=pod =begin html <link rel="stylesheet" href="podstyle.css" type="text/css" /> =end html =head1 NAME lmmin - Levenberg-Marquardt least-squares minimization =head1 SYNOPSIS B<#include <lmmin.h>> B<void lmmin( const int> I<n_par>B<, double *>I<par>B<, const int> I<m_dat>B<, constS< >void *>I<data>B<, void *>I<evaluate>B<( constS< >double *>I<par>B<, const int >I<m_dat>B<, constS< >void *>I<data>B<, double *>I<fvec>B<, int *>I<userbreak>B<), constS< >lm_control_struct *>I<control>B<, lm_status_struct *>I<status>B< );> B<extern const lm_control_struct lm_control_double;> B<extern const lm_control_struct lm_control_float;> B<extern const char *lm_infmsg[];> B<extern const char *lm_shortmsg[];> =head1 DESCRIPTION B<lmmin()> determines a vector I<par> that minimizes the sum of squared elements of a vector I<fvec> that is computed by a user-supplied function I<evaluate>(). On success, I<par> represents a local minimum, not necessarily a global one; it may depend on its starting value. For applications in curve fitting, the wrapper function B<lmcurve(3)> offers a simplified API. The Levenberg-Marquardt minimization starts with a steepest-descent exploration of the parameter space, and achieves rapid convergence by crossing over into the Newton-Gauss method. Function arguments: =over =item I<n_par> Number of free variables. Length of parameter vector I<par>. =item I<par> Parameter vector. On input, it must contain a reasonable guess. On output, it contains the solution found to minimize ||I<fvec>||. =item I<m_dat> Length of vector I<fvec>. Must statisfy I<n_par> <= I<m_dat>. =item I<data> This pointer is ignored by the fit algorithm, except for appearing as an argument in all calls to the user-supplied routine I<evaluate>. =item I<evaluate> Pointer to a user-supplied function that computes I<m_dat> elements of vector I<fvec> for a given parameter vector I<par>. If I<evaluate> return with *I<userbreak> set to a negative value, B<lmmin()> will interrupt the fitting and terminate. =item I<control> Parameter collection for tuning the fit procedure. In most cases, the default &I<lm_control_double> is adequate. If I<f> is only computed with single-precision accuracy, I<&lm_control_float> should be used. See also below, NOTES on initializing parameter records. I<control> has the following members (for more details, see the source file I<lmstruct.h>): =over =item B<double> I<control.ftol> Relative error desired in the sum of squares. Recommended setting: somewhat above machine precision; less if I<fvec> is computed with reduced accuracy. =item B<double> I<control.xtol> Relative error between last two approximations. Recommended setting: as I<ftol>. =item B<double> I<control.gtol> A measure for degeneracy. Recommended setting: as I<ftol>. =item B<double> I<control.epsilon> Step used to calculate the Jacobian. Recommended setting: as I<ftol>, but definitely less than the accuracy of I<fvec>. =item B<double> I<control.stepbound> Initial bound to steps in the outer loop, generally between 0.01 and 100; recommended value is 100. =item B<int> I<control.patience> Used to set the maximum number of function evaluations to patience*n_par. =item B<int> I<control.scale_diag> Logical switch (0 or 1). If 1, then scale parameters to their initial value. This is the recommended setting. =item B<FILE*> I<control.msgfile> Progress messages will be written to this file. Typically I<stdout> or I<stderr>. The value I<NULL> will be interpreted as I<stdout>. =item B<int> I<control.verbosity> If nonzero, some progress information from within the LM algorithm is written to control.stream. =item B<int> I<control.n_maxpri> -1, or maximum number of parameters to print. =item B<int> I<control.m_maxpri> -1, or maximum number of residuals to print. =back =item I<status> A record used to return information about the minimization process: =over =item B<double> I<status.fnorm> Norm of the vector I<fvec>; =item B<int> I<status.nfev> Actual number of iterations; =item B<int> I<status.outcome> Status of minimization; for the corresponding text message, print I<lm_infmsg>B<[>I<status.outcome>B<]>; for a short code, print I<lm_shortmsg>B<[>I<status.outcome>B<]>. =item B<int> I<status.userbreak> Set when termination has been forced by the user-supplied routine I<evaluate>. =back =back =head1 NOTES =head2 Initializing parameter records. The parameter record I<control> should always be initialized from supplied default records: lm_control_struct control = lm_control_double; /* or _float */ After this, parameters may be overwritten: control.patience = 500; /* allow more iterations */ control.verbosity = 15; /* for verbose monitoring */ An application written this way is guaranteed to work even if new parameters are added to I<lm_control_struct>. Conversely, addition of parameters is not considered an API change; it may happen without increment of the major version number. =head1 EXAMPLES =head2 Fitting a surface Fit a data set y(t) by a function f(t;p) where t is a two-dimensional vector: #include "lmmin.h" #include <stdio.h> /* fit model: a plane p0 + p1*tx + p2*tz */ double f( double tx, double tz, const double *p ) { return p[0] + p[1]*tx + p[2]*tz; } /* data structure to transmit data arays and fit model */ typedef struct { double *tx, *tz; double *y; double (*f)( double tx, double tz, const double *p ); } data_struct; /* function evaluation, determination of residues */ void evaluate_surface( const double *par, int m_dat, const void *data, double *fvec, int *userbreak ) { /* for readability, explicit type conversion */ data_struct *D; D = (data_struct*)data; int i; for ( i = 0; i < m_dat; i++ ) fvec[i] = D->y[i] - D->f( D->tx[i], D->tz[i], par ); } int main() { /* parameter vector */ int n_par = 3; /* number of parameters in model function f */ double par[3] = { -1, 0, 1 }; /* arbitrary starting value */ /* data points */ int m_dat = 4; double tx[4] = { -1, -1, 1, 1 }; double tz[4] = { -1, 1, -1, 1 }; double y[4] = { 0, 1, 1, 2 }; data_struct data = { tx, tz, y, f }; /* auxiliary parameters */ lm_status_struct status; lm_control_struct control = lm_control_double; control.verbosity = 3; /* perform the fit */ printf( "Fitting:\n" ); lmmin( n_par, par, m_dat, (const void*) &data, evaluate_surface, &control, &status ); /* print results */ printf( "\nResults:\n" ); printf( "status after %d function evaluations:\n %s\n", status.nfev, lm_infmsg[status.outcome] ); printf("obtained parameters:\n"); int i; for ( i=0; i<n_par; ++i ) printf(" par[%i] = %12g\n", i, par[i]); printf("obtained norm:\n %12g\n", status.fnorm ); printf("fitting data as follows:\n"); double ff; for ( i=0; i<m_dat; ++i ){ ff = f(tx[i], tz[i], par); printf( " t[%2d]=%12g,%12g y=%12g fit=%12g residue=%12g\n", i, tx[i], tz[i], y[i], ff, y[i] - ff ); } return 0; } =head2 More examples For more examples, see the homepage and directories demo/ and test/ in the source distribution. =head1 COPYING Copyright (C): 1980-1999 University of Chicago 2004-2015 Joachim Wuttke, Forschungszentrum Juelich GmbH Software: FreeBSD License Documentation: Creative Commons Attribution Share Alike =head1 SEE ALSO =begin html <a href="http://apps.jcns.fz-juelich.de/man/lmcurve.html"><b>lmcurve</b>(3)</a> =end html =begin man \fBlmcurve\fR(3) .PP =end man Homepage: http://apps.jcns.fz-juelich.de/lmfit =head1 BUGS Please send bug reports and suggestions to the author <j.wuttke@fz-juelich.de>.