/* * This test checks the response of the system clock to frequency * steps made with adjtimex(). The frequency error and stability of * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock * is measured in two intervals following the step. The test fails if * values from the second interval exceed specified limits. * * Copyright (C) Miroslav Lichvar <mlichvar@redhat.com> 2017 * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. */ #include <math.h> #include <stdio.h> #include <sys/timex.h> #include <time.h> #include <unistd.h> #include "../kselftest.h" #define SAMPLES 100 #define SAMPLE_READINGS 10 #define MEAN_SAMPLE_INTERVAL 0.1 #define STEP_INTERVAL 1.0 #define MAX_PRECISION 100e-9 #define MAX_FREQ_ERROR 10e-6 #define MAX_STDDEV 1000e-9 #ifndef ADJ_SETOFFSET #define ADJ_SETOFFSET 0x0100 #endif struct sample { double offset; double time; }; static time_t mono_raw_base; static time_t mono_base; static long user_hz; static double precision; static double mono_freq_offset; static double diff_timespec(struct timespec *ts1, struct timespec *ts2) { return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9; } static double get_sample(struct sample *sample) { double delay, mindelay = 0.0; struct timespec ts1, ts2, ts3; int i; for (i = 0; i < SAMPLE_READINGS; i++) { clock_gettime(CLOCK_MONOTONIC_RAW, &ts1); clock_gettime(CLOCK_MONOTONIC, &ts2); clock_gettime(CLOCK_MONOTONIC_RAW, &ts3); ts1.tv_sec -= mono_raw_base; ts2.tv_sec -= mono_base; ts3.tv_sec -= mono_raw_base; delay = diff_timespec(&ts3, &ts1); if (delay <= 1e-9) { i--; continue; } if (!i || delay < mindelay) { sample->offset = diff_timespec(&ts2, &ts1); sample->offset -= delay / 2.0; sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9; mindelay = delay; } } return mindelay; } static void reset_ntp_error(void) { struct timex txc; txc.modes = ADJ_SETOFFSET; txc.time.tv_sec = 0; txc.time.tv_usec = 0; if (adjtimex(&txc) < 0) { perror("[FAIL] adjtimex"); ksft_exit_fail(); } } static void set_frequency(double freq) { struct timex txc; int tick_offset; tick_offset = 1e6 * freq / user_hz; txc.modes = ADJ_TICK | ADJ_FREQUENCY; txc.tick = 1000000 / user_hz + tick_offset; txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16); if (adjtimex(&txc) < 0) { perror("[FAIL] adjtimex"); ksft_exit_fail(); } } static void regress(struct sample *samples, int n, double *intercept, double *slope, double *r_stddev, double *r_max) { double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum; int i; x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0; for (i = 0; i < n; i++) { x = samples[i].time; y = samples[i].offset; x_sum += x; y_sum += y; xy_sum += x * y; x2_sum += x * x; } *slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n); *intercept = (y_sum - *slope * x_sum) / n; *r_max = 0.0, r2_sum = 0.0; for (i = 0; i < n; i++) { x = samples[i].time; y = samples[i].offset; r = fabs(x * *slope + *intercept - y); if (*r_max < r) *r_max = r; r2_sum += r * r; } *r_stddev = sqrt(r2_sum / n); } static int run_test(int calibration, double freq_base, double freq_step) { struct sample samples[SAMPLES]; double intercept, slope, stddev1, max1, stddev2, max2; double freq_error1, freq_error2; int i; set_frequency(freq_base); for (i = 0; i < 10; i++) usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10); reset_ntp_error(); set_frequency(freq_base + freq_step); for (i = 0; i < 10; i++) usleep(rand() % 2000000 * STEP_INTERVAL / 10); set_frequency(freq_base); for (i = 0; i < SAMPLES; i++) { usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL); get_sample(&samples[i]); } if (calibration) { regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1); mono_freq_offset = slope; printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n", 1e6 * mono_freq_offset); return 0; } regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1); freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - freq_base; regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope, &stddev2, &max2); freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset - freq_base; printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t", 1e6 * freq_step, 1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1, 1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2); if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) { printf("[FAIL]\n"); return 1; } printf("[OK]\n"); return 0; } static void init_test(void) { struct timespec ts; struct sample sample; if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) { perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)"); ksft_exit_fail(); } mono_raw_base = ts.tv_sec; if (clock_gettime(CLOCK_MONOTONIC, &ts)) { perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)"); ksft_exit_fail(); } mono_base = ts.tv_sec; user_hz = sysconf(_SC_CLK_TCK); precision = get_sample(&sample) / 2.0; printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t", 1e9 * precision); if (precision > MAX_PRECISION) ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n", 1e9 * precision, 1e9 * MAX_PRECISION); printf("[OK]\n"); srand(ts.tv_sec ^ ts.tv_nsec); run_test(1, 0.0, 0.0); } int main(int argc, char **argv) { double freq_base, freq_step; int i, j, fails = 0; init_test(); printf("Checking response to frequency step:\n"); printf(" Step 1st interval 2nd interval\n"); printf(" Freq Dev Max Freq Dev Max\n"); for (i = 2; i >= 0; i--) { for (j = 0; j < 5; j++) { freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6; freq_step = 10e-6 * (1 << (6 * i)); fails += run_test(0, freq_base, freq_step); } } set_frequency(0.0); if (fails) return ksft_exit_fail(); return ksft_exit_pass(); }