//===-- CaymanInstructions.td - CM Instruction defs -------*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // TableGen definitions for instructions which are available only on Cayman // family GPUs. // //===----------------------------------------------------------------------===// def isCayman : Predicate<"Subtarget->hasCaymanISA()">; //===----------------------------------------------------------------------===// // Cayman Instructions //===----------------------------------------------------------------------===// let Predicates = [isCayman] in { def MULADD_INT24_cm : R600_3OP <0x08, "MULADD_INT24", [(set i32:$dst, (AMDGPUmad_i24 i32:$src0, i32:$src1, i32:$src2))], VecALU >; def MUL_INT24_cm : R600_2OP <0x5B, "MUL_INT24", [(set i32:$dst, (AMDGPUmul_i24 i32:$src0, i32:$src1))], VecALU >; def : IMad24Pat<MULADD_INT24_cm>; let isVector = 1 in { def RECIP_IEEE_cm : RECIP_IEEE_Common<0x86>; def MULLO_INT_cm : MULLO_INT_Common<0x8F>; def MULHI_INT_cm : MULHI_INT_Common<0x90>; def MULLO_UINT_cm : MULLO_UINT_Common<0x91>; def MULHI_UINT_cm : MULHI_UINT_Common<0x92>; def RECIPSQRT_CLAMPED_cm : RECIPSQRT_CLAMPED_Common<0x87>; def EXP_IEEE_cm : EXP_IEEE_Common<0x81>; def LOG_IEEE_cm : LOG_IEEE_Common<0x83>; def RECIP_CLAMPED_cm : RECIP_CLAMPED_Common<0x84>; def RECIPSQRT_IEEE_cm : RECIPSQRT_IEEE_Common<0x89>; def SIN_cm : SIN_Common<0x8D>; def COS_cm : COS_Common<0x8E>; } // End isVector = 1 def : RsqPat<RECIPSQRT_IEEE_cm, f32>; def : POW_Common <LOG_IEEE_cm, EXP_IEEE_cm, MUL>; defm DIV_cm : DIV_Common<RECIP_IEEE_cm>; // RECIP_UINT emulation for Cayman // The multiplication scales from [0,1] to the unsigned integer range def : Pat < (AMDGPUurecip i32:$src0), (FLT_TO_UINT_eg (MUL_IEEE (RECIP_IEEE_cm (UINT_TO_FLT_eg $src0)), (MOV_IMM_I32 CONST.FP_UINT_MAX_PLUS_1))) >; def CF_END_CM : CF_CLAUSE_EG<32, (ins), "CF_END"> { let ADDR = 0; let POP_COUNT = 0; let COUNT = 0; } def : Pat<(fsqrt f32:$src), (MUL R600_Reg32:$src, (RECIPSQRT_CLAMPED_cm $src))>; class RAT_STORE_DWORD <RegisterClass rc, ValueType vt, bits<4> mask> : CF_MEM_RAT_CACHELESS <0x14, 0, mask, (ins rc:$rw_gpr, R600_TReg32_X:$index_gpr), "STORE_DWORD $rw_gpr, $index_gpr", [(global_store vt:$rw_gpr, i32:$index_gpr)]> { let eop = 0; // This bit is not used on Cayman. } def RAT_STORE_DWORD32 : RAT_STORE_DWORD <R600_TReg32_X, i32, 0x1>; def RAT_STORE_DWORD64 : RAT_STORE_DWORD <R600_Reg64, v2i32, 0x3>; def RAT_STORE_DWORD128 : RAT_STORE_DWORD <R600_Reg128, v4i32, 0xf>; def RAT_STORE_TYPED_cm: CF_MEM_RAT_STORE_TYPED<0> { let eop = 0; // This bit is not used on Cayman. } class VTX_READ_cm <string name, bits<8> buffer_id, dag outs, list<dag> pattern> : VTX_WORD0_cm, VTX_READ<name, buffer_id, outs, pattern> { // Static fields let VC_INST = 0; let FETCH_TYPE = 2; let FETCH_WHOLE_QUAD = 0; let BUFFER_ID = buffer_id; let SRC_REL = 0; // XXX: We can infer this field based on the SRC_GPR. This would allow us // to store vertex addresses in any channel, not just X. let SRC_SEL_X = 0; let SRC_SEL_Y = 0; let STRUCTURED_READ = 0; let LDS_REQ = 0; let COALESCED_READ = 0; let Inst{31-0} = Word0; } class VTX_READ_8_cm <bits<8> buffer_id, list<dag> pattern> : VTX_READ_cm <"VTX_READ_8 $dst_gpr, $src_gpr", buffer_id, (outs R600_TReg32_X:$dst_gpr), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 1; // FMT_8 } class VTX_READ_16_cm <bits<8> buffer_id, list<dag> pattern> : VTX_READ_cm <"VTX_READ_16 $dst_gpr, $src_gpr", buffer_id, (outs R600_TReg32_X:$dst_gpr), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 5; // FMT_16 } class VTX_READ_32_cm <bits<8> buffer_id, list<dag> pattern> : VTX_READ_cm <"VTX_READ_32 $dst_gpr, $src_gpr", buffer_id, (outs R600_TReg32_X:$dst_gpr), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 7; // Masked let DST_SEL_Z = 7; // Masked let DST_SEL_W = 7; // Masked let DATA_FORMAT = 0xD; // COLOR_32 // This is not really necessary, but there were some GPU hangs that appeared // to be caused by ALU instructions in the next instruction group that wrote // to the $src_gpr registers of the VTX_READ. // e.g. // %T3_X<def> = VTX_READ_PARAM_32_eg %T2_X<kill>, 24 // %T2_X<def> = MOV %ZERO //Adding this constraint prevents this from happening. let Constraints = "$src_gpr.ptr = $dst_gpr"; } class VTX_READ_64_cm <bits<8> buffer_id, list<dag> pattern> : VTX_READ_cm <"VTX_READ_64 $dst_gpr, $src_gpr", buffer_id, (outs R600_Reg64:$dst_gpr), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 7; let DST_SEL_W = 7; let DATA_FORMAT = 0x1D; // COLOR_32_32 } class VTX_READ_128_cm <bits<8> buffer_id, list<dag> pattern> : VTX_READ_cm <"VTX_READ_128 $dst_gpr.XYZW, $src_gpr", buffer_id, (outs R600_Reg128:$dst_gpr), pattern> { let DST_SEL_X = 0; let DST_SEL_Y = 1; let DST_SEL_Z = 2; let DST_SEL_W = 3; let DATA_FORMAT = 0x22; // COLOR_32_32_32_32 // XXX: Need to force VTX_READ_128 instructions to write to the same register // that holds its buffer address to avoid potential hangs. We can't use // the same constraint as VTX_READ_32_eg, because the $src_gpr.ptr and $dst // registers are different sizes. } //===----------------------------------------------------------------------===// // VTX Read from parameter memory space //===----------------------------------------------------------------------===// def VTX_READ_PARAM_8_cm : VTX_READ_8_cm <0, [(set i32:$dst_gpr, (load_param_exti8 ADDRVTX_READ:$src_gpr))] >; def VTX_READ_PARAM_16_cm : VTX_READ_16_cm <0, [(set i32:$dst_gpr, (load_param_exti16 ADDRVTX_READ:$src_gpr))] >; def VTX_READ_PARAM_32_cm : VTX_READ_32_cm <0, [(set i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))] >; def VTX_READ_PARAM_64_cm : VTX_READ_64_cm <0, [(set v2i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))] >; def VTX_READ_PARAM_128_cm : VTX_READ_128_cm <0, [(set v4i32:$dst_gpr, (load_param ADDRVTX_READ:$src_gpr))] >; //===----------------------------------------------------------------------===// // VTX Read from global memory space //===----------------------------------------------------------------------===// // 8-bit reads def VTX_READ_ID1_8_cm : VTX_READ_8_cm <1, [(set i32:$dst_gpr, (vtx_id1_az_extloadi8 ADDRVTX_READ:$src_gpr))] >; // 16-bit reads def VTX_READ_ID1_16_cm : VTX_READ_16_cm <1, [(set i32:$dst_gpr, (vtx_id1_az_extloadi16 ADDRVTX_READ:$src_gpr))] >; // 32-bit reads def VTX_READ_ID1_32_cm : VTX_READ_32_cm <1, [(set i32:$dst_gpr, (vtx_id1_load ADDRVTX_READ:$src_gpr))] >; // 64-bit reads def VTX_READ_ID1_64_cm : VTX_READ_64_cm <1, [(set v2i32:$dst_gpr, (vtx_id1_load ADDRVTX_READ:$src_gpr))] >; // 128-bit reads def VTX_READ_ID1_128_cm : VTX_READ_128_cm <1, [(set v4i32:$dst_gpr, (vtx_id1_load ADDRVTX_READ:$src_gpr))] >; // 8-bit reads def VTX_READ_ID2_8_cm : VTX_READ_8_cm <2, [(set i32:$dst_gpr, (vtx_id2_az_extloadi8 ADDRVTX_READ:$src_gpr))] >; // 16-bit reads def VTX_READ_ID2_16_cm : VTX_READ_16_cm <2, [(set i32:$dst_gpr, (vtx_id2_az_extloadi16 ADDRVTX_READ:$src_gpr))] >; // 32-bit reads def VTX_READ_ID2_32_cm : VTX_READ_32_cm <2, [(set i32:$dst_gpr, (vtx_id2_load ADDRVTX_READ:$src_gpr))] >; // 64-bit reads def VTX_READ_ID2_64_cm : VTX_READ_64_cm <2, [(set v2i32:$dst_gpr, (vtx_id2_load ADDRVTX_READ:$src_gpr))] >; // 128-bit reads def VTX_READ_ID2_128_cm : VTX_READ_128_cm <2, [(set v4i32:$dst_gpr, (vtx_id2_load ADDRVTX_READ:$src_gpr))] >; } // End isCayman