//===-- Attributes.cpp - Implement AttributesList -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // \brief This file implements the Attribute, AttributeImpl, AttrBuilder, // AttributeSetImpl, and AttributeSet classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "AttributeImpl.h" #include "LLVMContextImpl.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Type.h" #include "llvm/Support/Atomic.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Mutex.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; //===----------------------------------------------------------------------===// // Attribute Construction Methods //===----------------------------------------------------------------------===// // allocsize has two integer arguments, but because they're both 32 bits, we can // pack them into one 64-bit value, at the cost of making said value // nonsensical. // // In order to do this, we need to reserve one value of the second (optional) // allocsize argument to signify "not present." LLVM_CONSTEXPR static unsigned AllocSizeNumElemsNotPresent = -1; static uint64_t packAllocSizeArgs(unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg) { assert((!NumElemsArg.hasValue() || *NumElemsArg != AllocSizeNumElemsNotPresent) && "Attempting to pack a reserved value"); return uint64_t(ElemSizeArg) << 32 | NumElemsArg.getValueOr(AllocSizeNumElemsNotPresent); } static std::pair<unsigned, Optional<unsigned>> unpackAllocSizeArgs(uint64_t Num) { unsigned NumElems = Num & std::numeric_limits<unsigned>::max(); unsigned ElemSizeArg = Num >> 32; Optional<unsigned> NumElemsArg; if (NumElems != AllocSizeNumElemsNotPresent) NumElemsArg = NumElems; return std::make_pair(ElemSizeArg, NumElemsArg); } Attribute Attribute::get(LLVMContext &Context, Attribute::AttrKind Kind, uint64_t Val) { LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddInteger(Kind); if (Val) ID.AddInteger(Val); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!Val) PA = new EnumAttributeImpl(Kind); else PA = new IntAttributeImpl(Kind, Val); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::get(LLVMContext &Context, StringRef Kind, StringRef Val) { LLVMContextImpl *pImpl = Context.pImpl; FoldingSetNodeID ID; ID.AddString(Kind); if (!Val.empty()) ID.AddString(Val); void *InsertPoint; AttributeImpl *PA = pImpl->AttrsSet.FindNodeOrInsertPos(ID, InsertPoint); if (!PA) { // If we didn't find any existing attributes of the same shape then create a // new one and insert it. PA = new StringAttributeImpl(Kind, Val); pImpl->AttrsSet.InsertNode(PA, InsertPoint); } // Return the Attribute that we found or created. return Attribute(PA); } Attribute Attribute::getWithAlignment(LLVMContext &Context, uint64_t Align) { assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); return get(Context, Alignment, Align); } Attribute Attribute::getWithStackAlignment(LLVMContext &Context, uint64_t Align) { assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); return get(Context, StackAlignment, Align); } Attribute Attribute::getWithDereferenceableBytes(LLVMContext &Context, uint64_t Bytes) { assert(Bytes && "Bytes must be non-zero."); return get(Context, Dereferenceable, Bytes); } Attribute Attribute::getWithDereferenceableOrNullBytes(LLVMContext &Context, uint64_t Bytes) { assert(Bytes && "Bytes must be non-zero."); return get(Context, DereferenceableOrNull, Bytes); } Attribute Attribute::getWithAllocSizeArgs(LLVMContext &Context, unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg) { assert(!(ElemSizeArg == 0 && NumElemsArg && *NumElemsArg == 0) && "Invalid allocsize arguments -- given allocsize(0, 0)"); return get(Context, AllocSize, packAllocSizeArgs(ElemSizeArg, NumElemsArg)); } //===----------------------------------------------------------------------===// // Attribute Accessor Methods //===----------------------------------------------------------------------===// bool Attribute::isEnumAttribute() const { return pImpl && pImpl->isEnumAttribute(); } bool Attribute::isIntAttribute() const { return pImpl && pImpl->isIntAttribute(); } bool Attribute::isStringAttribute() const { return pImpl && pImpl->isStringAttribute(); } Attribute::AttrKind Attribute::getKindAsEnum() const { if (!pImpl) return None; assert((isEnumAttribute() || isIntAttribute()) && "Invalid attribute type to get the kind as an enum!"); return pImpl->getKindAsEnum(); } uint64_t Attribute::getValueAsInt() const { if (!pImpl) return 0; assert(isIntAttribute() && "Expected the attribute to be an integer attribute!"); return pImpl->getValueAsInt(); } StringRef Attribute::getKindAsString() const { if (!pImpl) return StringRef(); assert(isStringAttribute() && "Invalid attribute type to get the kind as a string!"); return pImpl->getKindAsString(); } StringRef Attribute::getValueAsString() const { if (!pImpl) return StringRef(); assert(isStringAttribute() && "Invalid attribute type to get the value as a string!"); return pImpl->getValueAsString(); } bool Attribute::hasAttribute(AttrKind Kind) const { return (pImpl && pImpl->hasAttribute(Kind)) || (!pImpl && Kind == None); } bool Attribute::hasAttribute(StringRef Kind) const { if (!isStringAttribute()) return false; return pImpl && pImpl->hasAttribute(Kind); } unsigned Attribute::getAlignment() const { assert(hasAttribute(Attribute::Alignment) && "Trying to get alignment from non-alignment attribute!"); return pImpl->getValueAsInt(); } unsigned Attribute::getStackAlignment() const { assert(hasAttribute(Attribute::StackAlignment) && "Trying to get alignment from non-alignment attribute!"); return pImpl->getValueAsInt(); } uint64_t Attribute::getDereferenceableBytes() const { assert(hasAttribute(Attribute::Dereferenceable) && "Trying to get dereferenceable bytes from " "non-dereferenceable attribute!"); return pImpl->getValueAsInt(); } uint64_t Attribute::getDereferenceableOrNullBytes() const { assert(hasAttribute(Attribute::DereferenceableOrNull) && "Trying to get dereferenceable bytes from " "non-dereferenceable attribute!"); return pImpl->getValueAsInt(); } std::pair<unsigned, Optional<unsigned>> Attribute::getAllocSizeArgs() const { assert(hasAttribute(Attribute::AllocSize) && "Trying to get allocsize args from non-allocsize attribute"); return unpackAllocSizeArgs(pImpl->getValueAsInt()); } std::string Attribute::getAsString(bool InAttrGrp) const { if (!pImpl) return ""; if (hasAttribute(Attribute::SanitizeAddress)) return "sanitize_address"; if (hasAttribute(Attribute::AlwaysInline)) return "alwaysinline"; if (hasAttribute(Attribute::ArgMemOnly)) return "argmemonly"; if (hasAttribute(Attribute::Builtin)) return "builtin"; if (hasAttribute(Attribute::ByVal)) return "byval"; if (hasAttribute(Attribute::Convergent)) return "convergent"; if (hasAttribute(Attribute::SwiftError)) return "swifterror"; if (hasAttribute(Attribute::SwiftSelf)) return "swiftself"; if (hasAttribute(Attribute::InaccessibleMemOnly)) return "inaccessiblememonly"; if (hasAttribute(Attribute::InaccessibleMemOrArgMemOnly)) return "inaccessiblemem_or_argmemonly"; if (hasAttribute(Attribute::InAlloca)) return "inalloca"; if (hasAttribute(Attribute::InlineHint)) return "inlinehint"; if (hasAttribute(Attribute::InReg)) return "inreg"; if (hasAttribute(Attribute::JumpTable)) return "jumptable"; if (hasAttribute(Attribute::MinSize)) return "minsize"; if (hasAttribute(Attribute::Naked)) return "naked"; if (hasAttribute(Attribute::Nest)) return "nest"; if (hasAttribute(Attribute::NoAlias)) return "noalias"; if (hasAttribute(Attribute::NoBuiltin)) return "nobuiltin"; if (hasAttribute(Attribute::NoCapture)) return "nocapture"; if (hasAttribute(Attribute::NoDuplicate)) return "noduplicate"; if (hasAttribute(Attribute::NoImplicitFloat)) return "noimplicitfloat"; if (hasAttribute(Attribute::NoInline)) return "noinline"; if (hasAttribute(Attribute::NonLazyBind)) return "nonlazybind"; if (hasAttribute(Attribute::NonNull)) return "nonnull"; if (hasAttribute(Attribute::NoRedZone)) return "noredzone"; if (hasAttribute(Attribute::NoReturn)) return "noreturn"; if (hasAttribute(Attribute::NoRecurse)) return "norecurse"; if (hasAttribute(Attribute::NoUnwind)) return "nounwind"; if (hasAttribute(Attribute::OptimizeNone)) return "optnone"; if (hasAttribute(Attribute::OptimizeForSize)) return "optsize"; if (hasAttribute(Attribute::ReadNone)) return "readnone"; if (hasAttribute(Attribute::ReadOnly)) return "readonly"; if (hasAttribute(Attribute::WriteOnly)) return "writeonly"; if (hasAttribute(Attribute::Returned)) return "returned"; if (hasAttribute(Attribute::ReturnsTwice)) return "returns_twice"; if (hasAttribute(Attribute::SExt)) return "signext"; if (hasAttribute(Attribute::StackProtect)) return "ssp"; if (hasAttribute(Attribute::StackProtectReq)) return "sspreq"; if (hasAttribute(Attribute::StackProtectStrong)) return "sspstrong"; if (hasAttribute(Attribute::SafeStack)) return "safestack"; if (hasAttribute(Attribute::StructRet)) return "sret"; if (hasAttribute(Attribute::SanitizeThread)) return "sanitize_thread"; if (hasAttribute(Attribute::SanitizeMemory)) return "sanitize_memory"; if (hasAttribute(Attribute::UWTable)) return "uwtable"; if (hasAttribute(Attribute::ZExt)) return "zeroext"; if (hasAttribute(Attribute::Cold)) return "cold"; // FIXME: These should be output like this: // // align=4 // alignstack=8 // if (hasAttribute(Attribute::Alignment)) { std::string Result; Result += "align"; Result += (InAttrGrp) ? "=" : " "; Result += utostr(getValueAsInt()); return Result; } auto AttrWithBytesToString = [&](const char *Name) { std::string Result; Result += Name; if (InAttrGrp) { Result += "="; Result += utostr(getValueAsInt()); } else { Result += "("; Result += utostr(getValueAsInt()); Result += ")"; } return Result; }; if (hasAttribute(Attribute::StackAlignment)) return AttrWithBytesToString("alignstack"); if (hasAttribute(Attribute::Dereferenceable)) return AttrWithBytesToString("dereferenceable"); if (hasAttribute(Attribute::DereferenceableOrNull)) return AttrWithBytesToString("dereferenceable_or_null"); if (hasAttribute(Attribute::AllocSize)) { unsigned ElemSize; Optional<unsigned> NumElems; std::tie(ElemSize, NumElems) = getAllocSizeArgs(); std::string Result = "allocsize("; Result += utostr(ElemSize); if (NumElems.hasValue()) { Result += ','; Result += utostr(*NumElems); } Result += ')'; return Result; } // Convert target-dependent attributes to strings of the form: // // "kind" // "kind" = "value" // if (isStringAttribute()) { std::string Result; Result += (Twine('"') + getKindAsString() + Twine('"')).str(); StringRef Val = pImpl->getValueAsString(); if (Val.empty()) return Result; Result += ("=\"" + Val + Twine('"')).str(); return Result; } llvm_unreachable("Unknown attribute"); } bool Attribute::operator<(Attribute A) const { if (!pImpl && !A.pImpl) return false; if (!pImpl) return true; if (!A.pImpl) return false; return *pImpl < *A.pImpl; } //===----------------------------------------------------------------------===// // AttributeImpl Definition //===----------------------------------------------------------------------===// // Pin the vtables to this file. AttributeImpl::~AttributeImpl() {} void EnumAttributeImpl::anchor() {} void IntAttributeImpl::anchor() {} void StringAttributeImpl::anchor() {} bool AttributeImpl::hasAttribute(Attribute::AttrKind A) const { if (isStringAttribute()) return false; return getKindAsEnum() == A; } bool AttributeImpl::hasAttribute(StringRef Kind) const { if (!isStringAttribute()) return false; return getKindAsString() == Kind; } Attribute::AttrKind AttributeImpl::getKindAsEnum() const { assert(isEnumAttribute() || isIntAttribute()); return static_cast<const EnumAttributeImpl *>(this)->getEnumKind(); } uint64_t AttributeImpl::getValueAsInt() const { assert(isIntAttribute()); return static_cast<const IntAttributeImpl *>(this)->getValue(); } StringRef AttributeImpl::getKindAsString() const { assert(isStringAttribute()); return static_cast<const StringAttributeImpl *>(this)->getStringKind(); } StringRef AttributeImpl::getValueAsString() const { assert(isStringAttribute()); return static_cast<const StringAttributeImpl *>(this)->getStringValue(); } bool AttributeImpl::operator<(const AttributeImpl &AI) const { // This sorts the attributes with Attribute::AttrKinds coming first (sorted // relative to their enum value) and then strings. if (isEnumAttribute()) { if (AI.isEnumAttribute()) return getKindAsEnum() < AI.getKindAsEnum(); if (AI.isIntAttribute()) return true; if (AI.isStringAttribute()) return true; } if (isIntAttribute()) { if (AI.isEnumAttribute()) return false; if (AI.isIntAttribute()) { if (getKindAsEnum() == AI.getKindAsEnum()) return getValueAsInt() < AI.getValueAsInt(); return getKindAsEnum() < AI.getKindAsEnum(); } if (AI.isStringAttribute()) return true; } if (AI.isEnumAttribute()) return false; if (AI.isIntAttribute()) return false; if (getKindAsString() == AI.getKindAsString()) return getValueAsString() < AI.getValueAsString(); return getKindAsString() < AI.getKindAsString(); } uint64_t AttributeImpl::getAttrMask(Attribute::AttrKind Val) { // FIXME: Remove this. switch (Val) { case Attribute::EndAttrKinds: llvm_unreachable("Synthetic enumerators which should never get here"); case Attribute::None: return 0; case Attribute::ZExt: return 1 << 0; case Attribute::SExt: return 1 << 1; case Attribute::NoReturn: return 1 << 2; case Attribute::InReg: return 1 << 3; case Attribute::StructRet: return 1 << 4; case Attribute::NoUnwind: return 1 << 5; case Attribute::NoAlias: return 1 << 6; case Attribute::ByVal: return 1 << 7; case Attribute::Nest: return 1 << 8; case Attribute::ReadNone: return 1 << 9; case Attribute::ReadOnly: return 1 << 10; case Attribute::NoInline: return 1 << 11; case Attribute::AlwaysInline: return 1 << 12; case Attribute::OptimizeForSize: return 1 << 13; case Attribute::StackProtect: return 1 << 14; case Attribute::StackProtectReq: return 1 << 15; case Attribute::Alignment: return 31 << 16; case Attribute::NoCapture: return 1 << 21; case Attribute::NoRedZone: return 1 << 22; case Attribute::NoImplicitFloat: return 1 << 23; case Attribute::Naked: return 1 << 24; case Attribute::InlineHint: return 1 << 25; case Attribute::StackAlignment: return 7 << 26; case Attribute::ReturnsTwice: return 1 << 29; case Attribute::UWTable: return 1 << 30; case Attribute::NonLazyBind: return 1U << 31; case Attribute::SanitizeAddress: return 1ULL << 32; case Attribute::MinSize: return 1ULL << 33; case Attribute::NoDuplicate: return 1ULL << 34; case Attribute::StackProtectStrong: return 1ULL << 35; case Attribute::SanitizeThread: return 1ULL << 36; case Attribute::SanitizeMemory: return 1ULL << 37; case Attribute::NoBuiltin: return 1ULL << 38; case Attribute::Returned: return 1ULL << 39; case Attribute::Cold: return 1ULL << 40; case Attribute::Builtin: return 1ULL << 41; case Attribute::OptimizeNone: return 1ULL << 42; case Attribute::InAlloca: return 1ULL << 43; case Attribute::NonNull: return 1ULL << 44; case Attribute::JumpTable: return 1ULL << 45; case Attribute::Convergent: return 1ULL << 46; case Attribute::SafeStack: return 1ULL << 47; case Attribute::NoRecurse: return 1ULL << 48; case Attribute::InaccessibleMemOnly: return 1ULL << 49; case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; case Attribute::SwiftSelf: return 1ULL << 51; case Attribute::SwiftError: return 1ULL << 52; case Attribute::WriteOnly: return 1ULL << 53; case Attribute::Dereferenceable: llvm_unreachable("dereferenceable attribute not supported in raw format"); break; case Attribute::DereferenceableOrNull: llvm_unreachable("dereferenceable_or_null attribute not supported in raw " "format"); break; case Attribute::ArgMemOnly: llvm_unreachable("argmemonly attribute not supported in raw format"); break; case Attribute::AllocSize: llvm_unreachable("allocsize not supported in raw format"); break; } llvm_unreachable("Unsupported attribute type"); } //===----------------------------------------------------------------------===// // AttributeSetNode Definition //===----------------------------------------------------------------------===// AttributeSetNode *AttributeSetNode::get(LLVMContext &C, ArrayRef<Attribute> Attrs) { if (Attrs.empty()) return nullptr; // Otherwise, build a key to look up the existing attributes. LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; SmallVector<Attribute, 8> SortedAttrs(Attrs.begin(), Attrs.end()); std::sort(SortedAttrs.begin(), SortedAttrs.end()); for (Attribute Attr : SortedAttrs) Attr.Profile(ID); void *InsertPoint; AttributeSetNode *PA = pImpl->AttrsSetNodes.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then create a // new one and insert it. if (!PA) { // Coallocate entries after the AttributeSetNode itself. void *Mem = ::operator new(totalSizeToAlloc<Attribute>(SortedAttrs.size())); PA = new (Mem) AttributeSetNode(SortedAttrs); pImpl->AttrsSetNodes.InsertNode(PA, InsertPoint); } // Return the AttributesListNode that we found or created. return PA; } bool AttributeSetNode::hasAttribute(StringRef Kind) const { for (Attribute I : *this) if (I.hasAttribute(Kind)) return true; return false; } Attribute AttributeSetNode::getAttribute(Attribute::AttrKind Kind) const { if (hasAttribute(Kind)) { for (Attribute I : *this) if (I.hasAttribute(Kind)) return I; } return Attribute(); } Attribute AttributeSetNode::getAttribute(StringRef Kind) const { for (Attribute I : *this) if (I.hasAttribute(Kind)) return I; return Attribute(); } unsigned AttributeSetNode::getAlignment() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::Alignment)) return I.getAlignment(); return 0; } unsigned AttributeSetNode::getStackAlignment() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::StackAlignment)) return I.getStackAlignment(); return 0; } uint64_t AttributeSetNode::getDereferenceableBytes() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::Dereferenceable)) return I.getDereferenceableBytes(); return 0; } uint64_t AttributeSetNode::getDereferenceableOrNullBytes() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::DereferenceableOrNull)) return I.getDereferenceableOrNullBytes(); return 0; } std::pair<unsigned, Optional<unsigned>> AttributeSetNode::getAllocSizeArgs() const { for (Attribute I : *this) if (I.hasAttribute(Attribute::AllocSize)) return I.getAllocSizeArgs(); return std::make_pair(0, 0); } std::string AttributeSetNode::getAsString(bool InAttrGrp) const { std::string Str; for (iterator I = begin(), E = end(); I != E; ++I) { if (I != begin()) Str += ' '; Str += I->getAsString(InAttrGrp); } return Str; } //===----------------------------------------------------------------------===// // AttributeSetImpl Definition //===----------------------------------------------------------------------===// uint64_t AttributeSetImpl::Raw(unsigned Index) const { for (unsigned I = 0, E = getNumSlots(); I != E; ++I) { if (getSlotIndex(I) != Index) continue; const AttributeSetNode *ASN = getSlotNode(I); uint64_t Mask = 0; for (AttributeSetNode::iterator II = ASN->begin(), IE = ASN->end(); II != IE; ++II) { Attribute Attr = *II; // This cannot handle string attributes. if (Attr.isStringAttribute()) continue; Attribute::AttrKind Kind = Attr.getKindAsEnum(); if (Kind == Attribute::Alignment) Mask |= (Log2_32(ASN->getAlignment()) + 1) << 16; else if (Kind == Attribute::StackAlignment) Mask |= (Log2_32(ASN->getStackAlignment()) + 1) << 26; else if (Kind == Attribute::Dereferenceable) llvm_unreachable("dereferenceable not supported in bit mask"); else if (Kind == Attribute::AllocSize) llvm_unreachable("allocsize not supported in bit mask"); else Mask |= AttributeImpl::getAttrMask(Kind); } return Mask; } return 0; } LLVM_DUMP_METHOD void AttributeSetImpl::dump() const { AttributeSet(const_cast<AttributeSetImpl *>(this)).dump(); } //===----------------------------------------------------------------------===// // AttributeSet Construction and Mutation Methods //===----------------------------------------------------------------------===// AttributeSet AttributeSet::getImpl(LLVMContext &C, ArrayRef<std::pair<unsigned, AttributeSetNode*> > Attrs) { LLVMContextImpl *pImpl = C.pImpl; FoldingSetNodeID ID; AttributeSetImpl::Profile(ID, Attrs); void *InsertPoint; AttributeSetImpl *PA = pImpl->AttrsLists.FindNodeOrInsertPos(ID, InsertPoint); // If we didn't find any existing attributes of the same shape then // create a new one and insert it. if (!PA) { // Coallocate entries after the AttributeSetImpl itself. void *Mem = ::operator new( AttributeSetImpl::totalSizeToAlloc<IndexAttrPair>(Attrs.size())); PA = new (Mem) AttributeSetImpl(C, Attrs); pImpl->AttrsLists.InsertNode(PA, InsertPoint); } // Return the AttributesList that we found or created. return AttributeSet(PA); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<std::pair<unsigned, Attribute> > Attrs){ // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeSet(); assert(std::is_sorted(Attrs.begin(), Attrs.end(), [](const std::pair<unsigned, Attribute> &LHS, const std::pair<unsigned, Attribute> &RHS) { return LHS.first < RHS.first; }) && "Misordered Attributes list!"); assert(std::none_of(Attrs.begin(), Attrs.end(), [](const std::pair<unsigned, Attribute> &Pair) { return Pair.second.hasAttribute(Attribute::None); }) && "Pointless attribute!"); // Create a vector if (unsigned, AttributeSetNode*) pairs from the attributes // list. SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrPairVec; for (ArrayRef<std::pair<unsigned, Attribute> >::iterator I = Attrs.begin(), E = Attrs.end(); I != E; ) { unsigned Index = I->first; SmallVector<Attribute, 4> AttrVec; while (I != E && I->first == Index) { AttrVec.push_back(I->second); ++I; } AttrPairVec.push_back(std::make_pair(Index, AttributeSetNode::get(C, AttrVec))); } return getImpl(C, AttrPairVec); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<std::pair<unsigned, AttributeSetNode*> > Attrs) { // If there are no attributes then return a null AttributesList pointer. if (Attrs.empty()) return AttributeSet(); return getImpl(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Index, const AttrBuilder &B) { if (!B.hasAttributes()) return AttributeSet(); // Add target-independent attributes. SmallVector<std::pair<unsigned, Attribute>, 8> Attrs; for (Attribute::AttrKind Kind = Attribute::None; Kind != Attribute::EndAttrKinds; Kind = Attribute::AttrKind(Kind + 1)) { if (!B.contains(Kind)) continue; Attribute Attr; switch (Kind) { case Attribute::Alignment: Attr = Attribute::getWithAlignment(C, B.getAlignment()); break; case Attribute::StackAlignment: Attr = Attribute::getWithStackAlignment(C, B.getStackAlignment()); break; case Attribute::Dereferenceable: Attr = Attribute::getWithDereferenceableBytes( C, B.getDereferenceableBytes()); break; case Attribute::DereferenceableOrNull: Attr = Attribute::getWithDereferenceableOrNullBytes( C, B.getDereferenceableOrNullBytes()); break; case Attribute::AllocSize: { auto A = B.getAllocSizeArgs(); Attr = Attribute::getWithAllocSizeArgs(C, A.first, A.second); break; } default: Attr = Attribute::get(C, Kind); } Attrs.push_back(std::make_pair(Index, Attr)); } // Add target-dependent (string) attributes. for (const auto &TDA : B.td_attrs()) Attrs.push_back( std::make_pair(Index, Attribute::get(C, TDA.first, TDA.second))); return get(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Index, ArrayRef<Attribute::AttrKind> Kinds) { SmallVector<std::pair<unsigned, Attribute>, 8> Attrs; for (Attribute::AttrKind K : Kinds) Attrs.push_back(std::make_pair(Index, Attribute::get(C, K))); return get(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, unsigned Index, ArrayRef<StringRef> Kinds) { SmallVector<std::pair<unsigned, Attribute>, 8> Attrs; for (StringRef K : Kinds) Attrs.push_back(std::make_pair(Index, Attribute::get(C, K))); return get(C, Attrs); } AttributeSet AttributeSet::get(LLVMContext &C, ArrayRef<AttributeSet> Attrs) { if (Attrs.empty()) return AttributeSet(); if (Attrs.size() == 1) return Attrs[0]; SmallVector<std::pair<unsigned, AttributeSetNode*>, 8> AttrNodeVec; AttributeSetImpl *A0 = Attrs[0].pImpl; if (A0) AttrNodeVec.append(A0->getNode(0), A0->getNode(A0->getNumSlots())); // Copy all attributes from Attrs into AttrNodeVec while keeping AttrNodeVec // ordered by index. Because we know that each list in Attrs is ordered by // index we only need to merge each successive list in rather than doing a // full sort. for (unsigned I = 1, E = Attrs.size(); I != E; ++I) { AttributeSetImpl *AS = Attrs[I].pImpl; if (!AS) continue; SmallVector<std::pair<unsigned, AttributeSetNode *>, 8>::iterator ANVI = AttrNodeVec.begin(), ANVE; for (const IndexAttrPair *AI = AS->getNode(0), *AE = AS->getNode(AS->getNumSlots()); AI != AE; ++AI) { ANVE = AttrNodeVec.end(); while (ANVI != ANVE && ANVI->first <= AI->first) ++ANVI; ANVI = AttrNodeVec.insert(ANVI, *AI) + 1; } } return getImpl(C, AttrNodeVec); } AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const { if (hasAttribute(Index, Kind)) return *this; return addAttributes(C, Index, AttributeSet::get(C, Index, Kind)); } AttributeSet AttributeSet::addAttribute(LLVMContext &C, unsigned Index, StringRef Kind, StringRef Value) const { llvm::AttrBuilder B; B.addAttribute(Kind, Value); return addAttributes(C, Index, AttributeSet::get(C, Index, B)); } AttributeSet AttributeSet::addAttribute(LLVMContext &C, ArrayRef<unsigned> Indices, Attribute A) const { unsigned I = 0, E = pImpl ? pImpl->getNumSlots() : 0; auto IdxI = Indices.begin(), IdxE = Indices.end(); SmallVector<AttributeSet, 4> AttrSet; while (I != E && IdxI != IdxE) { if (getSlotIndex(I) < *IdxI) AttrSet.emplace_back(getSlotAttributes(I++)); else if (getSlotIndex(I) > *IdxI) AttrSet.emplace_back(AttributeSet::get(C, std::make_pair(*IdxI++, A))); else { AttrBuilder B(getSlotAttributes(I), *IdxI); B.addAttribute(A); AttrSet.emplace_back(AttributeSet::get(C, *IdxI, B)); ++I; ++IdxI; } } while (I != E) AttrSet.emplace_back(getSlotAttributes(I++)); while (IdxI != IdxE) AttrSet.emplace_back(AttributeSet::get(C, std::make_pair(*IdxI++, A))); return get(C, AttrSet); } AttributeSet AttributeSet::addAttributes(LLVMContext &C, unsigned Index, AttributeSet Attrs) const { if (!pImpl) return Attrs; if (!Attrs.pImpl) return *this; #ifndef NDEBUG // FIXME it is not obvious how this should work for alignment. For now, say // we can't change a known alignment. unsigned OldAlign = getParamAlignment(Index); unsigned NewAlign = Attrs.getParamAlignment(Index); assert((!OldAlign || !NewAlign || OldAlign == NewAlign) && "Attempt to change alignment!"); #endif // Add the attribute slots before the one we're trying to add. SmallVector<AttributeSet, 4> AttrSet; uint64_t NumAttrs = pImpl->getNumSlots(); AttributeSet AS; uint64_t LastIndex = 0; for (unsigned I = 0, E = NumAttrs; I != E; ++I) { if (getSlotIndex(I) >= Index) { if (getSlotIndex(I) == Index) AS = getSlotAttributes(LastIndex++); break; } LastIndex = I + 1; AttrSet.push_back(getSlotAttributes(I)); } // Now add the attribute into the correct slot. There may already be an // AttributeSet there. AttrBuilder B(AS, Index); for (unsigned I = 0, E = Attrs.pImpl->getNumSlots(); I != E; ++I) if (Attrs.getSlotIndex(I) == Index) { for (AttributeSetImpl::iterator II = Attrs.pImpl->begin(I), IE = Attrs.pImpl->end(I); II != IE; ++II) B.addAttribute(*II); break; } AttrSet.push_back(AttributeSet::get(C, Index, B)); // Add the remaining attribute slots. for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I) AttrSet.push_back(getSlotAttributes(I)); return get(C, AttrSet); } AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Index, Attribute::AttrKind Kind) const { if (!hasAttribute(Index, Kind)) return *this; return removeAttributes(C, Index, AttributeSet::get(C, Index, Kind)); } AttributeSet AttributeSet::removeAttribute(LLVMContext &C, unsigned Index, StringRef Kind) const { if (!hasAttribute(Index, Kind)) return *this; return removeAttributes(C, Index, AttributeSet::get(C, Index, Kind)); } AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Index, AttributeSet Attrs) const { if (!pImpl) return AttributeSet(); if (!Attrs.pImpl) return *this; // FIXME it is not obvious how this should work for alignment. // For now, say we can't pass in alignment, which no current use does. assert(!Attrs.hasAttribute(Index, Attribute::Alignment) && "Attempt to change alignment!"); // Add the attribute slots before the one we're trying to add. SmallVector<AttributeSet, 4> AttrSet; uint64_t NumAttrs = pImpl->getNumSlots(); AttributeSet AS; uint64_t LastIndex = 0; for (unsigned I = 0, E = NumAttrs; I != E; ++I) { if (getSlotIndex(I) >= Index) { if (getSlotIndex(I) == Index) AS = getSlotAttributes(LastIndex++); break; } LastIndex = I + 1; AttrSet.push_back(getSlotAttributes(I)); } // Now remove the attribute from the correct slot. There may already be an // AttributeSet there. AttrBuilder B(AS, Index); for (unsigned I = 0, E = Attrs.pImpl->getNumSlots(); I != E; ++I) if (Attrs.getSlotIndex(I) == Index) { B.removeAttributes(Attrs.pImpl->getSlotAttributes(I), Index); break; } AttrSet.push_back(AttributeSet::get(C, Index, B)); // Add the remaining attribute slots. for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I) AttrSet.push_back(getSlotAttributes(I)); return get(C, AttrSet); } AttributeSet AttributeSet::removeAttributes(LLVMContext &C, unsigned Index, const AttrBuilder &Attrs) const { if (!pImpl) return AttributeSet(); // FIXME it is not obvious how this should work for alignment. // For now, say we can't pass in alignment, which no current use does. assert(!Attrs.hasAlignmentAttr() && "Attempt to change alignment!"); // Add the attribute slots before the one we're trying to add. SmallVector<AttributeSet, 4> AttrSet; uint64_t NumAttrs = pImpl->getNumSlots(); AttributeSet AS; uint64_t LastIndex = 0; for (unsigned I = 0, E = NumAttrs; I != E; ++I) { if (getSlotIndex(I) >= Index) { if (getSlotIndex(I) == Index) AS = getSlotAttributes(LastIndex++); break; } LastIndex = I + 1; AttrSet.push_back(getSlotAttributes(I)); } // Now remove the attribute from the correct slot. There may already be an // AttributeSet there. AttrBuilder B(AS, Index); B.remove(Attrs); AttrSet.push_back(AttributeSet::get(C, Index, B)); // Add the remaining attribute slots. for (unsigned I = LastIndex, E = NumAttrs; I < E; ++I) AttrSet.push_back(getSlotAttributes(I)); return get(C, AttrSet); } AttributeSet AttributeSet::addDereferenceableAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const { llvm::AttrBuilder B; B.addDereferenceableAttr(Bytes); return addAttributes(C, Index, AttributeSet::get(C, Index, B)); } AttributeSet AttributeSet::addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index, uint64_t Bytes) const { llvm::AttrBuilder B; B.addDereferenceableOrNullAttr(Bytes); return addAttributes(C, Index, AttributeSet::get(C, Index, B)); } AttributeSet AttributeSet::addAllocSizeAttr(LLVMContext &C, unsigned Index, unsigned ElemSizeArg, const Optional<unsigned> &NumElemsArg) { llvm::AttrBuilder B; B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); return addAttributes(C, Index, AttributeSet::get(C, Index, B)); } //===----------------------------------------------------------------------===// // AttributeSet Accessor Methods //===----------------------------------------------------------------------===// LLVMContext &AttributeSet::getContext() const { return pImpl->getContext(); } AttributeSet AttributeSet::getParamAttributes(unsigned Index) const { return pImpl && hasAttributes(Index) ? AttributeSet::get(pImpl->getContext(), ArrayRef<std::pair<unsigned, AttributeSetNode*> >( std::make_pair(Index, getAttributes(Index)))) : AttributeSet(); } AttributeSet AttributeSet::getRetAttributes() const { return pImpl && hasAttributes(ReturnIndex) ? AttributeSet::get(pImpl->getContext(), ArrayRef<std::pair<unsigned, AttributeSetNode*> >( std::make_pair(ReturnIndex, getAttributes(ReturnIndex)))) : AttributeSet(); } AttributeSet AttributeSet::getFnAttributes() const { return pImpl && hasAttributes(FunctionIndex) ? AttributeSet::get(pImpl->getContext(), ArrayRef<std::pair<unsigned, AttributeSetNode*> >( std::make_pair(FunctionIndex, getAttributes(FunctionIndex)))) : AttributeSet(); } bool AttributeSet::hasAttribute(unsigned Index, Attribute::AttrKind Kind) const{ AttributeSetNode *ASN = getAttributes(Index); return ASN && ASN->hasAttribute(Kind); } bool AttributeSet::hasAttribute(unsigned Index, StringRef Kind) const { AttributeSetNode *ASN = getAttributes(Index); return ASN && ASN->hasAttribute(Kind); } bool AttributeSet::hasAttributes(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN && ASN->hasAttributes(); } bool AttributeSet::hasFnAttribute(Attribute::AttrKind Kind) const { return pImpl && pImpl->hasFnAttribute(Kind); } bool AttributeSet::hasAttrSomewhere(Attribute::AttrKind Attr, unsigned *Index) const { if (!pImpl) return false; for (unsigned I = 0, E = pImpl->getNumSlots(); I != E; ++I) for (AttributeSetImpl::iterator II = pImpl->begin(I), IE = pImpl->end(I); II != IE; ++II) if (II->hasAttribute(Attr)) { if (Index) *Index = pImpl->getSlotIndex(I); return true; } return false; } Attribute AttributeSet::getAttribute(unsigned Index, Attribute::AttrKind Kind) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAttribute(Kind) : Attribute(); } Attribute AttributeSet::getAttribute(unsigned Index, StringRef Kind) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAttribute(Kind) : Attribute(); } unsigned AttributeSet::getParamAlignment(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAlignment() : 0; } unsigned AttributeSet::getStackAlignment(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getStackAlignment() : 0; } uint64_t AttributeSet::getDereferenceableBytes(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getDereferenceableBytes() : 0; } uint64_t AttributeSet::getDereferenceableOrNullBytes(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getDereferenceableOrNullBytes() : 0; } std::pair<unsigned, Optional<unsigned>> AttributeSet::getAllocSizeArgs(unsigned Index) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAllocSizeArgs() : std::make_pair(0, 0); } std::string AttributeSet::getAsString(unsigned Index, bool InAttrGrp) const { AttributeSetNode *ASN = getAttributes(Index); return ASN ? ASN->getAsString(InAttrGrp) : std::string(""); } AttributeSetNode *AttributeSet::getAttributes(unsigned Index) const { if (!pImpl) return nullptr; // Loop through to find the attribute node we want. for (unsigned I = 0, E = pImpl->getNumSlots(); I != E; ++I) if (pImpl->getSlotIndex(I) == Index) return pImpl->getSlotNode(I); return nullptr; } AttributeSet::iterator AttributeSet::begin(unsigned Slot) const { if (!pImpl) return ArrayRef<Attribute>().begin(); return pImpl->begin(Slot); } AttributeSet::iterator AttributeSet::end(unsigned Slot) const { if (!pImpl) return ArrayRef<Attribute>().end(); return pImpl->end(Slot); } //===----------------------------------------------------------------------===// // AttributeSet Introspection Methods //===----------------------------------------------------------------------===// unsigned AttributeSet::getNumSlots() const { return pImpl ? pImpl->getNumSlots() : 0; } unsigned AttributeSet::getSlotIndex(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumSlots() && "Slot # out of range!"); return pImpl->getSlotIndex(Slot); } AttributeSet AttributeSet::getSlotAttributes(unsigned Slot) const { assert(pImpl && Slot < pImpl->getNumSlots() && "Slot # out of range!"); return pImpl->getSlotAttributes(Slot); } uint64_t AttributeSet::Raw(unsigned Index) const { // FIXME: Remove this. return pImpl ? pImpl->Raw(Index) : 0; } LLVM_DUMP_METHOD void AttributeSet::dump() const { dbgs() << "PAL[\n"; for (unsigned i = 0, e = getNumSlots(); i < e; ++i) { uint64_t Index = getSlotIndex(i); dbgs() << " { "; if (Index == ~0U) dbgs() << "~0U"; else dbgs() << Index; dbgs() << " => " << getAsString(Index) << " }\n"; } dbgs() << "]\n"; } //===----------------------------------------------------------------------===// // AttrBuilder Method Implementations //===----------------------------------------------------------------------===// AttrBuilder::AttrBuilder(AttributeSet AS, unsigned Index) : Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0), DerefOrNullBytes(0), AllocSizeArgs(0) { AttributeSetImpl *pImpl = AS.pImpl; if (!pImpl) return; for (unsigned I = 0, E = pImpl->getNumSlots(); I != E; ++I) { if (pImpl->getSlotIndex(I) != Index) continue; for (AttributeSetImpl::iterator II = pImpl->begin(I), IE = pImpl->end(I); II != IE; ++II) addAttribute(*II); break; } } void AttrBuilder::clear() { Attrs.reset(); TargetDepAttrs.clear(); Alignment = StackAlignment = DerefBytes = DerefOrNullBytes = 0; AllocSizeArgs = 0; } AttrBuilder &AttrBuilder::addAttribute(Attribute::AttrKind Val) { assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!"); assert(Val != Attribute::Alignment && Val != Attribute::StackAlignment && Val != Attribute::Dereferenceable && Val != Attribute::AllocSize && "Adding integer attribute without adding a value!"); Attrs[Val] = true; return *this; } AttrBuilder &AttrBuilder::addAttribute(Attribute Attr) { if (Attr.isStringAttribute()) { addAttribute(Attr.getKindAsString(), Attr.getValueAsString()); return *this; } Attribute::AttrKind Kind = Attr.getKindAsEnum(); Attrs[Kind] = true; if (Kind == Attribute::Alignment) Alignment = Attr.getAlignment(); else if (Kind == Attribute::StackAlignment) StackAlignment = Attr.getStackAlignment(); else if (Kind == Attribute::Dereferenceable) DerefBytes = Attr.getDereferenceableBytes(); else if (Kind == Attribute::DereferenceableOrNull) DerefOrNullBytes = Attr.getDereferenceableOrNullBytes(); else if (Kind == Attribute::AllocSize) AllocSizeArgs = Attr.getValueAsInt(); return *this; } AttrBuilder &AttrBuilder::addAttribute(StringRef A, StringRef V) { TargetDepAttrs[A] = V; return *this; } AttrBuilder &AttrBuilder::removeAttribute(Attribute::AttrKind Val) { assert((unsigned)Val < Attribute::EndAttrKinds && "Attribute out of range!"); Attrs[Val] = false; if (Val == Attribute::Alignment) Alignment = 0; else if (Val == Attribute::StackAlignment) StackAlignment = 0; else if (Val == Attribute::Dereferenceable) DerefBytes = 0; else if (Val == Attribute::DereferenceableOrNull) DerefOrNullBytes = 0; else if (Val == Attribute::AllocSize) AllocSizeArgs = 0; return *this; } AttrBuilder &AttrBuilder::removeAttributes(AttributeSet A, uint64_t Index) { unsigned Slot = ~0U; for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I) if (A.getSlotIndex(I) == Index) { Slot = I; break; } assert(Slot != ~0U && "Couldn't find index in AttributeSet!"); for (AttributeSet::iterator I = A.begin(Slot), E = A.end(Slot); I != E; ++I) { Attribute Attr = *I; if (Attr.isEnumAttribute() || Attr.isIntAttribute()) { removeAttribute(Attr.getKindAsEnum()); } else { assert(Attr.isStringAttribute() && "Invalid attribute type!"); removeAttribute(Attr.getKindAsString()); } } return *this; } AttrBuilder &AttrBuilder::removeAttribute(StringRef A) { std::map<std::string, std::string>::iterator I = TargetDepAttrs.find(A); if (I != TargetDepAttrs.end()) TargetDepAttrs.erase(I); return *this; } std::pair<unsigned, Optional<unsigned>> AttrBuilder::getAllocSizeArgs() const { return unpackAllocSizeArgs(AllocSizeArgs); } AttrBuilder &AttrBuilder::addAlignmentAttr(unsigned Align) { if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x40000000 && "Alignment too large."); Attrs[Attribute::Alignment] = true; Alignment = Align; return *this; } AttrBuilder &AttrBuilder::addStackAlignmentAttr(unsigned Align) { // Default alignment, allow the target to define how to align it. if (Align == 0) return *this; assert(isPowerOf2_32(Align) && "Alignment must be a power of two."); assert(Align <= 0x100 && "Alignment too large."); Attrs[Attribute::StackAlignment] = true; StackAlignment = Align; return *this; } AttrBuilder &AttrBuilder::addDereferenceableAttr(uint64_t Bytes) { if (Bytes == 0) return *this; Attrs[Attribute::Dereferenceable] = true; DerefBytes = Bytes; return *this; } AttrBuilder &AttrBuilder::addDereferenceableOrNullAttr(uint64_t Bytes) { if (Bytes == 0) return *this; Attrs[Attribute::DereferenceableOrNull] = true; DerefOrNullBytes = Bytes; return *this; } AttrBuilder &AttrBuilder::addAllocSizeAttr(unsigned ElemSize, const Optional<unsigned> &NumElems) { return addAllocSizeAttrFromRawRepr(packAllocSizeArgs(ElemSize, NumElems)); } AttrBuilder &AttrBuilder::addAllocSizeAttrFromRawRepr(uint64_t RawArgs) { // (0, 0) is our "not present" value, so we need to check for it here. assert(RawArgs && "Invalid allocsize arguments -- given allocsize(0, 0)"); Attrs[Attribute::AllocSize] = true; // Reuse existing machinery to store this as a single 64-bit integer so we can // save a few bytes over using a pair<unsigned, Optional<unsigned>>. AllocSizeArgs = RawArgs; return *this; } AttrBuilder &AttrBuilder::merge(const AttrBuilder &B) { // FIXME: What if both have alignments, but they don't match?! if (!Alignment) Alignment = B.Alignment; if (!StackAlignment) StackAlignment = B.StackAlignment; if (!DerefBytes) DerefBytes = B.DerefBytes; if (!DerefOrNullBytes) DerefOrNullBytes = B.DerefOrNullBytes; if (!AllocSizeArgs) AllocSizeArgs = B.AllocSizeArgs; Attrs |= B.Attrs; for (auto I : B.td_attrs()) TargetDepAttrs[I.first] = I.second; return *this; } AttrBuilder &AttrBuilder::remove(const AttrBuilder &B) { // FIXME: What if both have alignments, but they don't match?! if (B.Alignment) Alignment = 0; if (B.StackAlignment) StackAlignment = 0; if (B.DerefBytes) DerefBytes = 0; if (B.DerefOrNullBytes) DerefOrNullBytes = 0; if (B.AllocSizeArgs) AllocSizeArgs = 0; Attrs &= ~B.Attrs; for (auto I : B.td_attrs()) TargetDepAttrs.erase(I.first); return *this; } bool AttrBuilder::overlaps(const AttrBuilder &B) const { // First check if any of the target independent attributes overlap. if ((Attrs & B.Attrs).any()) return true; // Then check if any target dependent ones do. for (auto I : td_attrs()) if (B.contains(I.first)) return true; return false; } bool AttrBuilder::contains(StringRef A) const { return TargetDepAttrs.find(A) != TargetDepAttrs.end(); } bool AttrBuilder::hasAttributes() const { return !Attrs.none() || !TargetDepAttrs.empty(); } bool AttrBuilder::hasAttributes(AttributeSet A, uint64_t Index) const { unsigned Slot = ~0U; for (unsigned I = 0, E = A.getNumSlots(); I != E; ++I) if (A.getSlotIndex(I) == Index) { Slot = I; break; } assert(Slot != ~0U && "Couldn't find the index!"); for (AttributeSet::iterator I = A.begin(Slot), E = A.end(Slot); I != E; ++I) { Attribute Attr = *I; if (Attr.isEnumAttribute() || Attr.isIntAttribute()) { if (Attrs[I->getKindAsEnum()]) return true; } else { assert(Attr.isStringAttribute() && "Invalid attribute kind!"); return TargetDepAttrs.find(Attr.getKindAsString())!=TargetDepAttrs.end(); } } return false; } bool AttrBuilder::hasAlignmentAttr() const { return Alignment != 0; } bool AttrBuilder::operator==(const AttrBuilder &B) { if (Attrs != B.Attrs) return false; for (td_const_iterator I = TargetDepAttrs.begin(), E = TargetDepAttrs.end(); I != E; ++I) if (B.TargetDepAttrs.find(I->first) == B.TargetDepAttrs.end()) return false; return Alignment == B.Alignment && StackAlignment == B.StackAlignment && DerefBytes == B.DerefBytes; } AttrBuilder &AttrBuilder::addRawValue(uint64_t Val) { // FIXME: Remove this in 4.0. if (!Val) return *this; for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; I = Attribute::AttrKind(I + 1)) { if (I == Attribute::Dereferenceable || I == Attribute::DereferenceableOrNull || I == Attribute::ArgMemOnly || I == Attribute::AllocSize) continue; if (uint64_t A = (Val & AttributeImpl::getAttrMask(I))) { Attrs[I] = true; if (I == Attribute::Alignment) Alignment = 1ULL << ((A >> 16) - 1); else if (I == Attribute::StackAlignment) StackAlignment = 1ULL << ((A >> 26)-1); } } return *this; } //===----------------------------------------------------------------------===// // AttributeFuncs Function Defintions //===----------------------------------------------------------------------===// /// \brief Which attributes cannot be applied to a type. AttrBuilder AttributeFuncs::typeIncompatible(Type *Ty) { AttrBuilder Incompatible; if (!Ty->isIntegerTy()) // Attribute that only apply to integers. Incompatible.addAttribute(Attribute::SExt) .addAttribute(Attribute::ZExt); if (!Ty->isPointerTy()) // Attribute that only apply to pointers. Incompatible.addAttribute(Attribute::ByVal) .addAttribute(Attribute::Nest) .addAttribute(Attribute::NoAlias) .addAttribute(Attribute::NoCapture) .addAttribute(Attribute::NonNull) .addDereferenceableAttr(1) // the int here is ignored .addDereferenceableOrNullAttr(1) // the int here is ignored .addAttribute(Attribute::ReadNone) .addAttribute(Attribute::ReadOnly) .addAttribute(Attribute::StructRet) .addAttribute(Attribute::InAlloca); return Incompatible; } template<typename AttrClass> static bool isEqual(const Function &Caller, const Function &Callee) { return Caller.getFnAttribute(AttrClass::getKind()) == Callee.getFnAttribute(AttrClass::getKind()); } /// \brief Compute the logical AND of the attributes of the caller and the /// callee. /// /// This function sets the caller's attribute to false if the callee's attribute /// is false. template<typename AttrClass> static void setAND(Function &Caller, const Function &Callee) { if (AttrClass::isSet(Caller, AttrClass::getKind()) && !AttrClass::isSet(Callee, AttrClass::getKind())) AttrClass::set(Caller, AttrClass::getKind(), false); } /// \brief Compute the logical OR of the attributes of the caller and the /// callee. /// /// This function sets the caller's attribute to true if the callee's attribute /// is true. template<typename AttrClass> static void setOR(Function &Caller, const Function &Callee) { if (!AttrClass::isSet(Caller, AttrClass::getKind()) && AttrClass::isSet(Callee, AttrClass::getKind())) AttrClass::set(Caller, AttrClass::getKind(), true); } /// \brief If the inlined function had a higher stack protection level than the /// calling function, then bump up the caller's stack protection level. static void adjustCallerSSPLevel(Function &Caller, const Function &Callee) { // If upgrading the SSP attribute, clear out the old SSP Attributes first. // Having multiple SSP attributes doesn't actually hurt, but it adds useless // clutter to the IR. AttrBuilder B; B.addAttribute(Attribute::StackProtect) .addAttribute(Attribute::StackProtectStrong) .addAttribute(Attribute::StackProtectReq); AttributeSet OldSSPAttr = AttributeSet::get(Caller.getContext(), AttributeSet::FunctionIndex, B); if (Callee.hasFnAttribute(Attribute::StackProtectReq)) { Caller.removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); Caller.addFnAttr(Attribute::StackProtectReq); } else if (Callee.hasFnAttribute(Attribute::StackProtectStrong) && !Caller.hasFnAttribute(Attribute::StackProtectReq)) { Caller.removeAttributes(AttributeSet::FunctionIndex, OldSSPAttr); Caller.addFnAttr(Attribute::StackProtectStrong); } else if (Callee.hasFnAttribute(Attribute::StackProtect) && !Caller.hasFnAttribute(Attribute::StackProtectReq) && !Caller.hasFnAttribute(Attribute::StackProtectStrong)) Caller.addFnAttr(Attribute::StackProtect); } #define GET_ATTR_COMPAT_FUNC #include "AttributesCompatFunc.inc" bool AttributeFuncs::areInlineCompatible(const Function &Caller, const Function &Callee) { return hasCompatibleFnAttrs(Caller, Callee); } void AttributeFuncs::mergeAttributesForInlining(Function &Caller, const Function &Callee) { mergeFnAttrs(Caller, Callee); }