#include <asm/types.h> #include <linux/types.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #include <string.h> #include <stddef.h> #include <stdbool.h> #include <linux/unistd.h> #include <linux/filter.h> #include <linux/bpf_perf_event.h> #include <linux/bpf.h> #include <bpf/bpf.h> #include "../../../include/linux/filter.h" #include "bpf_rlimit.h" #include "bpf_util.h" #define MAX_INSNS 512 #define MAX_MATCHES 16 struct bpf_reg_match { unsigned int line; const char *match; }; struct bpf_align_test { const char *descr; struct bpf_insn insns[MAX_INSNS]; enum { UNDEF, ACCEPT, REJECT } result; enum bpf_prog_type prog_type; /* Matches must be in order of increasing line */ struct bpf_reg_match matches[MAX_MATCHES]; }; static struct bpf_align_test tests[] = { /* Four tests of known constants. These aren't staggeringly * interesting since we track exact values now. */ { .descr = "mov", .insns = { BPF_MOV64_IMM(BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_3, 8), BPF_MOV64_IMM(BPF_REG_3, 16), BPF_MOV64_IMM(BPF_REG_3, 32), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {1, "R1=ctx(id=0,off=0,imm=0)"}, {1, "R10=fp0"}, {1, "R3_w=inv2"}, {2, "R3_w=inv4"}, {3, "R3_w=inv8"}, {4, "R3_w=inv16"}, {5, "R3_w=inv32"}, }, }, { .descr = "shift", .insns = { BPF_MOV64_IMM(BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_4, 32), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {1, "R1=ctx(id=0,off=0,imm=0)"}, {1, "R10=fp0"}, {1, "R3_w=inv1"}, {2, "R3_w=inv2"}, {3, "R3_w=inv4"}, {4, "R3_w=inv8"}, {5, "R3_w=inv16"}, {6, "R3_w=inv1"}, {7, "R4_w=inv32"}, {8, "R4_w=inv16"}, {9, "R4_w=inv8"}, {10, "R4_w=inv4"}, {11, "R4_w=inv2"}, }, }, { .descr = "addsub", .insns = { BPF_MOV64_IMM(BPF_REG_3, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_3, 2), BPF_MOV64_IMM(BPF_REG_4, 8), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {1, "R1=ctx(id=0,off=0,imm=0)"}, {1, "R10=fp0"}, {1, "R3_w=inv4"}, {2, "R3_w=inv8"}, {3, "R3_w=inv10"}, {4, "R4_w=inv8"}, {5, "R4_w=inv12"}, {6, "R4_w=inv14"}, }, }, { .descr = "mul", .insns = { BPF_MOV64_IMM(BPF_REG_3, 7), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 2), BPF_ALU64_IMM(BPF_MUL, BPF_REG_3, 4), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {1, "R1=ctx(id=0,off=0,imm=0)"}, {1, "R10=fp0"}, {1, "R3_w=inv7"}, {2, "R3_w=inv7"}, {3, "R3_w=inv14"}, {4, "R3_w=inv56"}, }, }, /* Tests using unknown values */ #define PREP_PKT_POINTERS \ BPF_LDX_MEM(BPF_W, BPF_REG_2, BPF_REG_1, \ offsetof(struct __sk_buff, data)), \ BPF_LDX_MEM(BPF_W, BPF_REG_3, BPF_REG_1, \ offsetof(struct __sk_buff, data_end)) #define LOAD_UNKNOWN(DST_REG) \ PREP_PKT_POINTERS, \ BPF_MOV64_REG(BPF_REG_0, BPF_REG_2), \ BPF_ALU64_IMM(BPF_ADD, BPF_REG_0, 8), \ BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_0, 1), \ BPF_EXIT_INSN(), \ BPF_LDX_MEM(BPF_B, DST_REG, BPF_REG_2, 0) { .descr = "unknown shift", .insns = { LOAD_UNKNOWN(BPF_REG_3), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), BPF_ALU64_IMM(BPF_LSH, BPF_REG_3, 1), LOAD_UNKNOWN(BPF_REG_4), BPF_ALU64_IMM(BPF_LSH, BPF_REG_4, 5), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_ALU64_IMM(BPF_RSH, BPF_REG_4, 1), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {7, "R0=pkt(id=0,off=8,r=8,imm=0)"}, {7, "R3_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {8, "R3_w=inv(id=0,umax_value=510,var_off=(0x0; 0x1fe))"}, {9, "R3_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, {10, "R3_w=inv(id=0,umax_value=2040,var_off=(0x0; 0x7f8))"}, {11, "R3_w=inv(id=0,umax_value=4080,var_off=(0x0; 0xff0))"}, {18, "R3=pkt_end(id=0,off=0,imm=0)"}, {18, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {19, "R4_w=inv(id=0,umax_value=8160,var_off=(0x0; 0x1fe0))"}, {20, "R4_w=inv(id=0,umax_value=4080,var_off=(0x0; 0xff0))"}, {21, "R4_w=inv(id=0,umax_value=2040,var_off=(0x0; 0x7f8))"}, {22, "R4_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, {23, "R4_w=inv(id=0,umax_value=510,var_off=(0x0; 0x1fe))"}, }, }, { .descr = "unknown mul", .insns = { LOAD_UNKNOWN(BPF_REG_3), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 1), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 4), BPF_MOV64_REG(BPF_REG_4, BPF_REG_3), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 8), BPF_ALU64_IMM(BPF_MUL, BPF_REG_4, 2), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {7, "R3_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {8, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {9, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {10, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {11, "R4_w=inv(id=0,umax_value=510,var_off=(0x0; 0x1fe))"}, {12, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {13, "R4_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, {14, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {15, "R4_w=inv(id=0,umax_value=2040,var_off=(0x0; 0x7f8))"}, {16, "R4_w=inv(id=0,umax_value=4080,var_off=(0x0; 0xff0))"}, }, }, { .descr = "packet const offset", .insns = { PREP_PKT_POINTERS, BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_MOV64_IMM(BPF_REG_0, 0), /* Skip over ethernet header. */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 0), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 1), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 2), BPF_LDX_MEM(BPF_B, BPF_REG_4, BPF_REG_5, 3), BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 0), BPF_LDX_MEM(BPF_H, BPF_REG_4, BPF_REG_5, 2), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { {4, "R5_w=pkt(id=0,off=0,r=0,imm=0)"}, {5, "R5_w=pkt(id=0,off=14,r=0,imm=0)"}, {6, "R4_w=pkt(id=0,off=14,r=0,imm=0)"}, {10, "R2=pkt(id=0,off=0,r=18,imm=0)"}, {10, "R5=pkt(id=0,off=14,r=18,imm=0)"}, {10, "R4_w=inv(id=0,umax_value=255,var_off=(0x0; 0xff))"}, {14, "R4_w=inv(id=0,umax_value=65535,var_off=(0x0; 0xffff))"}, {15, "R4_w=inv(id=0,umax_value=65535,var_off=(0x0; 0xffff))"}, }, }, { .descr = "packet variable offset", .insns = { LOAD_UNKNOWN(BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), /* First, add a constant to the R5 packet pointer, * then a variable with a known alignment. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), /* Now, test in the other direction. Adding first * the variable offset to R5, then the constant. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), /* Test multiple accumulations of unknown values * into a packet pointer. */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 4), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {8, "R2=pkt(id=0,off=0,r=8,imm=0)"}, {8, "R6_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Offset is added to packet pointer R5, resulting in * known fixed offset, and variable offset from R6. */ {11, "R5_w=pkt(id=1,off=14,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* At the time the word size load is performed from R5, * it's total offset is NET_IP_ALIGN + reg->off (0) + * reg->aux_off (14) which is 16. Then the variable * offset is considered using reg->aux_off_align which * is 4 and meets the load's requirements. */ {15, "R4=pkt(id=1,off=18,r=18,umax_value=1020,var_off=(0x0; 0x3fc))"}, {15, "R5=pkt(id=1,off=14,r=18,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Variable offset is added to R5 packet pointer, * resulting in auxiliary alignment of 4. */ {18, "R5_w=pkt(id=2,off=0,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Constant offset is added to R5, resulting in * reg->off of 14. */ {19, "R5_w=pkt(id=2,off=14,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off * (14) which is 16. Then the variable offset is 4-byte * aligned, so the total offset is 4-byte aligned and * meets the load's requirements. */ {23, "R4=pkt(id=2,off=18,r=18,umax_value=1020,var_off=(0x0; 0x3fc))"}, {23, "R5=pkt(id=2,off=14,r=18,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Constant offset is added to R5 packet pointer, * resulting in reg->off value of 14. */ {26, "R5_w=pkt(id=0,off=14,r=8"}, /* Variable offset is added to R5, resulting in a * variable offset of (4n). */ {27, "R5_w=pkt(id=3,off=14,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Constant is added to R5 again, setting reg->off to 18. */ {28, "R5_w=pkt(id=3,off=18,r=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* And once more we add a variable; resulting var_off * is still (4n), fixed offset is not changed. * Also, we create a new reg->id. */ {29, "R5_w=pkt(id=4,off=18,r=0,umax_value=2040,var_off=(0x0; 0x7fc))"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (18) * which is 20. Then the variable offset is (4n), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {33, "R4=pkt(id=4,off=22,r=22,umax_value=2040,var_off=(0x0; 0x7fc))"}, {33, "R5=pkt(id=4,off=18,r=22,umax_value=2040,var_off=(0x0; 0x7fc))"}, }, }, { .descr = "packet variable offset 2", .insns = { /* Create an unknown offset, (4n+2)-aligned */ LOAD_UNKNOWN(BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Add it to the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), /* Make a (4n) offset from the value we just read */ BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xff), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), /* Add it to the packet pointer */ BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_MOV64_IMM(BPF_REG_0, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {8, "R2=pkt(id=0,off=0,r=8,imm=0)"}, {8, "R6_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Adding 14 makes R6 be (4n+2) */ {9, "R6_w=inv(id=0,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc))"}, /* Packet pointer has (4n+2) offset */ {11, "R5_w=pkt(id=1,off=0,r=0,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc))"}, {13, "R4=pkt(id=1,off=4,r=0,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc))"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {15, "R5=pkt(id=1,off=0,r=4,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc))"}, /* Newly read value in R6 was shifted left by 2, so has * known alignment of 4. */ {18, "R6_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Added (4n) to packet pointer's (4n+2) var_off, giving * another (4n+2). */ {19, "R5_w=pkt(id=2,off=0,r=0,umin_value=14,umax_value=2054,var_off=(0x2; 0xffc))"}, {21, "R4=pkt(id=2,off=4,r=0,umin_value=14,umax_value=2054,var_off=(0x2; 0xffc))"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {23, "R5=pkt(id=2,off=0,r=4,umin_value=14,umax_value=2054,var_off=(0x2; 0xffc))"}, }, }, { .descr = "dubious pointer arithmetic", .insns = { PREP_PKT_POINTERS, BPF_MOV64_IMM(BPF_REG_0, 0), /* (ptr - ptr) << 2 */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_3), BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_2), BPF_ALU64_IMM(BPF_LSH, BPF_REG_5, 2), /* We have a (4n) value. Let's make a packet offset * out of it. First add 14, to make it a (4n+2) */ BPF_ALU64_IMM(BPF_ADD, BPF_REG_5, 14), /* Then make sure it's nonnegative */ BPF_JMP_IMM(BPF_JSGE, BPF_REG_5, 0, 1), BPF_EXIT_INSN(), /* Add it to packet pointer */ BPF_MOV64_REG(BPF_REG_6, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_6, BPF_REG_5), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_6), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_4, BPF_REG_6, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .result = REJECT, .matches = { {4, "R5_w=pkt_end(id=0,off=0,imm=0)"}, /* (ptr - ptr) << 2 == unknown, (4n) */ {6, "R5_w=inv(id=0,smax_value=9223372036854775804,umax_value=18446744073709551612,var_off=(0x0; 0xfffffffffffffffc))"}, /* (4n) + 14 == (4n+2). We blow our bounds, because * the add could overflow. */ {7, "R5=inv(id=0,var_off=(0x2; 0xfffffffffffffffc))"}, /* Checked s>=0 */ {9, "R5=inv(id=0,umin_value=2,umax_value=9223372036854775806,var_off=(0x2; 0x7ffffffffffffffc))"}, /* packet pointer + nonnegative (4n+2) */ {11, "R6_w=pkt(id=1,off=0,r=0,umin_value=2,umax_value=9223372036854775806,var_off=(0x2; 0x7ffffffffffffffc))"}, {13, "R4=pkt(id=1,off=4,r=0,umin_value=2,umax_value=9223372036854775806,var_off=(0x2; 0x7ffffffffffffffc))"}, /* NET_IP_ALIGN + (4n+2) == (4n), alignment is fine. * We checked the bounds, but it might have been able * to overflow if the packet pointer started in the * upper half of the address space. * So we did not get a 'range' on R6, and the access * attempt will fail. */ {15, "R6=pkt(id=1,off=0,r=0,umin_value=2,umax_value=9223372036854775806,var_off=(0x2; 0x7ffffffffffffffc))"}, } }, { .descr = "variable subtraction", .insns = { /* Create an unknown offset, (4n+2)-aligned */ LOAD_UNKNOWN(BPF_REG_6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Create another unknown, (4n)-aligned, and subtract * it from the first one */ BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2), BPF_ALU64_REG(BPF_SUB, BPF_REG_6, BPF_REG_7), /* Bounds-check the result */ BPF_JMP_IMM(BPF_JSGE, BPF_REG_6, 0, 1), BPF_EXIT_INSN(), /* Add it to the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_6), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {7, "R2=pkt(id=0,off=0,r=8,imm=0)"}, {9, "R6_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Adding 14 makes R6 be (4n+2) */ {10, "R6_w=inv(id=0,umin_value=14,umax_value=1034,var_off=(0x2; 0x7fc))"}, /* New unknown value in R7 is (4n) */ {11, "R7_w=inv(id=0,umax_value=1020,var_off=(0x0; 0x3fc))"}, /* Subtracting it from R6 blows our unsigned bounds */ {12, "R6=inv(id=0,smin_value=-1006,smax_value=1034,var_off=(0x2; 0xfffffffffffffffc))"}, /* Checked s>= 0 */ {14, "R6=inv(id=0,umin_value=2,umax_value=1034,var_off=(0x2; 0x7fc))"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {20, "R5=pkt(id=1,off=0,r=4,umin_value=2,umax_value=1034,var_off=(0x2; 0x7fc))"}, }, }, { .descr = "pointer variable subtraction", .insns = { /* Create an unknown offset, (4n+2)-aligned and bounded * to [14,74] */ LOAD_UNKNOWN(BPF_REG_6), BPF_MOV64_REG(BPF_REG_7, BPF_REG_6), BPF_ALU64_IMM(BPF_AND, BPF_REG_6, 0xf), BPF_ALU64_IMM(BPF_LSH, BPF_REG_6, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_6, 14), /* Subtract it from the packet pointer */ BPF_MOV64_REG(BPF_REG_5, BPF_REG_2), BPF_ALU64_REG(BPF_SUB, BPF_REG_5, BPF_REG_6), /* Create another unknown, (4n)-aligned and >= 74. * That in fact means >= 76, since 74 % 4 == 2 */ BPF_ALU64_IMM(BPF_LSH, BPF_REG_7, 2), BPF_ALU64_IMM(BPF_ADD, BPF_REG_7, 76), /* Add it to the packet pointer */ BPF_ALU64_REG(BPF_ADD, BPF_REG_5, BPF_REG_7), /* Check bounds and perform a read */ BPF_MOV64_REG(BPF_REG_4, BPF_REG_5), BPF_ALU64_IMM(BPF_ADD, BPF_REG_4, 4), BPF_JMP_REG(BPF_JGE, BPF_REG_3, BPF_REG_4, 1), BPF_EXIT_INSN(), BPF_LDX_MEM(BPF_W, BPF_REG_6, BPF_REG_5, 0), BPF_EXIT_INSN(), }, .prog_type = BPF_PROG_TYPE_SCHED_CLS, .matches = { /* Calculated offset in R6 has unknown value, but known * alignment of 4. */ {7, "R2=pkt(id=0,off=0,r=8,imm=0)"}, {10, "R6_w=inv(id=0,umax_value=60,var_off=(0x0; 0x3c))"}, /* Adding 14 makes R6 be (4n+2) */ {11, "R6_w=inv(id=0,umin_value=14,umax_value=74,var_off=(0x2; 0x7c))"}, /* Subtracting from packet pointer overflows ubounds */ {13, "R5_w=pkt(id=1,off=0,r=8,umin_value=18446744073709551542,umax_value=18446744073709551602,var_off=(0xffffffffffffff82; 0x7c))"}, /* New unknown value in R7 is (4n), >= 76 */ {15, "R7_w=inv(id=0,umin_value=76,umax_value=1096,var_off=(0x0; 0x7fc))"}, /* Adding it to packet pointer gives nice bounds again */ {16, "R5_w=pkt(id=2,off=0,r=0,umin_value=2,umax_value=1082,var_off=(0x2; 0x7fc))"}, /* At the time the word size load is performed from R5, * its total fixed offset is NET_IP_ALIGN + reg->off (0) * which is 2. Then the variable offset is (4n+2), so * the total offset is 4-byte aligned and meets the * load's requirements. */ {20, "R5=pkt(id=2,off=0,r=4,umin_value=2,umax_value=1082,var_off=(0x2; 0x7fc))"}, }, }, }; static int probe_filter_length(const struct bpf_insn *fp) { int len; for (len = MAX_INSNS - 1; len > 0; --len) if (fp[len].code != 0 || fp[len].imm != 0) break; return len + 1; } static char bpf_vlog[32768]; static int do_test_single(struct bpf_align_test *test) { struct bpf_insn *prog = test->insns; int prog_type = test->prog_type; char bpf_vlog_copy[32768]; const char *line_ptr; int cur_line = -1; int prog_len, i; int fd_prog; int ret; prog_len = probe_filter_length(prog); fd_prog = bpf_verify_program(prog_type ? : BPF_PROG_TYPE_SOCKET_FILTER, prog, prog_len, 1, "GPL", 0, bpf_vlog, sizeof(bpf_vlog), 2); if (fd_prog < 0 && test->result != REJECT) { printf("Failed to load program.\n"); printf("%s", bpf_vlog); ret = 1; } else if (fd_prog >= 0 && test->result == REJECT) { printf("Unexpected success to load!\n"); printf("%s", bpf_vlog); ret = 1; close(fd_prog); } else { ret = 0; /* We make a local copy so that we can strtok() it */ strncpy(bpf_vlog_copy, bpf_vlog, sizeof(bpf_vlog_copy)); line_ptr = strtok(bpf_vlog_copy, "\n"); for (i = 0; i < MAX_MATCHES; i++) { struct bpf_reg_match m = test->matches[i]; if (!m.match) break; while (line_ptr) { cur_line = -1; sscanf(line_ptr, "%u: ", &cur_line); if (cur_line == m.line) break; line_ptr = strtok(NULL, "\n"); } if (!line_ptr) { printf("Failed to find line %u for match: %s\n", m.line, m.match); ret = 1; printf("%s", bpf_vlog); break; } if (!strstr(line_ptr, m.match)) { printf("Failed to find match %u: %s\n", m.line, m.match); ret = 1; printf("%s", bpf_vlog); break; } } if (fd_prog >= 0) close(fd_prog); } return ret; } static int do_test(unsigned int from, unsigned int to) { int all_pass = 0; int all_fail = 0; unsigned int i; for (i = from; i < to; i++) { struct bpf_align_test *test = &tests[i]; int fail; printf("Test %3d: %s ... ", i, test->descr); fail = do_test_single(test); if (fail) { all_fail++; printf("FAIL\n"); } else { all_pass++; printf("PASS\n"); } } printf("Results: %d pass %d fail\n", all_pass, all_fail); return all_fail ? EXIT_FAILURE : EXIT_SUCCESS; } int main(int argc, char **argv) { unsigned int from = 0, to = ARRAY_SIZE(tests); if (argc == 3) { unsigned int l = atoi(argv[argc - 2]); unsigned int u = atoi(argv[argc - 1]); if (l < to && u < to) { from = l; to = u + 1; } } else if (argc == 2) { unsigned int t = atoi(argv[argc - 1]); if (t < to) { from = t; to = t + 1; } } return do_test(from, to); }