//===-- RegisterScavenging.cpp - Machine register scavenging --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// This file implements the machine register scavenger. It can provide /// information, such as unused registers, at any point in a machine basic /// block. It also provides a mechanism to make registers available by evicting /// them to spill slots. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; #define DEBUG_TYPE "reg-scavenging" void RegScavenger::setRegUsed(unsigned Reg, LaneBitmask LaneMask) { for (MCRegUnitMaskIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) { LaneBitmask UnitMask = (*RUI).second; if (UnitMask == 0 || (LaneMask & UnitMask) != 0) RegUnitsAvailable.reset((*RUI).first); } } void RegScavenger::initRegState() { for (SmallVectorImpl<ScavengedInfo>::iterator I = Scavenged.begin(), IE = Scavenged.end(); I != IE; ++I) { I->Reg = 0; I->Restore = nullptr; } // All register units start out unused. RegUnitsAvailable.set(); // Live-in registers are in use. for (const auto &LI : MBB->liveins()) setRegUsed(LI.PhysReg, LI.LaneMask); // Pristine CSRs are also unavailable. const MachineFunction &MF = *MBB->getParent(); BitVector PR = MF.getFrameInfo()->getPristineRegs(MF); for (int I = PR.find_first(); I>0; I = PR.find_next(I)) setRegUsed(I); } void RegScavenger::enterBasicBlock(MachineBasicBlock &MBB) { MachineFunction &MF = *MBB.getParent(); TII = MF.getSubtarget().getInstrInfo(); TRI = MF.getSubtarget().getRegisterInfo(); MRI = &MF.getRegInfo(); assert((NumRegUnits == 0 || NumRegUnits == TRI->getNumRegUnits()) && "Target changed?"); // It is not possible to use the register scavenger after late optimization // passes that don't preserve accurate liveness information. assert(MRI->tracksLiveness() && "Cannot use register scavenger with inaccurate liveness"); // Self-initialize. if (!this->MBB) { NumRegUnits = TRI->getNumRegUnits(); RegUnitsAvailable.resize(NumRegUnits); KillRegUnits.resize(NumRegUnits); DefRegUnits.resize(NumRegUnits); TmpRegUnits.resize(NumRegUnits); } this->MBB = &MBB; initRegState(); Tracking = false; } void RegScavenger::addRegUnits(BitVector &BV, unsigned Reg) { for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) BV.set(*RUI); } void RegScavenger::determineKillsAndDefs() { assert(Tracking && "Must be tracking to determine kills and defs"); MachineInstr &MI = *MBBI; assert(!MI.isDebugValue() && "Debug values have no kills or defs"); // Find out which registers are early clobbered, killed, defined, and marked // def-dead in this instruction. KillRegUnits.reset(); DefRegUnits.reset(); for (const MachineOperand &MO : MI.operands()) { if (MO.isRegMask()) { TmpRegUnits.clear(); for (unsigned RU = 0, RUEnd = TRI->getNumRegUnits(); RU != RUEnd; ++RU) { for (MCRegUnitRootIterator RURI(RU, TRI); RURI.isValid(); ++RURI) { if (MO.clobbersPhysReg(*RURI)) { TmpRegUnits.set(RU); break; } } } // Apply the mask. KillRegUnits |= TmpRegUnits; } if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(Reg) || isReserved(Reg)) continue; if (MO.isUse()) { // Ignore undef uses. if (MO.isUndef()) continue; if (MO.isKill()) addRegUnits(KillRegUnits, Reg); } else { assert(MO.isDef()); if (MO.isDead()) addRegUnits(KillRegUnits, Reg); else addRegUnits(DefRegUnits, Reg); } } } void RegScavenger::unprocess() { assert(Tracking && "Cannot unprocess because we're not tracking"); MachineInstr &MI = *MBBI; if (!MI.isDebugValue()) { determineKillsAndDefs(); // Commit the changes. setUsed(KillRegUnits); setUnused(DefRegUnits); } if (MBBI == MBB->begin()) { MBBI = MachineBasicBlock::iterator(nullptr); Tracking = false; } else --MBBI; } void RegScavenger::forward() { // Move ptr forward. if (!Tracking) { MBBI = MBB->begin(); Tracking = true; } else { assert(MBBI != MBB->end() && "Already past the end of the basic block!"); MBBI = std::next(MBBI); } assert(MBBI != MBB->end() && "Already at the end of the basic block!"); MachineInstr &MI = *MBBI; for (SmallVectorImpl<ScavengedInfo>::iterator I = Scavenged.begin(), IE = Scavenged.end(); I != IE; ++I) { if (I->Restore != &MI) continue; I->Reg = 0; I->Restore = nullptr; } if (MI.isDebugValue()) return; determineKillsAndDefs(); // Verify uses and defs. #ifndef NDEBUG for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!TargetRegisterInfo::isPhysicalRegister(Reg) || isReserved(Reg)) continue; if (MO.isUse()) { if (MO.isUndef()) continue; if (!isRegUsed(Reg)) { // Check if it's partial live: e.g. // D0 = insert_subreg D0<undef>, S0 // ... D0 // The problem is the insert_subreg could be eliminated. The use of // D0 is using a partially undef value. This is not *incorrect* since // S1 is can be freely clobbered. // Ideally we would like a way to model this, but leaving the // insert_subreg around causes both correctness and performance issues. bool SubUsed = false; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) if (isRegUsed(*SubRegs)) { SubUsed = true; break; } bool SuperUsed = false; for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { if (isRegUsed(*SR)) { SuperUsed = true; break; } } if (!SubUsed && !SuperUsed) { MBB->getParent()->verify(nullptr, "In Register Scavenger"); llvm_unreachable("Using an undefined register!"); } (void)SubUsed; (void)SuperUsed; } } else { assert(MO.isDef()); #if 0 // FIXME: Enable this once we've figured out how to correctly transfer // implicit kills during codegen passes like the coalescer. assert((KillRegs.test(Reg) || isUnused(Reg) || isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) && "Re-defining a live register!"); #endif } } #endif // NDEBUG // Commit the changes. setUnused(KillRegUnits); setUsed(DefRegUnits); } bool RegScavenger::isRegUsed(unsigned Reg, bool includeReserved) const { if (includeReserved && isReserved(Reg)) return true; for (MCRegUnitIterator RUI(Reg, TRI); RUI.isValid(); ++RUI) if (!RegUnitsAvailable.test(*RUI)) return true; return false; } unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const { for (unsigned Reg : *RC) { if (!isRegUsed(Reg)) { DEBUG(dbgs() << "Scavenger found unused reg: " << TRI->getName(Reg) << "\n"); return Reg; } } return 0; } BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) { BitVector Mask(TRI->getNumRegs()); for (unsigned Reg : *RC) if (!isRegUsed(Reg)) Mask.set(Reg); return Mask; } unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI, BitVector &Candidates, unsigned InstrLimit, MachineBasicBlock::iterator &UseMI) { int Survivor = Candidates.find_first(); assert(Survivor > 0 && "No candidates for scavenging"); MachineBasicBlock::iterator ME = MBB->getFirstTerminator(); assert(StartMI != ME && "MI already at terminator"); MachineBasicBlock::iterator RestorePointMI = StartMI; MachineBasicBlock::iterator MI = StartMI; bool inVirtLiveRange = false; for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) { if (MI->isDebugValue()) { ++InstrLimit; // Don't count debug instructions continue; } bool isVirtKillInsn = false; bool isVirtDefInsn = false; // Remove any candidates touched by instruction. for (const MachineOperand &MO : MI->operands()) { if (MO.isRegMask()) Candidates.clearBitsNotInMask(MO.getRegMask()); if (!MO.isReg() || MO.isUndef() || !MO.getReg()) continue; if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { if (MO.isDef()) isVirtDefInsn = true; else if (MO.isKill()) isVirtKillInsn = true; continue; } for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) Candidates.reset(*AI); } // If we're not in a virtual reg's live range, this is a valid // restore point. if (!inVirtLiveRange) RestorePointMI = MI; // Update whether we're in the live range of a virtual register if (isVirtKillInsn) inVirtLiveRange = false; if (isVirtDefInsn) inVirtLiveRange = true; // Was our survivor untouched by this instruction? if (Candidates.test(Survivor)) continue; // All candidates gone? if (Candidates.none()) break; Survivor = Candidates.find_first(); } // If we ran off the end, that's where we want to restore. if (MI == ME) RestorePointMI = ME; assert(RestorePointMI != StartMI && "No available scavenger restore location!"); // We ran out of candidates, so stop the search. UseMI = RestorePointMI; return Survivor; } static unsigned getFrameIndexOperandNum(MachineInstr &MI) { unsigned i = 0; while (!MI.getOperand(i).isFI()) { ++i; assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!"); } return i; } unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC, MachineBasicBlock::iterator I, int SPAdj) { MachineInstr &MI = *I; const MachineFunction &MF = *MI.getParent()->getParent(); // Consider all allocatable registers in the register class initially BitVector Candidates = TRI->getAllocatableSet(MF, RC); // Exclude all the registers being used by the instruction. for (const MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.getReg() != 0 && !(MO.isUse() && MO.isUndef()) && !TargetRegisterInfo::isVirtualRegister(MO.getReg())) Candidates.reset(MO.getReg()); } // Try to find a register that's unused if there is one, as then we won't // have to spill. BitVector Available = getRegsAvailable(RC); Available &= Candidates; if (Available.any()) Candidates = Available; // Find the register whose use is furthest away. MachineBasicBlock::iterator UseMI; unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI); // If we found an unused register there is no reason to spill it. if (!isRegUsed(SReg)) { DEBUG(dbgs() << "Scavenged register: " << TRI->getName(SReg) << "\n"); return SReg; } // Find an available scavenging slot with size and alignment matching // the requirements of the class RC. const MachineFrameInfo &MFI = *MF.getFrameInfo(); unsigned NeedSize = RC->getSize(); unsigned NeedAlign = RC->getAlignment(); unsigned SI = Scavenged.size(), Diff = UINT_MAX; int FIB = MFI.getObjectIndexBegin(), FIE = MFI.getObjectIndexEnd(); for (unsigned I = 0; I < Scavenged.size(); ++I) { if (Scavenged[I].Reg != 0) continue; // Verify that this slot is valid for this register. int FI = Scavenged[I].FrameIndex; if (FI < FIB || FI >= FIE) continue; unsigned S = MFI.getObjectSize(FI); unsigned A = MFI.getObjectAlignment(FI); if (NeedSize > S || NeedAlign > A) continue; // Avoid wasting slots with large size and/or large alignment. Pick one // that is the best fit for this register class (in street metric). // Picking a larger slot than necessary could happen if a slot for a // larger register is reserved before a slot for a smaller one. When // trying to spill a smaller register, the large slot would be found // first, thus making it impossible to spill the larger register later. unsigned D = (S-NeedSize) + (A-NeedAlign); if (D < Diff) { SI = I; Diff = D; } } if (SI == Scavenged.size()) { // We need to scavenge a register but have no spill slot, the target // must know how to do it (if not, we'll assert below). Scavenged.push_back(ScavengedInfo(FIE)); } // Avoid infinite regress Scavenged[SI].Reg = SReg; // If the target knows how to save/restore the register, let it do so; // otherwise, use the emergency stack spill slot. if (!TRI->saveScavengerRegister(*MBB, I, UseMI, RC, SReg)) { // Spill the scavenged register before I. int FI = Scavenged[SI].FrameIndex; if (FI < FIB || FI >= FIE) { std::string Msg = std::string("Error while trying to spill ") + TRI->getName(SReg) + " from class " + TRI->getRegClassName(RC) + ": Cannot scavenge register without an emergency spill slot!"; report_fatal_error(Msg.c_str()); } TII->storeRegToStackSlot(*MBB, I, SReg, true, Scavenged[SI].FrameIndex, RC, TRI); MachineBasicBlock::iterator II = std::prev(I); unsigned FIOperandNum = getFrameIndexOperandNum(*II); TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this); // Restore the scavenged register before its use (or first terminator). TII->loadRegFromStackSlot(*MBB, UseMI, SReg, Scavenged[SI].FrameIndex, RC, TRI); II = std::prev(UseMI); FIOperandNum = getFrameIndexOperandNum(*II); TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this); } Scavenged[SI].Restore = &*std::prev(UseMI); // Doing this here leads to infinite regress. // Scavenged[SI].Reg = SReg; DEBUG(dbgs() << "Scavenged register (with spill): " << TRI->getName(SReg) << "\n"); return SReg; }