//===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Local-dynamic access to thread-local variables proceeds in three stages. // // 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated // in much the same way as a general-dynamic TLS-descriptor access against // the special symbol _TLS_MODULE_BASE. // 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using // instructions with "dtprel" modifiers. // 3. These two are added, together with TPIDR_EL0, to obtain the variable's // true address. // // This is only better than general-dynamic access to the variable if two or // more of the first stage TLS-descriptor calculations can be combined. This // pass looks through a function and performs such combinations. // //===----------------------------------------------------------------------===// #include "AArch64.h" #include "AArch64InstrInfo.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64TargetMachine.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" using namespace llvm; namespace { struct LDTLSCleanup : public MachineFunctionPass { static char ID; LDTLSCleanup() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(*MF.getFunction())) return false; AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>(); if (AFI->getNumLocalDynamicTLSAccesses() < 2) { // No point folding accesses if there isn't at least two. return false; } MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>(); return VisitNode(DT->getRootNode(), 0); } // Visit the dominator subtree rooted at Node in pre-order. // If TLSBaseAddrReg is non-null, then use that to replace any // TLS_base_addr instructions. Otherwise, create the register // when the first such instruction is seen, and then use it // as we encounter more instructions. bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { MachineBasicBlock *BB = Node->getBlock(); bool Changed = false; // Traverse the current block. for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { switch (I->getOpcode()) { case AArch64::TLSDESC_CALLSEQ: // Make sure it's a local dynamic access. if (!I->getOperand(0).isSymbol() || strcmp(I->getOperand(0).getSymbolName(), "_TLS_MODULE_BASE_")) break; if (TLSBaseAddrReg) I = replaceTLSBaseAddrCall(*I, TLSBaseAddrReg); else I = setRegister(*I, &TLSBaseAddrReg); Changed = true; break; default: break; } } // Visit the children of this block in the dominator tree. for (MachineDomTreeNode *N : *Node) { Changed |= VisitNode(N, TLSBaseAddrReg); } return Changed; } // Replace the TLS_base_addr instruction I with a copy from // TLSBaseAddrReg, returning the new instruction. MachineInstr *replaceTLSBaseAddrCall(MachineInstr &I, unsigned TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); // Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the // code sequence assumes the address will be. MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII->get(TargetOpcode::COPY), AArch64::X0) .addReg(TLSBaseAddrReg); // Erase the TLS_base_addr instruction. I.eraseFromParent(); return Copy; } // Create a virtal register in *TLSBaseAddrReg, and populate it by // inserting a copy instruction after I. Returns the new instruction. MachineInstr *setRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); // Create a virtual register for the TLS base address. MachineRegisterInfo &RegInfo = MF->getRegInfo(); *TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass); // Insert a copy from X0 to TLSBaseAddrReg for later. MachineInstr *Copy = BuildMI(*I.getParent(), ++I.getIterator(), I.getDebugLoc(), TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) .addReg(AArch64::X0); return Copy; } const char *getPassName() const override { return "Local Dynamic TLS Access Clean-up"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired<MachineDominatorTree>(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char LDTLSCleanup::ID = 0; FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }