//===- Dominators.cpp - Dominator Calculation -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements simple dominator construction algorithms for finding // forward dominators. Postdominators are available in libanalysis, but are not // included in libvmcore, because it's not needed. Forward dominators are // needed to support the Verifier pass. // //===----------------------------------------------------------------------===// #include "llvm/IR/Dominators.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/PassManager.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GenericDomTreeConstruction.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> using namespace llvm; // Always verify dominfo if expensive checking is enabled. #ifdef EXPENSIVE_CHECKS static bool VerifyDomInfo = true; #else static bool VerifyDomInfo = false; #endif static cl::opt<bool,true> VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo), cl::desc("Verify dominator info (time consuming)")); bool BasicBlockEdge::isSingleEdge() const { const TerminatorInst *TI = Start->getTerminator(); unsigned NumEdgesToEnd = 0; for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) { if (TI->getSuccessor(i) == End) ++NumEdgesToEnd; if (NumEdgesToEnd >= 2) return false; } assert(NumEdgesToEnd == 1); return true; } //===----------------------------------------------------------------------===// // DominatorTree Implementation //===----------------------------------------------------------------------===// // // Provide public access to DominatorTree information. Implementation details // can be found in Dominators.h, GenericDomTree.h, and // GenericDomTreeConstruction.h. // //===----------------------------------------------------------------------===// template class llvm::DomTreeNodeBase<BasicBlock>; template class llvm::DominatorTreeBase<BasicBlock>; template void llvm::Calculate<Function, BasicBlock *>( DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT, Function &F); template void llvm::Calculate<Function, Inverse<BasicBlock *>>( DominatorTreeBase<GraphTraits<Inverse<BasicBlock *>>::NodeType> &DT, Function &F); // dominates - Return true if Def dominates a use in User. This performs // the special checks necessary if Def and User are in the same basic block. // Note that Def doesn't dominate a use in Def itself! bool DominatorTree::dominates(const Instruction *Def, const Instruction *User) const { const BasicBlock *UseBB = User->getParent(); const BasicBlock *DefBB = Def->getParent(); // Any unreachable use is dominated, even if Def == User. if (!isReachableFromEntry(UseBB)) return true; // Unreachable definitions don't dominate anything. if (!isReachableFromEntry(DefBB)) return false; // An instruction doesn't dominate a use in itself. if (Def == User) return false; // The value defined by an invoke dominates an instruction only if it // dominates every instruction in UseBB. // A PHI is dominated only if the instruction dominates every possible use in // the UseBB. if (isa<InvokeInst>(Def) || isa<PHINode>(User)) return dominates(Def, UseBB); if (DefBB != UseBB) return dominates(DefBB, UseBB); // Loop through the basic block until we find Def or User. BasicBlock::const_iterator I = DefBB->begin(); for (; &*I != Def && &*I != User; ++I) /*empty*/; return &*I == Def; } // true if Def would dominate a use in any instruction in UseBB. // note that dominates(Def, Def->getParent()) is false. bool DominatorTree::dominates(const Instruction *Def, const BasicBlock *UseBB) const { const BasicBlock *DefBB = Def->getParent(); // Any unreachable use is dominated, even if DefBB == UseBB. if (!isReachableFromEntry(UseBB)) return true; // Unreachable definitions don't dominate anything. if (!isReachableFromEntry(DefBB)) return false; if (DefBB == UseBB) return false; // Invoke results are only usable in the normal destination, not in the // exceptional destination. if (const auto *II = dyn_cast<InvokeInst>(Def)) { BasicBlock *NormalDest = II->getNormalDest(); BasicBlockEdge E(DefBB, NormalDest); return dominates(E, UseBB); } return dominates(DefBB, UseBB); } bool DominatorTree::dominates(const BasicBlockEdge &BBE, const BasicBlock *UseBB) const { // Assert that we have a single edge. We could handle them by simply // returning false, but since isSingleEdge is linear on the number of // edges, the callers can normally handle them more efficiently. assert(BBE.isSingleEdge() && "This function is not efficient in handling multiple edges"); // If the BB the edge ends in doesn't dominate the use BB, then the // edge also doesn't. const BasicBlock *Start = BBE.getStart(); const BasicBlock *End = BBE.getEnd(); if (!dominates(End, UseBB)) return false; // Simple case: if the end BB has a single predecessor, the fact that it // dominates the use block implies that the edge also does. if (End->getSinglePredecessor()) return true; // The normal edge from the invoke is critical. Conceptually, what we would // like to do is split it and check if the new block dominates the use. // With X being the new block, the graph would look like: // // DefBB // /\ . . // / \ . . // / \ . . // / \ | | // A X B C // | \ | / // . \|/ // . NormalDest // . // // Given the definition of dominance, NormalDest is dominated by X iff X // dominates all of NormalDest's predecessors (X, B, C in the example). X // trivially dominates itself, so we only have to find if it dominates the // other predecessors. Since the only way out of X is via NormalDest, X can // only properly dominate a node if NormalDest dominates that node too. for (const_pred_iterator PI = pred_begin(End), E = pred_end(End); PI != E; ++PI) { const BasicBlock *BB = *PI; if (BB == Start) continue; if (!dominates(End, BB)) return false; } return true; } bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const { // Assert that we have a single edge. We could handle them by simply // returning false, but since isSingleEdge is linear on the number of // edges, the callers can normally handle them more efficiently. assert(BBE.isSingleEdge() && "This function is not efficient in handling multiple edges"); Instruction *UserInst = cast<Instruction>(U.getUser()); // A PHI in the end of the edge is dominated by it. PHINode *PN = dyn_cast<PHINode>(UserInst); if (PN && PN->getParent() == BBE.getEnd() && PN->getIncomingBlock(U) == BBE.getStart()) return true; // Otherwise use the edge-dominates-block query, which // handles the crazy critical edge cases properly. const BasicBlock *UseBB; if (PN) UseBB = PN->getIncomingBlock(U); else UseBB = UserInst->getParent(); return dominates(BBE, UseBB); } bool DominatorTree::dominates(const Instruction *Def, const Use &U) const { Instruction *UserInst = cast<Instruction>(U.getUser()); const BasicBlock *DefBB = Def->getParent(); // Determine the block in which the use happens. PHI nodes use // their operands on edges; simulate this by thinking of the use // happening at the end of the predecessor block. const BasicBlock *UseBB; if (PHINode *PN = dyn_cast<PHINode>(UserInst)) UseBB = PN->getIncomingBlock(U); else UseBB = UserInst->getParent(); // Any unreachable use is dominated, even if Def == User. if (!isReachableFromEntry(UseBB)) return true; // Unreachable definitions don't dominate anything. if (!isReachableFromEntry(DefBB)) return false; // Invoke instructions define their return values on the edges to their normal // successors, so we have to handle them specially. // Among other things, this means they don't dominate anything in // their own block, except possibly a phi, so we don't need to // walk the block in any case. if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) { BasicBlock *NormalDest = II->getNormalDest(); BasicBlockEdge E(DefBB, NormalDest); return dominates(E, U); } // If the def and use are in different blocks, do a simple CFG dominator // tree query. if (DefBB != UseBB) return dominates(DefBB, UseBB); // Ok, def and use are in the same block. If the def is an invoke, it // doesn't dominate anything in the block. If it's a PHI, it dominates // everything in the block. if (isa<PHINode>(UserInst)) return true; // Otherwise, just loop through the basic block until we find Def or User. BasicBlock::const_iterator I = DefBB->begin(); for (; &*I != Def && &*I != UserInst; ++I) /*empty*/; return &*I != UserInst; } bool DominatorTree::isReachableFromEntry(const Use &U) const { Instruction *I = dyn_cast<Instruction>(U.getUser()); // ConstantExprs aren't really reachable from the entry block, but they // don't need to be treated like unreachable code either. if (!I) return true; // PHI nodes use their operands on their incoming edges. if (PHINode *PN = dyn_cast<PHINode>(I)) return isReachableFromEntry(PN->getIncomingBlock(U)); // Everything else uses their operands in their own block. return isReachableFromEntry(I->getParent()); } void DominatorTree::verifyDomTree() const { Function &F = *getRoot()->getParent(); DominatorTree OtherDT; OtherDT.recalculate(F); if (compare(OtherDT)) { errs() << "DominatorTree is not up to date!\nComputed:\n"; print(errs()); errs() << "\nActual:\n"; OtherDT.print(errs()); abort(); } } //===----------------------------------------------------------------------===// // DominatorTreeAnalysis and related pass implementations //===----------------------------------------------------------------------===// // // This implements the DominatorTreeAnalysis which is used with the new pass // manager. It also implements some methods from utility passes. // //===----------------------------------------------------------------------===// DominatorTree DominatorTreeAnalysis::run(Function &F, AnalysisManager<Function> &) { DominatorTree DT; DT.recalculate(F); return DT; } char DominatorTreeAnalysis::PassID; DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses DominatorTreePrinterPass::run(Function &F, FunctionAnalysisManager &AM) { OS << "DominatorTree for function: " << F.getName() << "\n"; AM.getResult<DominatorTreeAnalysis>(F).print(OS); return PreservedAnalyses::all(); } PreservedAnalyses DominatorTreeVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { AM.getResult<DominatorTreeAnalysis>(F).verifyDomTree(); return PreservedAnalyses::all(); } //===----------------------------------------------------------------------===// // DominatorTreeWrapperPass Implementation //===----------------------------------------------------------------------===// // // The implementation details of the wrapper pass that holds a DominatorTree // suitable for use with the legacy pass manager. // //===----------------------------------------------------------------------===// char DominatorTreeWrapperPass::ID = 0; INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree", "Dominator Tree Construction", true, true) bool DominatorTreeWrapperPass::runOnFunction(Function &F) { DT.recalculate(F); return false; } void DominatorTreeWrapperPass::verifyAnalysis() const { if (VerifyDomInfo) DT.verifyDomTree(); } void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const { DT.print(OS); }