//===-- Module.cpp - Implement the Module class ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Module class for the IR library. // //===----------------------------------------------------------------------===// #include "llvm/IR/Module.h" #include "SymbolTableListTraitsImpl.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/GVMaterializer.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/TypeFinder.h" #include "llvm/Support/Dwarf.h" #include "llvm/Support/Path.h" #include "llvm/Support/RandomNumberGenerator.h" #include <algorithm> #include <cstdarg> #include <cstdlib> using namespace llvm; //===----------------------------------------------------------------------===// // Methods to implement the globals and functions lists. // // Explicit instantiations of SymbolTableListTraits since some of the methods // are not in the public header file. template class llvm::SymbolTableListTraits<Function>; template class llvm::SymbolTableListTraits<GlobalVariable>; template class llvm::SymbolTableListTraits<GlobalAlias>; template class llvm::SymbolTableListTraits<GlobalIFunc>; //===----------------------------------------------------------------------===// // Primitive Module methods. // Module::Module(StringRef MID, LLVMContext &C) : Context(C), Materializer(), ModuleID(MID), SourceFileName(MID), DL("") { ValSymTab = new ValueSymbolTable(); NamedMDSymTab = new StringMap<NamedMDNode *>(); Context.addModule(this); } Module::~Module() { Context.removeModule(this); dropAllReferences(); GlobalList.clear(); FunctionList.clear(); AliasList.clear(); IFuncList.clear(); NamedMDList.clear(); delete ValSymTab; delete static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab); } RandomNumberGenerator *Module::createRNG(const Pass* P) const { SmallString<32> Salt(P->getPassName()); // This RNG is guaranteed to produce the same random stream only // when the Module ID and thus the input filename is the same. This // might be problematic if the input filename extension changes // (e.g. from .c to .bc or .ll). // // We could store this salt in NamedMetadata, but this would make // the parameter non-const. This would unfortunately make this // interface unusable by any Machine passes, since they only have a // const reference to their IR Module. Alternatively we can always // store salt metadata from the Module constructor. Salt += sys::path::filename(getModuleIdentifier()); return new RandomNumberGenerator(Salt); } /// getNamedValue - Return the first global value in the module with /// the specified name, of arbitrary type. This method returns null /// if a global with the specified name is not found. GlobalValue *Module::getNamedValue(StringRef Name) const { return cast_or_null<GlobalValue>(getValueSymbolTable().lookup(Name)); } /// getMDKindID - Return a unique non-zero ID for the specified metadata kind. /// This ID is uniqued across modules in the current LLVMContext. unsigned Module::getMDKindID(StringRef Name) const { return Context.getMDKindID(Name); } /// getMDKindNames - Populate client supplied SmallVector with the name for /// custom metadata IDs registered in this LLVMContext. ID #0 is not used, /// so it is filled in as an empty string. void Module::getMDKindNames(SmallVectorImpl<StringRef> &Result) const { return Context.getMDKindNames(Result); } void Module::getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const { return Context.getOperandBundleTags(Result); } //===----------------------------------------------------------------------===// // Methods for easy access to the functions in the module. // // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return // it. This is nice because it allows most passes to get away with not handling // the symbol table directly for this common task. // Constant *Module::getOrInsertFunction(StringRef Name, FunctionType *Ty, AttributeSet AttributeList) { // See if we have a definition for the specified function already. GlobalValue *F = getNamedValue(Name); if (!F) { // Nope, add it Function *New = Function::Create(Ty, GlobalVariable::ExternalLinkage, Name); if (!New->isIntrinsic()) // Intrinsics get attrs set on construction New->setAttributes(AttributeList); FunctionList.push_back(New); return New; // Return the new prototype. } // If the function exists but has the wrong type, return a bitcast to the // right type. if (F->getType() != PointerType::getUnqual(Ty)) return ConstantExpr::getBitCast(F, PointerType::getUnqual(Ty)); // Otherwise, we just found the existing function or a prototype. return F; } Constant *Module::getOrInsertFunction(StringRef Name, FunctionType *Ty) { return getOrInsertFunction(Name, Ty, AttributeSet()); } // getOrInsertFunction - Look up the specified function in the module symbol // table. If it does not exist, add a prototype for the function and return it. // This version of the method takes a null terminated list of function // arguments, which makes it easier for clients to use. // Constant *Module::getOrInsertFunction(StringRef Name, AttributeSet AttributeList, Type *RetTy, ...) { va_list Args; va_start(Args, RetTy); // Build the list of argument types... std::vector<Type*> ArgTys; while (Type *ArgTy = va_arg(Args, Type*)) ArgTys.push_back(ArgTy); va_end(Args); // Build the function type and chain to the other getOrInsertFunction... return getOrInsertFunction(Name, FunctionType::get(RetTy, ArgTys, false), AttributeList); } Constant *Module::getOrInsertFunction(StringRef Name, Type *RetTy, ...) { va_list Args; va_start(Args, RetTy); // Build the list of argument types... std::vector<Type*> ArgTys; while (Type *ArgTy = va_arg(Args, Type*)) ArgTys.push_back(ArgTy); va_end(Args); // Build the function type and chain to the other getOrInsertFunction... return getOrInsertFunction(Name, FunctionType::get(RetTy, ArgTys, false), AttributeSet()); } // getFunction - Look up the specified function in the module symbol table. // If it does not exist, return null. // Function *Module::getFunction(StringRef Name) const { return dyn_cast_or_null<Function>(getNamedValue(Name)); } //===----------------------------------------------------------------------===// // Methods for easy access to the global variables in the module. // /// getGlobalVariable - Look up the specified global variable in the module /// symbol table. If it does not exist, return null. The type argument /// should be the underlying type of the global, i.e., it should not have /// the top-level PointerType, which represents the address of the global. /// If AllowLocal is set to true, this function will return types that /// have an local. By default, these types are not returned. /// GlobalVariable *Module::getGlobalVariable(StringRef Name, bool AllowLocal) { if (GlobalVariable *Result = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name))) if (AllowLocal || !Result->hasLocalLinkage()) return Result; return nullptr; } /// getOrInsertGlobal - Look up the specified global in the module symbol table. /// 1. If it does not exist, add a declaration of the global and return it. /// 2. Else, the global exists but has the wrong type: return the function /// with a constantexpr cast to the right type. /// 3. Finally, if the existing global is the correct declaration, return the /// existing global. Constant *Module::getOrInsertGlobal(StringRef Name, Type *Ty) { // See if we have a definition for the specified global already. GlobalVariable *GV = dyn_cast_or_null<GlobalVariable>(getNamedValue(Name)); if (!GV) { // Nope, add it GlobalVariable *New = new GlobalVariable(*this, Ty, false, GlobalVariable::ExternalLinkage, nullptr, Name); return New; // Return the new declaration. } // If the variable exists but has the wrong type, return a bitcast to the // right type. Type *GVTy = GV->getType(); PointerType *PTy = PointerType::get(Ty, GVTy->getPointerAddressSpace()); if (GVTy != PTy) return ConstantExpr::getBitCast(GV, PTy); // Otherwise, we just found the existing function or a prototype. return GV; } //===----------------------------------------------------------------------===// // Methods for easy access to the global variables in the module. // // getNamedAlias - Look up the specified global in the module symbol table. // If it does not exist, return null. // GlobalAlias *Module::getNamedAlias(StringRef Name) const { return dyn_cast_or_null<GlobalAlias>(getNamedValue(Name)); } GlobalIFunc *Module::getNamedIFunc(StringRef Name) const { return dyn_cast_or_null<GlobalIFunc>(getNamedValue(Name)); } /// getNamedMetadata - Return the first NamedMDNode in the module with the /// specified name. This method returns null if a NamedMDNode with the /// specified name is not found. NamedMDNode *Module::getNamedMetadata(const Twine &Name) const { SmallString<256> NameData; StringRef NameRef = Name.toStringRef(NameData); return static_cast<StringMap<NamedMDNode*> *>(NamedMDSymTab)->lookup(NameRef); } /// getOrInsertNamedMetadata - Return the first named MDNode in the module /// with the specified name. This method returns a new NamedMDNode if a /// NamedMDNode with the specified name is not found. NamedMDNode *Module::getOrInsertNamedMetadata(StringRef Name) { NamedMDNode *&NMD = (*static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab))[Name]; if (!NMD) { NMD = new NamedMDNode(Name); NMD->setParent(this); NamedMDList.push_back(NMD); } return NMD; } /// eraseNamedMetadata - Remove the given NamedMDNode from this module and /// delete it. void Module::eraseNamedMetadata(NamedMDNode *NMD) { static_cast<StringMap<NamedMDNode *> *>(NamedMDSymTab)->erase(NMD->getName()); NamedMDList.erase(NMD->getIterator()); } bool Module::isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB) { if (ConstantInt *Behavior = mdconst::dyn_extract_or_null<ConstantInt>(MD)) { uint64_t Val = Behavior->getLimitedValue(); if (Val >= ModFlagBehaviorFirstVal && Val <= ModFlagBehaviorLastVal) { MFB = static_cast<ModFlagBehavior>(Val); return true; } } return false; } /// getModuleFlagsMetadata - Returns the module flags in the provided vector. void Module:: getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const { const NamedMDNode *ModFlags = getModuleFlagsMetadata(); if (!ModFlags) return; for (const MDNode *Flag : ModFlags->operands()) { ModFlagBehavior MFB; if (Flag->getNumOperands() >= 3 && isValidModFlagBehavior(Flag->getOperand(0), MFB) && dyn_cast_or_null<MDString>(Flag->getOperand(1))) { // Check the operands of the MDNode before accessing the operands. // The verifier will actually catch these failures. MDString *Key = cast<MDString>(Flag->getOperand(1)); Metadata *Val = Flag->getOperand(2); Flags.push_back(ModuleFlagEntry(MFB, Key, Val)); } } } /// Return the corresponding value if Key appears in module flags, otherwise /// return null. Metadata *Module::getModuleFlag(StringRef Key) const { SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; getModuleFlagsMetadata(ModuleFlags); for (const ModuleFlagEntry &MFE : ModuleFlags) { if (Key == MFE.Key->getString()) return MFE.Val; } return nullptr; } /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that /// represents module-level flags. This method returns null if there are no /// module-level flags. NamedMDNode *Module::getModuleFlagsMetadata() const { return getNamedMetadata("llvm.module.flags"); } /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that /// represents module-level flags. If module-level flags aren't found, it /// creates the named metadata that contains them. NamedMDNode *Module::getOrInsertModuleFlagsMetadata() { return getOrInsertNamedMetadata("llvm.module.flags"); } /// addModuleFlag - Add a module-level flag to the module-level flags /// metadata. It will create the module-level flags named metadata if it doesn't /// already exist. void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val) { Type *Int32Ty = Type::getInt32Ty(Context); Metadata *Ops[3] = { ConstantAsMetadata::get(ConstantInt::get(Int32Ty, Behavior)), MDString::get(Context, Key), Val}; getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context, Ops)); } void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Constant *Val) { addModuleFlag(Behavior, Key, ConstantAsMetadata::get(Val)); } void Module::addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val) { Type *Int32Ty = Type::getInt32Ty(Context); addModuleFlag(Behavior, Key, ConstantInt::get(Int32Ty, Val)); } void Module::addModuleFlag(MDNode *Node) { assert(Node->getNumOperands() == 3 && "Invalid number of operands for module flag!"); assert(mdconst::hasa<ConstantInt>(Node->getOperand(0)) && isa<MDString>(Node->getOperand(1)) && "Invalid operand types for module flag!"); getOrInsertModuleFlagsMetadata()->addOperand(Node); } void Module::setDataLayout(StringRef Desc) { DL.reset(Desc); } void Module::setDataLayout(const DataLayout &Other) { DL = Other; } const DataLayout &Module::getDataLayout() const { return DL; } DICompileUnit *Module::debug_compile_units_iterator::operator*() const { return cast<DICompileUnit>(CUs->getOperand(Idx)); } DICompileUnit *Module::debug_compile_units_iterator::operator->() const { return cast<DICompileUnit>(CUs->getOperand(Idx)); } void Module::debug_compile_units_iterator::SkipNoDebugCUs() { while (CUs && (Idx < CUs->getNumOperands()) && ((*this)->getEmissionKind() == DICompileUnit::NoDebug)) ++Idx; } //===----------------------------------------------------------------------===// // Methods to control the materialization of GlobalValues in the Module. // void Module::setMaterializer(GVMaterializer *GVM) { assert(!Materializer && "Module already has a GVMaterializer. Call materializeAll" " to clear it out before setting another one."); Materializer.reset(GVM); } std::error_code Module::materialize(GlobalValue *GV) { if (!Materializer) return std::error_code(); return Materializer->materialize(GV); } std::error_code Module::materializeAll() { if (!Materializer) return std::error_code(); std::unique_ptr<GVMaterializer> M = std::move(Materializer); return M->materializeModule(); } std::error_code Module::materializeMetadata() { if (!Materializer) return std::error_code(); return Materializer->materializeMetadata(); } //===----------------------------------------------------------------------===// // Other module related stuff. // std::vector<StructType *> Module::getIdentifiedStructTypes() const { // If we have a materializer, it is possible that some unread function // uses a type that is currently not visible to a TypeFinder, so ask // the materializer which types it created. if (Materializer) return Materializer->getIdentifiedStructTypes(); std::vector<StructType *> Ret; TypeFinder SrcStructTypes; SrcStructTypes.run(*this, true); Ret.assign(SrcStructTypes.begin(), SrcStructTypes.end()); return Ret; } // dropAllReferences() - This function causes all the subelements to "let go" // of all references that they are maintaining. This allows one to 'delete' a // whole module at a time, even though there may be circular references... first // all references are dropped, and all use counts go to zero. Then everything // is deleted for real. Note that no operations are valid on an object that // has "dropped all references", except operator delete. // void Module::dropAllReferences() { for (Function &F : *this) F.dropAllReferences(); for (GlobalVariable &GV : globals()) GV.dropAllReferences(); for (GlobalAlias &GA : aliases()) GA.dropAllReferences(); for (GlobalIFunc &GIF : ifuncs()) GIF.dropAllReferences(); } unsigned Module::getDwarfVersion() const { auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("Dwarf Version")); if (!Val) return 0; return cast<ConstantInt>(Val->getValue())->getZExtValue(); } unsigned Module::getCodeViewFlag() const { auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("CodeView")); if (!Val) return 0; return cast<ConstantInt>(Val->getValue())->getZExtValue(); } Comdat *Module::getOrInsertComdat(StringRef Name) { auto &Entry = *ComdatSymTab.insert(std::make_pair(Name, Comdat())).first; Entry.second.Name = &Entry; return &Entry.second; } PICLevel::Level Module::getPICLevel() const { auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIC Level")); if (!Val) return PICLevel::NotPIC; return static_cast<PICLevel::Level>( cast<ConstantInt>(Val->getValue())->getZExtValue()); } void Module::setPICLevel(PICLevel::Level PL) { addModuleFlag(ModFlagBehavior::Error, "PIC Level", PL); } PIELevel::Level Module::getPIELevel() const { auto *Val = cast_or_null<ConstantAsMetadata>(getModuleFlag("PIE Level")); if (!Val) return PIELevel::Default; return static_cast<PIELevel::Level>( cast<ConstantInt>(Val->getValue())->getZExtValue()); } void Module::setPIELevel(PIELevel::Level PL) { addModuleFlag(ModFlagBehavior::Error, "PIE Level", PL); } void Module::setProfileSummary(Metadata *M) { addModuleFlag(ModFlagBehavior::Error, "ProfileSummary", M); } Metadata *Module::getProfileSummary() { return getModuleFlag("ProfileSummary"); } GlobalVariable *llvm::collectUsedGlobalVariables( const Module &M, SmallPtrSetImpl<GlobalValue *> &Set, bool CompilerUsed) { const char *Name = CompilerUsed ? "llvm.compiler.used" : "llvm.used"; GlobalVariable *GV = M.getGlobalVariable(Name); if (!GV || !GV->hasInitializer()) return GV; const ConstantArray *Init = cast<ConstantArray>(GV->getInitializer()); for (Value *Op : Init->operands()) { GlobalValue *G = cast<GlobalValue>(Op->stripPointerCastsNoFollowAliases()); Set.insert(G); } return GV; }