquire == 2</font> <font color="#C80000">// memory_order_release == 3</font> <font color="#C80000">// memory_order_acq_rel == 4</font> <font color="#C80000">// memory_order_seq_cst == 5</font> <font color="#C80000">// type must be trivially copyable</font> <font color="#C80000">// type represents a "type argument"</font> bool __atomic_is_lock_free(type); <font color="#C80000">// type must be trivially copyable</font> <font color="#C80000">// Behavior is defined for mem_ord = 0, 1, 2, 5</font> type __atomic_load(const type* atomic_obj, int mem_ord); <font color="#C80000">// type must be trivially copyable</font> <font color="#C80000">// Behavior is defined for mem_ord = 0, 3, 5</font> void __atomic_store(type* atomic_obj, type desired, int mem_ord); <font color="#C80000">// type must be trivially copyable</font> <font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font> type __atomic_exchange(type* atomic_obj, type desired, int mem_ord); <font color="#C80000">// type must be trivially copyable</font> <font color="#C80000">// Behavior is defined for mem_success = [0 ... 5],</font> <font color="#C80000">// mem_failure <= mem_success</font> <font color="#C80000">// mem_failure != 3</font> <font color="#C80000">// mem_failure != 4</font> bool __atomic_compare_exchange_strong(type* atomic_obj, type* expected, type desired, int mem_success, int mem_failure); <font color="#C80000">// type must be trivially copyable</font> <font color="#C80000">// Behavior is defined for mem_success = [0 ... 5],</font> <font color="#C80000">// mem_failure <= mem_success</font> <font color="#C80000">// mem_failure != 3</font> <font color="#C80000">// mem_failure != 4</font> bool __atomic_compare_exchange_weak(type* atomic_obj, type* expected, type desired, int mem_success, int mem_failure); <font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font> <font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font> <font color="#C80000">// char16_t, char32_t, wchar_t</font> <font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font> type __atomic_fetch_add(type* atomic_obj, type operand, int mem_ord); <font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font> <font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font> <font color="#C80000">// char16_t, char32_t, wchar_t</font> <font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font> type __atomic_fetch_sub(type* atomic_obj, type operand, int mem_ord); <font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font> <font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font> <font color="#C80000">// char16_t, char32_t, wchar_t</font> <font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font> type __atomic_fetch_and(type* atomic_obj, type operand, int mem_ord); <font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font> <font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font> <font color="#C80000">// char16_t, char32_t, wchar_t</font> <font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font> type __atomic_fetch_or(type* atomic_obj, type operand, int mem_ord); <font color="#C80000">// type is one of: char, signed char, unsigned char, short, unsigned short, int,</font> <font color="#C80000">// unsigned int, long, unsigned long, long long, unsigned long long,</font> <font color="#C80000">// char16_t, char32_t, wchar_t</font> <font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font> type __atomic_fetch_xor(type* atomic_obj, type operand, int mem_ord); <font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font> void* __atomic_fetch_add(void** atomic_obj, ptrdiff_t operand, int mem_ord); void* __atomic_fetch_sub(void** atomic_obj, ptrdiff_t operand, int mem_ord); <font color="#C80000">// Behavior is defined for mem_ord = [0 ... 5]</font> void __atomic_thread_fence(int mem_ord); void __atomic_signal_fence(int mem_ord); </pre></blockquote> <p> If desired the intrinsics taking a single <tt>mem_ord</tt> parameter can default this argument to 5. </p> <p> If desired the intrinsics taking two ordering parameters can default <tt>mem_success</tt> to 5, and <tt>mem_failure</tt> to <tt>translate_memory_order(mem_success)</tt> where <tt>translate_memory_order(mem_success)</tt> is defined as: </p> <blockquote><pre> int translate_memory_order(int o) { switch (o) { case 4: return 2; case 3: return 0; } return o; } </pre></blockquote> <p> Below are representative C++ implementations of all of the operations. Their purpose is to document the desired semantics of each operation, assuming <tt>memory_order_seq_cst</tt>. This is essentially the code that will be called if the front end calls out to compiler-rt. </p> <blockquote><pre> template <class T> T __atomic_load(T const volatile* obj) { unique_lock<mutex> _(some_mutex); return *obj; } template <class T> void __atomic_store(T volatile* obj, T desr) { unique_lock<mutex> _(some_mutex); *obj = desr; } template <class T> T __atomic_exchange(T volatile* obj, T desr) { unique_lock<mutex> _(some_mutex); T r = *obj; *obj = desr; return r; } template <class T> bool __atomic_compare_exchange_strong(T volatile* obj, T* exp, T desr) { unique_lock<mutex> _(some_mutex); if (std::memcmp(const_cast<T*>(obj), exp, sizeof(T)) == 0) <font color="#C80000">// if (*obj == *exp)</font> { std::memcpy(const_cast<T*>(obj), &desr, sizeof(T)); <font color="#C80000">// *obj = desr;</font> return true; } std::memcpy(exp, const_cast<T*>(obj), sizeof(T)); <font color="#C80000">// *exp = *obj;</font> return false; } <font color="#C80000">// May spuriously return false (even if *obj == *exp)</font> template <class T> bool __atomic_compare_exchange_weak(T volatile* obj, T* exp, T desr) { unique_lock<mutex> _(some_mutex); if (std::memcmp(const_cast<T*>(obj), exp, sizeof(T)) == 0) <font color="#C80000">// if (*obj == *exp)</font> { std::memcpy(const_cast<T*>(obj), &desr, sizeof(T)); <font color="#C80000">// *obj = desr;</font> return true; } std::memcpy(exp, const_cast<T*>(obj), sizeof(T)); <font color="#C80000">// *exp = *obj;</font> return false; } template <class T> T __atomic_fetch_add(T volatile* obj, T operand) { unique_lock<mutex> _(some_mutex); T r = *obj; *obj += operand; return r; } template <class T> T __atomic_fetch_sub(T volatile* obj, T operand) { unique_lock<mutex> _(some_mutex); T r = *obj; *obj -= operand; return r; } template <class T> T __atomic_fetch_and(T volatile* obj, T operand) { unique_lock<mutex> _(some_mutex); T r = *obj; *obj &= operand; return r; } template <class T> T __atomic_fetch_or(T volatile* obj, T operand) { unique_lock<mutex> _(some_mutex); T r = *obj; *obj |= operand; return r; } template <class T> T __atomic_fetch_xor(T volatile* obj, T operand) { unique_lock<mutex> _(some_mutex); T r = *obj; *obj ^= operand; return r; } void* __atomic_fetch_add(void* volatile* obj, ptrdiff_t operand) { unique_lock<mutex> _(some_mutex); void* r = *obj; (char*&)(*obj) += operand; return r; } void* __atomic_fetch_sub(void* volatile* obj, ptrdiff_t operand) { unique_lock<mutex> _(some_mutex); void* r = *obj; (char*&)(*obj) -= operand; return r; } void __atomic_thread_fence() { unique_lock<mutex> _(some_mutex); } void __atomic_signal_fence() { unique_lock<mutex> _(some_mutex); } </pre></blockquote> </div> </body> </html>