/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include <string.h> #include "main/core.h" /* for MAX2 */ #include "ir.h" #include "compiler/glsl_types.h" #include "glsl_parser_extras.h" ir_rvalue::ir_rvalue(enum ir_node_type t) : ir_instruction(t) { this->type = glsl_type::error_type; } bool ir_rvalue::is_zero() const { return false; } bool ir_rvalue::is_one() const { return false; } bool ir_rvalue::is_negative_one() const { return false; } /** * Modify the swizzle make to move one component to another * * \param m IR swizzle to be modified * \param from Component in the RHS that is to be swizzled * \param to Desired swizzle location of \c from */ static void update_rhs_swizzle(ir_swizzle_mask &m, unsigned from, unsigned to) { switch (to) { case 0: m.x = from; break; case 1: m.y = from; break; case 2: m.z = from; break; case 3: m.w = from; break; default: assert(!"Should not get here."); } } void ir_assignment::set_lhs(ir_rvalue *lhs) { void *mem_ctx = this; bool swizzled = false; while (lhs != NULL) { ir_swizzle *swiz = lhs->as_swizzle(); if (swiz == NULL) break; unsigned write_mask = 0; ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 }; for (unsigned i = 0; i < swiz->mask.num_components; i++) { unsigned c = 0; switch (i) { case 0: c = swiz->mask.x; break; case 1: c = swiz->mask.y; break; case 2: c = swiz->mask.z; break; case 3: c = swiz->mask.w; break; default: assert(!"Should not get here."); } write_mask |= (((this->write_mask >> i) & 1) << c); update_rhs_swizzle(rhs_swiz, i, c); rhs_swiz.num_components = swiz->val->type->vector_elements; } this->write_mask = write_mask; lhs = swiz->val; this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz); swizzled = true; } if (swizzled) { /* Now, RHS channels line up with the LHS writemask. Collapse it * to just the channels that will be written. */ ir_swizzle_mask rhs_swiz = { 0, 0, 0, 0, 0, 0 }; int rhs_chan = 0; for (int i = 0; i < 4; i++) { if (write_mask & (1 << i)) update_rhs_swizzle(rhs_swiz, i, rhs_chan++); } rhs_swiz.num_components = rhs_chan; this->rhs = new(mem_ctx) ir_swizzle(this->rhs, rhs_swiz); } assert((lhs == NULL) || lhs->as_dereference()); this->lhs = (ir_dereference *) lhs; } ir_variable * ir_assignment::whole_variable_written() { ir_variable *v = this->lhs->whole_variable_referenced(); if (v == NULL) return NULL; if (v->type->is_scalar()) return v; if (v->type->is_vector()) { const unsigned mask = (1U << v->type->vector_elements) - 1; if (mask != this->write_mask) return NULL; } /* Either all the vector components are assigned or the variable is some * composite type (and the whole thing is assigned. */ return v; } ir_assignment::ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition, unsigned write_mask) : ir_instruction(ir_type_assignment) { this->condition = condition; this->rhs = rhs; this->lhs = lhs; this->write_mask = write_mask; if (lhs->type->is_scalar() || lhs->type->is_vector()) { int lhs_components = 0; for (int i = 0; i < 4; i++) { if (write_mask & (1 << i)) lhs_components++; } assert(lhs_components == this->rhs->type->vector_elements); } } ir_assignment::ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition) : ir_instruction(ir_type_assignment) { this->condition = condition; this->rhs = rhs; /* If the RHS is a vector type, assume that all components of the vector * type are being written to the LHS. The write mask comes from the RHS * because we can have a case where the LHS is a vec4 and the RHS is a * vec3. In that case, the assignment is: * * (assign (...) (xyz) (var_ref lhs) (var_ref rhs)) */ if (rhs->type->is_vector()) this->write_mask = (1U << rhs->type->vector_elements) - 1; else if (rhs->type->is_scalar()) this->write_mask = 1; else this->write_mask = 0; this->set_lhs(lhs); } ir_expression::ir_expression(int op, const struct glsl_type *type, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2, ir_rvalue *op3) : ir_rvalue(ir_type_expression) { this->type = type; this->operation = ir_expression_operation(op); this->operands[0] = op0; this->operands[1] = op1; this->operands[2] = op2; this->operands[3] = op3; init_num_operands(); #ifndef NDEBUG for (unsigned i = num_operands; i < 4; i++) { assert(this->operands[i] == NULL); } for (unsigned i = 0; i < num_operands; i++) { assert(this->operands[i] != NULL); } #endif } ir_expression::ir_expression(int op, ir_rvalue *op0) : ir_rvalue(ir_type_expression) { this->operation = ir_expression_operation(op); this->operands[0] = op0; this->operands[1] = NULL; this->operands[2] = NULL; this->operands[3] = NULL; assert(op <= ir_last_unop); init_num_operands(); assert(num_operands == 1); assert(this->operands[0]); switch (this->operation) { case ir_unop_bit_not: case ir_unop_logic_not: case ir_unop_neg: case ir_unop_abs: case ir_unop_sign: case ir_unop_rcp: case ir_unop_rsq: case ir_unop_sqrt: case ir_unop_exp: case ir_unop_log: case ir_unop_exp2: case ir_unop_log2: case ir_unop_trunc: case ir_unop_ceil: case ir_unop_floor: case ir_unop_fract: case ir_unop_round_even: case ir_unop_sin: case ir_unop_cos: case ir_unop_dFdx: case ir_unop_dFdx_coarse: case ir_unop_dFdx_fine: case ir_unop_dFdy: case ir_unop_dFdy_coarse: case ir_unop_dFdy_fine: case ir_unop_bitfield_reverse: case ir_unop_interpolate_at_centroid: case ir_unop_saturate: this->type = op0->type; break; case ir_unop_f2i: case ir_unop_b2i: case ir_unop_u2i: case ir_unop_d2i: case ir_unop_bitcast_f2i: case ir_unop_bit_count: case ir_unop_find_msb: case ir_unop_find_lsb: case ir_unop_subroutine_to_int: case ir_unop_i642i: case ir_unop_u642i: this->type = glsl_type::get_instance(GLSL_TYPE_INT, op0->type->vector_elements, 1); break; case ir_unop_b2f: case ir_unop_i2f: case ir_unop_u2f: case ir_unop_d2f: case ir_unop_bitcast_i2f: case ir_unop_bitcast_u2f: case ir_unop_i642f: case ir_unop_u642f: this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, op0->type->vector_elements, 1); break; case ir_unop_f2b: case ir_unop_i2b: case ir_unop_d2b: case ir_unop_i642b: this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, op0->type->vector_elements, 1); break; case ir_unop_f2d: case ir_unop_i2d: case ir_unop_u2d: case ir_unop_i642d: case ir_unop_u642d: this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, op0->type->vector_elements, 1); break; case ir_unop_i2u: case ir_unop_f2u: case ir_unop_d2u: case ir_unop_bitcast_f2u: case ir_unop_i642u: case ir_unop_u642u: this->type = glsl_type::get_instance(GLSL_TYPE_UINT, op0->type->vector_elements, 1); break; case ir_unop_i2i64: case ir_unop_u2i64: case ir_unop_b2i64: case ir_unop_f2i64: case ir_unop_d2i64: case ir_unop_u642i64: this->type = glsl_type::get_instance(GLSL_TYPE_INT64, op0->type->vector_elements, 1); break; case ir_unop_i2u64: case ir_unop_u2u64: case ir_unop_f2u64: case ir_unop_d2u64: case ir_unop_i642u64: this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, op0->type->vector_elements, 1); break; case ir_unop_noise: this->type = glsl_type::float_type; break; case ir_unop_unpack_double_2x32: case ir_unop_unpack_uint_2x32: this->type = glsl_type::uvec2_type; break; case ir_unop_unpack_int_2x32: this->type = glsl_type::ivec2_type; break; case ir_unop_pack_snorm_2x16: case ir_unop_pack_snorm_4x8: case ir_unop_pack_unorm_2x16: case ir_unop_pack_unorm_4x8: case ir_unop_pack_half_2x16: this->type = glsl_type::uint_type; break; case ir_unop_pack_double_2x32: this->type = glsl_type::double_type; break; case ir_unop_pack_int_2x32: this->type = glsl_type::int64_t_type; break; case ir_unop_pack_uint_2x32: this->type = glsl_type::uint64_t_type; break; case ir_unop_unpack_snorm_2x16: case ir_unop_unpack_unorm_2x16: case ir_unop_unpack_half_2x16: this->type = glsl_type::vec2_type; break; case ir_unop_unpack_snorm_4x8: case ir_unop_unpack_unorm_4x8: this->type = glsl_type::vec4_type; break; case ir_unop_unpack_sampler_2x32: case ir_unop_unpack_image_2x32: this->type = glsl_type::uvec2_type; break; case ir_unop_pack_sampler_2x32: case ir_unop_pack_image_2x32: this->type = op0->type; break; case ir_unop_frexp_sig: this->type = op0->type; break; case ir_unop_frexp_exp: this->type = glsl_type::get_instance(GLSL_TYPE_INT, op0->type->vector_elements, 1); break; case ir_unop_get_buffer_size: case ir_unop_ssbo_unsized_array_length: this->type = glsl_type::int_type; break; case ir_unop_bitcast_i642d: case ir_unop_bitcast_u642d: this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, op0->type->vector_elements, 1); break; case ir_unop_bitcast_d2i64: this->type = glsl_type::get_instance(GLSL_TYPE_INT64, op0->type->vector_elements, 1); break; case ir_unop_bitcast_d2u64: this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, op0->type->vector_elements, 1); break; default: assert(!"not reached: missing automatic type setup for ir_expression"); this->type = op0->type; break; } } ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1) : ir_rvalue(ir_type_expression) { this->operation = ir_expression_operation(op); this->operands[0] = op0; this->operands[1] = op1; this->operands[2] = NULL; this->operands[3] = NULL; assert(op > ir_last_unop); init_num_operands(); assert(num_operands == 2); for (unsigned i = 0; i < num_operands; i++) { assert(this->operands[i] != NULL); } switch (this->operation) { case ir_binop_all_equal: case ir_binop_any_nequal: this->type = glsl_type::bool_type; break; case ir_binop_add: case ir_binop_sub: case ir_binop_min: case ir_binop_max: case ir_binop_pow: case ir_binop_mul: case ir_binop_div: case ir_binop_mod: if (op0->type->is_scalar()) { this->type = op1->type; } else if (op1->type->is_scalar()) { this->type = op0->type; } else { if (this->operation == ir_binop_mul) { this->type = glsl_type::get_mul_type(op0->type, op1->type); } else { assert(op0->type == op1->type); this->type = op0->type; } } break; case ir_binop_logic_and: case ir_binop_logic_xor: case ir_binop_logic_or: case ir_binop_bit_and: case ir_binop_bit_xor: case ir_binop_bit_or: assert(!op0->type->is_matrix()); assert(!op1->type->is_matrix()); if (op0->type->is_scalar()) { this->type = op1->type; } else if (op1->type->is_scalar()) { this->type = op0->type; } else { assert(op0->type->vector_elements == op1->type->vector_elements); this->type = op0->type; } break; case ir_binop_equal: case ir_binop_nequal: case ir_binop_gequal: case ir_binop_less: assert(op0->type == op1->type); this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, op0->type->vector_elements, 1); break; case ir_binop_dot: this->type = op0->type->get_base_type(); break; case ir_binop_imul_high: case ir_binop_carry: case ir_binop_borrow: case ir_binop_lshift: case ir_binop_rshift: case ir_binop_ldexp: case ir_binop_interpolate_at_offset: case ir_binop_interpolate_at_sample: this->type = op0->type; break; case ir_binop_vector_extract: this->type = op0->type->get_scalar_type(); break; default: assert(!"not reached: missing automatic type setup for ir_expression"); this->type = glsl_type::float_type; } } ir_expression::ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2) : ir_rvalue(ir_type_expression) { this->operation = ir_expression_operation(op); this->operands[0] = op0; this->operands[1] = op1; this->operands[2] = op2; this->operands[3] = NULL; assert(op > ir_last_binop && op <= ir_last_triop); init_num_operands(); assert(num_operands == 3); for (unsigned i = 0; i < num_operands; i++) { assert(this->operands[i] != NULL); } switch (this->operation) { case ir_triop_fma: case ir_triop_lrp: case ir_triop_bitfield_extract: case ir_triop_vector_insert: this->type = op0->type; break; case ir_triop_csel: this->type = op1->type; break; default: assert(!"not reached: missing automatic type setup for ir_expression"); this->type = glsl_type::float_type; } } /** * This is only here for ir_reader to used for testing purposes. Please use * the precomputed num_operands field if you need the number of operands. */ unsigned ir_expression::get_num_operands(ir_expression_operation op) { assert(op <= ir_last_opcode); if (op <= ir_last_unop) return 1; if (op <= ir_last_binop) return 2; if (op <= ir_last_triop) return 3; if (op <= ir_last_quadop) return 4; unreachable("Could not calculate number of operands"); } #include "ir_expression_operation_strings.h" const char* depth_layout_string(ir_depth_layout layout) { switch(layout) { case ir_depth_layout_none: return ""; case ir_depth_layout_any: return "depth_any"; case ir_depth_layout_greater: return "depth_greater"; case ir_depth_layout_less: return "depth_less"; case ir_depth_layout_unchanged: return "depth_unchanged"; default: assert(0); return ""; } } ir_expression_operation ir_expression::get_operator(const char *str) { for (int op = 0; op <= int(ir_last_opcode); op++) { if (strcmp(str, ir_expression_operation_strings[op]) == 0) return (ir_expression_operation) op; } return (ir_expression_operation) -1; } ir_variable * ir_expression::variable_referenced() const { switch (operation) { case ir_binop_vector_extract: case ir_triop_vector_insert: /* We get these for things like a[0] where a is a vector type. In these * cases we want variable_referenced() to return the actual vector * variable this is wrapping. */ return operands[0]->variable_referenced(); default: return ir_rvalue::variable_referenced(); } } ir_constant::ir_constant() : ir_rvalue(ir_type_constant) { this->const_elements = NULL; } ir_constant::ir_constant(const struct glsl_type *type, const ir_constant_data *data) : ir_rvalue(ir_type_constant) { this->const_elements = NULL; assert((type->base_type >= GLSL_TYPE_UINT) && (type->base_type <= GLSL_TYPE_IMAGE)); this->type = type; memcpy(& this->value, data, sizeof(this->value)); } ir_constant::ir_constant(float f, unsigned vector_elements) : ir_rvalue(ir_type_constant) { assert(vector_elements <= 4); this->type = glsl_type::get_instance(GLSL_TYPE_FLOAT, vector_elements, 1); for (unsigned i = 0; i < vector_elements; i++) { this->value.f[i] = f; } for (unsigned i = vector_elements; i < 16; i++) { this->value.f[i] = 0; } } ir_constant::ir_constant(double d, unsigned vector_elements) : ir_rvalue(ir_type_constant) { assert(vector_elements <= 4); this->type = glsl_type::get_instance(GLSL_TYPE_DOUBLE, vector_elements, 1); for (unsigned i = 0; i < vector_elements; i++) { this->value.d[i] = d; } for (unsigned i = vector_elements; i < 16; i++) { this->value.d[i] = 0.0; } } ir_constant::ir_constant(unsigned int u, unsigned vector_elements) : ir_rvalue(ir_type_constant) { assert(vector_elements <= 4); this->type = glsl_type::get_instance(GLSL_TYPE_UINT, vector_elements, 1); for (unsigned i = 0; i < vector_elements; i++) { this->value.u[i] = u; } for (unsigned i = vector_elements; i < 16; i++) { this->value.u[i] = 0; } } ir_constant::ir_constant(int integer, unsigned vector_elements) : ir_rvalue(ir_type_constant) { assert(vector_elements <= 4); this->type = glsl_type::get_instance(GLSL_TYPE_INT, vector_elements, 1); for (unsigned i = 0; i < vector_elements; i++) { this->value.i[i] = integer; } for (unsigned i = vector_elements; i < 16; i++) { this->value.i[i] = 0; } } ir_constant::ir_constant(uint64_t u64, unsigned vector_elements) : ir_rvalue(ir_type_constant) { assert(vector_elements <= 4); this->type = glsl_type::get_instance(GLSL_TYPE_UINT64, vector_elements, 1); for (unsigned i = 0; i < vector_elements; i++) { this->value.u64[i] = u64; } for (unsigned i = vector_elements; i < 16; i++) { this->value.u64[i] = 0; } } ir_constant::ir_constant(int64_t int64, unsigned vector_elements) : ir_rvalue(ir_type_constant) { assert(vector_elements <= 4); this->type = glsl_type::get_instance(GLSL_TYPE_INT64, vector_elements, 1); for (unsigned i = 0; i < vector_elements; i++) { this->value.i64[i] = int64; } for (unsigned i = vector_elements; i < 16; i++) { this->value.i64[i] = 0; } } ir_constant::ir_constant(bool b, unsigned vector_elements) : ir_rvalue(ir_type_constant) { assert(vector_elements <= 4); this->type = glsl_type::get_instance(GLSL_TYPE_BOOL, vector_elements, 1); for (unsigned i = 0; i < vector_elements; i++) { this->value.b[i] = b; } for (unsigned i = vector_elements; i < 16; i++) { this->value.b[i] = false; } } ir_constant::ir_constant(const ir_constant *c, unsigned i) : ir_rvalue(ir_type_constant) { this->const_elements = NULL; this->type = c->type->get_base_type(); switch (this->type->base_type) { case GLSL_TYPE_UINT: this->value.u[0] = c->value.u[i]; break; case GLSL_TYPE_INT: this->value.i[0] = c->value.i[i]; break; case GLSL_TYPE_FLOAT: this->value.f[0] = c->value.f[i]; break; case GLSL_TYPE_BOOL: this->value.b[0] = c->value.b[i]; break; case GLSL_TYPE_DOUBLE: this->value.d[0] = c->value.d[i]; break; default: assert(!"Should not get here."); break; } } ir_constant::ir_constant(const struct glsl_type *type, exec_list *value_list) : ir_rvalue(ir_type_constant) { this->const_elements = NULL; this->type = type; assert(type->is_scalar() || type->is_vector() || type->is_matrix() || type->is_record() || type->is_array()); /* If the constant is a record, the types of each of the entries in * value_list must be a 1-for-1 match with the structure components. Each * entry must also be a constant. Just move the nodes from the value_list * to the list in the ir_constant. */ if (type->is_array() || type->is_record()) { this->const_elements = ralloc_array(this, ir_constant *, type->length); unsigned i = 0; foreach_in_list(ir_constant, value, value_list) { assert(value->as_constant() != NULL); this->const_elements[i++] = value; } return; } for (unsigned i = 0; i < 16; i++) { this->value.u[i] = 0; } ir_constant *value = (ir_constant *) (value_list->get_head_raw()); /* Constructors with exactly one scalar argument are special for vectors * and matrices. For vectors, the scalar value is replicated to fill all * the components. For matrices, the scalar fills the components of the * diagonal while the rest is filled with 0. */ if (value->type->is_scalar() && value->next->is_tail_sentinel()) { if (type->is_matrix()) { /* Matrix - fill diagonal (rest is already set to 0) */ assert(type->is_float() || type->is_double()); for (unsigned i = 0; i < type->matrix_columns; i++) { if (type->is_float()) this->value.f[i * type->vector_elements + i] = value->value.f[0]; else this->value.d[i * type->vector_elements + i] = value->value.d[0]; } } else { /* Vector or scalar - fill all components */ switch (type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: for (unsigned i = 0; i < type->components(); i++) this->value.u[i] = value->value.u[0]; break; case GLSL_TYPE_FLOAT: for (unsigned i = 0; i < type->components(); i++) this->value.f[i] = value->value.f[0]; break; case GLSL_TYPE_DOUBLE: for (unsigned i = 0; i < type->components(); i++) this->value.d[i] = value->value.d[0]; break; case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: for (unsigned i = 0; i < type->components(); i++) this->value.u64[i] = value->value.u64[0]; break; case GLSL_TYPE_BOOL: for (unsigned i = 0; i < type->components(); i++) this->value.b[i] = value->value.b[0]; break; default: assert(!"Should not get here."); break; } } return; } if (type->is_matrix() && value->type->is_matrix()) { assert(value->next->is_tail_sentinel()); /* From section 5.4.2 of the GLSL 1.20 spec: * "If a matrix is constructed from a matrix, then each component * (column i, row j) in the result that has a corresponding component * (column i, row j) in the argument will be initialized from there." */ unsigned cols = MIN2(type->matrix_columns, value->type->matrix_columns); unsigned rows = MIN2(type->vector_elements, value->type->vector_elements); for (unsigned i = 0; i < cols; i++) { for (unsigned j = 0; j < rows; j++) { const unsigned src = i * value->type->vector_elements + j; const unsigned dst = i * type->vector_elements + j; this->value.f[dst] = value->value.f[src]; } } /* "All other components will be initialized to the identity matrix." */ for (unsigned i = cols; i < type->matrix_columns; i++) this->value.f[i * type->vector_elements + i] = 1.0; return; } /* Use each component from each entry in the value_list to initialize one * component of the constant being constructed. */ unsigned i = 0; for (;;) { assert(value->as_constant() != NULL); assert(!value->is_tail_sentinel()); for (unsigned j = 0; j < value->type->components(); j++) { switch (type->base_type) { case GLSL_TYPE_UINT: this->value.u[i] = value->get_uint_component(j); break; case GLSL_TYPE_INT: this->value.i[i] = value->get_int_component(j); break; case GLSL_TYPE_FLOAT: this->value.f[i] = value->get_float_component(j); break; case GLSL_TYPE_BOOL: this->value.b[i] = value->get_bool_component(j); break; case GLSL_TYPE_DOUBLE: this->value.d[i] = value->get_double_component(j); break; case GLSL_TYPE_UINT64: this->value.u64[i] = value->get_uint64_component(j); break; case GLSL_TYPE_INT64: this->value.i64[i] = value->get_int64_component(j); break; default: /* FINISHME: What to do? Exceptions are not the answer. */ break; } i++; if (i >= type->components()) break; } if (i >= type->components()) break; /* avoid downcasting a list sentinel */ value = (ir_constant *) value->next; } } ir_constant * ir_constant::zero(void *mem_ctx, const glsl_type *type) { assert(type->is_scalar() || type->is_vector() || type->is_matrix() || type->is_record() || type->is_array()); ir_constant *c = new(mem_ctx) ir_constant; c->type = type; memset(&c->value, 0, sizeof(c->value)); if (type->is_array()) { c->const_elements = ralloc_array(c, ir_constant *, type->length); for (unsigned i = 0; i < type->length; i++) c->const_elements[i] = ir_constant::zero(c, type->fields.array); } if (type->is_record()) { c->const_elements = ralloc_array(c, ir_constant *, type->length); for (unsigned i = 0; i < type->length; i++) { c->const_elements[i] = ir_constant::zero(mem_ctx, type->fields.structure[i].type); } } return c; } bool ir_constant::get_bool_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return this->value.u[i] != 0; case GLSL_TYPE_INT: return this->value.i[i] != 0; case GLSL_TYPE_FLOAT: return ((int)this->value.f[i]) != 0; case GLSL_TYPE_BOOL: return this->value.b[i]; case GLSL_TYPE_DOUBLE: return this->value.d[i] != 0.0; case GLSL_TYPE_UINT64: return this->value.u64[i] != 0; case GLSL_TYPE_INT64: return this->value.i64[i] != 0; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return false; } float ir_constant::get_float_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return (float) this->value.u[i]; case GLSL_TYPE_INT: return (float) this->value.i[i]; case GLSL_TYPE_FLOAT: return this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0f : 0.0f; case GLSL_TYPE_DOUBLE: return (float) this->value.d[i]; case GLSL_TYPE_UINT64: return (float) this->value.u64[i]; case GLSL_TYPE_INT64: return (float) this->value.i64[i]; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0.0; } double ir_constant::get_double_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return (double) this->value.u[i]; case GLSL_TYPE_INT: return (double) this->value.i[i]; case GLSL_TYPE_FLOAT: return (double) this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1.0 : 0.0; case GLSL_TYPE_DOUBLE: return this->value.d[i]; case GLSL_TYPE_UINT64: return (double) this->value.u64[i]; case GLSL_TYPE_INT64: return (double) this->value.i64[i]; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0.0; } int ir_constant::get_int_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return this->value.u[i]; case GLSL_TYPE_INT: return this->value.i[i]; case GLSL_TYPE_FLOAT: return (int) this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0; case GLSL_TYPE_DOUBLE: return (int) this->value.d[i]; case GLSL_TYPE_UINT64: return (int) this->value.u64[i]; case GLSL_TYPE_INT64: return (int) this->value.i64[i]; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0; } unsigned ir_constant::get_uint_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return this->value.u[i]; case GLSL_TYPE_INT: return this->value.i[i]; case GLSL_TYPE_FLOAT: return (unsigned) this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0; case GLSL_TYPE_DOUBLE: return (unsigned) this->value.d[i]; case GLSL_TYPE_UINT64: return (unsigned) this->value.u64[i]; case GLSL_TYPE_INT64: return (unsigned) this->value.i64[i]; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0; } int64_t ir_constant::get_int64_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return this->value.u[i]; case GLSL_TYPE_INT: return this->value.i[i]; case GLSL_TYPE_FLOAT: return (int64_t) this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0; case GLSL_TYPE_DOUBLE: return (int64_t) this->value.d[i]; case GLSL_TYPE_UINT64: return (int64_t) this->value.u64[i]; case GLSL_TYPE_INT64: return this->value.i64[i]; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0; } uint64_t ir_constant::get_uint64_component(unsigned i) const { switch (this->type->base_type) { case GLSL_TYPE_UINT: return this->value.u[i]; case GLSL_TYPE_INT: return this->value.i[i]; case GLSL_TYPE_FLOAT: return (uint64_t) this->value.f[i]; case GLSL_TYPE_BOOL: return this->value.b[i] ? 1 : 0; case GLSL_TYPE_DOUBLE: return (uint64_t) this->value.d[i]; case GLSL_TYPE_UINT64: return this->value.u64[i]; case GLSL_TYPE_INT64: return (uint64_t) this->value.i64[i]; default: assert(!"Should not get here."); break; } /* Must return something to make the compiler happy. This is clearly an * error case. */ return 0; } ir_constant * ir_constant::get_array_element(unsigned i) const { assert(this->type->is_array()); /* From page 35 (page 41 of the PDF) of the GLSL 1.20 spec: * * "Behavior is undefined if a shader subscripts an array with an index * less than 0 or greater than or equal to the size the array was * declared with." * * Most out-of-bounds accesses are removed before things could get this far. * There are cases where non-constant array index values can get constant * folded. */ if (int(i) < 0) i = 0; else if (i >= this->type->length) i = this->type->length - 1; return const_elements[i]; } ir_constant * ir_constant::get_record_field(int idx) { assert(this->type->is_record()); assert(idx >= 0 && (unsigned) idx < this->type->length); return const_elements[idx]; } void ir_constant::copy_offset(ir_constant *src, int offset) { switch (this->type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: case GLSL_TYPE_FLOAT: case GLSL_TYPE_DOUBLE: case GLSL_TYPE_UINT64: case GLSL_TYPE_INT64: case GLSL_TYPE_BOOL: { unsigned int size = src->type->components(); assert (size <= this->type->components() - offset); for (unsigned int i=0; i<size; i++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: value.u[i+offset] = src->get_uint_component(i); break; case GLSL_TYPE_INT: value.i[i+offset] = src->get_int_component(i); break; case GLSL_TYPE_FLOAT: value.f[i+offset] = src->get_float_component(i); break; case GLSL_TYPE_BOOL: value.b[i+offset] = src->get_bool_component(i); break; case GLSL_TYPE_DOUBLE: value.d[i+offset] = src->get_double_component(i); break; case GLSL_TYPE_UINT64: value.u64[i+offset] = src->get_uint64_component(i); break; case GLSL_TYPE_INT64: value.i64[i+offset] = src->get_int64_component(i); break; default: // Shut up the compiler break; } } break; } case GLSL_TYPE_STRUCT: case GLSL_TYPE_ARRAY: { assert (src->type == this->type); for (unsigned i = 0; i < this->type->length; i++) { this->const_elements[i] = src->const_elements[i]->clone(this, NULL); } break; } default: assert(!"Should not get here."); break; } } void ir_constant::copy_masked_offset(ir_constant *src, int offset, unsigned int mask) { assert (!type->is_array() && !type->is_record()); if (!type->is_vector() && !type->is_matrix()) { offset = 0; mask = 1; } int id = 0; for (int i=0; i<4; i++) { if (mask & (1 << i)) { switch (this->type->base_type) { case GLSL_TYPE_UINT: value.u[i+offset] = src->get_uint_component(id++); break; case GLSL_TYPE_INT: value.i[i+offset] = src->get_int_component(id++); break; case GLSL_TYPE_FLOAT: value.f[i+offset] = src->get_float_component(id++); break; case GLSL_TYPE_BOOL: value.b[i+offset] = src->get_bool_component(id++); break; case GLSL_TYPE_DOUBLE: value.d[i+offset] = src->get_double_component(id++); break; case GLSL_TYPE_UINT64: value.u64[i+offset] = src->get_uint64_component(id++); break; case GLSL_TYPE_INT64: value.i64[i+offset] = src->get_int64_component(id++); break; default: assert(!"Should not get here."); return; } } } } bool ir_constant::has_value(const ir_constant *c) const { if (this->type != c->type) return false; if (this->type->is_array() || this->type->is_record()) { for (unsigned i = 0; i < this->type->length; i++) { if (!this->const_elements[i]->has_value(c->const_elements[i])) return false; } return true; } for (unsigned i = 0; i < this->type->components(); i++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: if (this->value.u[i] != c->value.u[i]) return false; break; case GLSL_TYPE_INT: if (this->value.i[i] != c->value.i[i]) return false; break; case GLSL_TYPE_FLOAT: if (this->value.f[i] != c->value.f[i]) return false; break; case GLSL_TYPE_BOOL: if (this->value.b[i] != c->value.b[i]) return false; break; case GLSL_TYPE_DOUBLE: if (this->value.d[i] != c->value.d[i]) return false; break; case GLSL_TYPE_UINT64: if (this->value.u64[i] != c->value.u64[i]) return false; break; case GLSL_TYPE_INT64: if (this->value.i64[i] != c->value.i64[i]) return false; break; default: assert(!"Should not get here."); return false; } } return true; } bool ir_constant::is_value(float f, int i) const { if (!this->type->is_scalar() && !this->type->is_vector()) return false; /* Only accept boolean values for 0/1. */ if (int(bool(i)) != i && this->type->is_boolean()) return false; for (unsigned c = 0; c < this->type->vector_elements; c++) { switch (this->type->base_type) { case GLSL_TYPE_FLOAT: if (this->value.f[c] != f) return false; break; case GLSL_TYPE_INT: if (this->value.i[c] != i) return false; break; case GLSL_TYPE_UINT: if (this->value.u[c] != unsigned(i)) return false; break; case GLSL_TYPE_BOOL: if (this->value.b[c] != bool(i)) return false; break; case GLSL_TYPE_DOUBLE: if (this->value.d[c] != double(f)) return false; break; case GLSL_TYPE_UINT64: if (this->value.u64[c] != uint64_t(i)) return false; break; case GLSL_TYPE_INT64: if (this->value.i64[c] != i) return false; break; default: /* The only other base types are structures, arrays, and samplers. * Samplers cannot be constants, and the others should have been * filtered out above. */ assert(!"Should not get here."); return false; } } return true; } bool ir_constant::is_zero() const { return is_value(0.0, 0); } bool ir_constant::is_one() const { return is_value(1.0, 1); } bool ir_constant::is_negative_one() const { return is_value(-1.0, -1); } bool ir_constant::is_uint16_constant() const { if (!type->is_integer()) return false; return value.u[0] < (1 << 16); } ir_loop::ir_loop() : ir_instruction(ir_type_loop) { } ir_dereference_variable::ir_dereference_variable(ir_variable *var) : ir_dereference(ir_type_dereference_variable) { assert(var != NULL); this->var = var; this->type = var->type; } ir_dereference_array::ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index) : ir_dereference(ir_type_dereference_array) { this->array_index = array_index; this->set_array(value); } ir_dereference_array::ir_dereference_array(ir_variable *var, ir_rvalue *array_index) : ir_dereference(ir_type_dereference_array) { void *ctx = ralloc_parent(var); this->array_index = array_index; this->set_array(new(ctx) ir_dereference_variable(var)); } void ir_dereference_array::set_array(ir_rvalue *value) { assert(value != NULL); this->array = value; const glsl_type *const vt = this->array->type; if (vt->is_array()) { type = vt->fields.array; } else if (vt->is_matrix()) { type = vt->column_type(); } else if (vt->is_vector()) { type = vt->get_base_type(); } } ir_dereference_record::ir_dereference_record(ir_rvalue *value, const char *field) : ir_dereference(ir_type_dereference_record) { assert(value != NULL); this->record = value; this->type = this->record->type->field_type(field); this->field_idx = this->record->type->field_index(field); } ir_dereference_record::ir_dereference_record(ir_variable *var, const char *field) : ir_dereference(ir_type_dereference_record) { void *ctx = ralloc_parent(var); this->record = new(ctx) ir_dereference_variable(var); this->type = this->record->type->field_type(field); this->field_idx = this->record->type->field_index(field); } bool ir_dereference::is_lvalue(const struct _mesa_glsl_parse_state *state) const { ir_variable *var = this->variable_referenced(); /* Every l-value derference chain eventually ends in a variable. */ if ((var == NULL) || var->data.read_only) return false; /* From section 4.1.7 of the ARB_bindless_texture spec: * * "Samplers can be used as l-values, so can be assigned into and used as * "out" and "inout" function parameters." * * From section 4.1.X of the ARB_bindless_texture spec: * * "Images can be used as l-values, so can be assigned into and used as * "out" and "inout" function parameters." */ if ((!state || state->has_bindless()) && (this->type->contains_sampler() || this->type->contains_image())) return true; /* From section 4.1.7 of the GLSL 4.40 spec: * * "Opaque variables cannot be treated as l-values; hence cannot * be used as out or inout function parameters, nor can they be * assigned into." */ if (this->type->contains_opaque()) return false; return true; } static const char * const tex_opcode_strs[] = { "tex", "txb", "txl", "txd", "txf", "txf_ms", "txs", "lod", "tg4", "query_levels", "texture_samples", "samples_identical" }; const char *ir_texture::opcode_string() { assert((unsigned int) op < ARRAY_SIZE(tex_opcode_strs)); return tex_opcode_strs[op]; } ir_texture_opcode ir_texture::get_opcode(const char *str) { const int count = sizeof(tex_opcode_strs) / sizeof(tex_opcode_strs[0]); for (int op = 0; op < count; op++) { if (strcmp(str, tex_opcode_strs[op]) == 0) return (ir_texture_opcode) op; } return (ir_texture_opcode) -1; } void ir_texture::set_sampler(ir_dereference *sampler, const glsl_type *type) { assert(sampler != NULL); assert(type != NULL); this->sampler = sampler; this->type = type; if (this->op == ir_txs || this->op == ir_query_levels || this->op == ir_texture_samples) { assert(type->base_type == GLSL_TYPE_INT); } else if (this->op == ir_lod) { assert(type->vector_elements == 2); assert(type->is_float()); } else if (this->op == ir_samples_identical) { assert(type == glsl_type::bool_type); assert(sampler->type->is_sampler()); assert(sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS); } else { assert(sampler->type->sampled_type == (int) type->base_type); if (sampler->type->sampler_shadow) assert(type->vector_elements == 4 || type->vector_elements == 1); else assert(type->vector_elements == 4); } } void ir_swizzle::init_mask(const unsigned *comp, unsigned count) { assert((count >= 1) && (count <= 4)); memset(&this->mask, 0, sizeof(this->mask)); this->mask.num_components = count; unsigned dup_mask = 0; switch (count) { case 4: assert(comp[3] <= 3); dup_mask |= (1U << comp[3]) & ((1U << comp[0]) | (1U << comp[1]) | (1U << comp[2])); this->mask.w = comp[3]; case 3: assert(comp[2] <= 3); dup_mask |= (1U << comp[2]) & ((1U << comp[0]) | (1U << comp[1])); this->mask.z = comp[2]; case 2: assert(comp[1] <= 3); dup_mask |= (1U << comp[1]) & ((1U << comp[0])); this->mask.y = comp[1]; case 1: assert(comp[0] <= 3); this->mask.x = comp[0]; } this->mask.has_duplicates = dup_mask != 0; /* Based on the number of elements in the swizzle and the base type * (i.e., float, int, unsigned, or bool) of the vector being swizzled, * generate the type of the resulting value. */ type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1); } ir_swizzle::ir_swizzle(ir_rvalue *val, unsigned x, unsigned y, unsigned z, unsigned w, unsigned count) : ir_rvalue(ir_type_swizzle), val(val) { const unsigned components[4] = { x, y, z, w }; this->init_mask(components, count); } ir_swizzle::ir_swizzle(ir_rvalue *val, const unsigned *comp, unsigned count) : ir_rvalue(ir_type_swizzle), val(val) { this->init_mask(comp, count); } ir_swizzle::ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask) : ir_rvalue(ir_type_swizzle), val(val), mask(mask) { this->type = glsl_type::get_instance(val->type->base_type, mask.num_components, 1); } #define X 1 #define R 5 #define S 9 #define I 13 ir_swizzle * ir_swizzle::create(ir_rvalue *val, const char *str, unsigned vector_length) { void *ctx = ralloc_parent(val); /* For each possible swizzle character, this table encodes the value in * \c idx_map that represents the 0th element of the vector. For invalid * swizzle characters (e.g., 'k'), a special value is used that will allow * detection of errors. */ static const unsigned char base_idx[26] = { /* a b c d e f g h i j k l m */ R, R, I, I, I, I, R, I, I, I, I, I, I, /* n o p q r s t u v w x y z */ I, I, S, S, R, S, S, I, I, X, X, X, X }; /* Each valid swizzle character has an entry in the previous table. This * table encodes the base index encoded in the previous table plus the actual * index of the swizzle character. When processing swizzles, the first * character in the string is indexed in the previous table. Each character * in the string is indexed in this table, and the value found there has the * value form the first table subtracted. The result must be on the range * [0,3]. * * For example, the string "wzyx" will get X from the first table. Each of * the charcaters will get X+3, X+2, X+1, and X+0 from this table. After * subtraction, the swizzle values are { 3, 2, 1, 0 }. * * The string "wzrg" will get X from the first table. Each of the characters * will get X+3, X+2, R+0, and R+1 from this table. After subtraction, the * swizzle values are { 3, 2, 4, 5 }. Since 4 and 5 are outside the range * [0,3], the error is detected. */ static const unsigned char idx_map[26] = { /* a b c d e f g h i j k l m */ R+3, R+2, 0, 0, 0, 0, R+1, 0, 0, 0, 0, 0, 0, /* n o p q r s t u v w x y z */ 0, 0, S+2, S+3, R+0, S+0, S+1, 0, 0, X+3, X+0, X+1, X+2 }; int swiz_idx[4] = { 0, 0, 0, 0 }; unsigned i; /* Validate the first character in the swizzle string and look up the base * index value as described above. */ if ((str[0] < 'a') || (str[0] > 'z')) return NULL; const unsigned base = base_idx[str[0] - 'a']; for (i = 0; (i < 4) && (str[i] != '\0'); i++) { /* Validate the next character, and, as described above, convert it to a * swizzle index. */ if ((str[i] < 'a') || (str[i] > 'z')) return NULL; swiz_idx[i] = idx_map[str[i] - 'a'] - base; if ((swiz_idx[i] < 0) || (swiz_idx[i] >= (int) vector_length)) return NULL; } if (str[i] != '\0') return NULL; return new(ctx) ir_swizzle(val, swiz_idx[0], swiz_idx[1], swiz_idx[2], swiz_idx[3], i); } #undef X #undef R #undef S #undef I ir_variable * ir_swizzle::variable_referenced() const { return this->val->variable_referenced(); } bool ir_variable::temporaries_allocate_names = false; const char ir_variable::tmp_name[] = "compiler_temp"; ir_variable::ir_variable(const struct glsl_type *type, const char *name, ir_variable_mode mode) : ir_instruction(ir_type_variable) { this->type = type; if (mode == ir_var_temporary && !ir_variable::temporaries_allocate_names) name = NULL; /* The ir_variable clone method may call this constructor with name set to * tmp_name. */ assert(name != NULL || mode == ir_var_temporary || mode == ir_var_function_in || mode == ir_var_function_out || mode == ir_var_function_inout); assert(name != ir_variable::tmp_name || mode == ir_var_temporary); if (mode == ir_var_temporary && (name == NULL || name == ir_variable::tmp_name)) { this->name = ir_variable::tmp_name; } else if (name == NULL || strlen(name) < ARRAY_SIZE(this->name_storage)) { strcpy(this->name_storage, name ? name : ""); this->name = this->name_storage; } else { this->name = ralloc_strdup(this, name); } this->u.max_ifc_array_access = NULL; this->data.explicit_location = false; this->data.has_initializer = false; this->data.location = -1; this->data.location_frac = 0; this->data.binding = 0; this->data.warn_extension_index = 0; this->constant_value = NULL; this->constant_initializer = NULL; this->data.origin_upper_left = false; this->data.pixel_center_integer = false; this->data.depth_layout = ir_depth_layout_none; this->data.used = false; this->data.always_active_io = false; this->data.read_only = false; this->data.centroid = false; this->data.sample = false; this->data.patch = false; this->data.invariant = false; this->data.how_declared = ir_var_declared_normally; this->data.mode = mode; this->data.interpolation = INTERP_MODE_NONE; this->data.max_array_access = -1; this->data.offset = 0; this->data.precision = GLSL_PRECISION_NONE; this->data.memory_read_only = false; this->data.memory_write_only = false; this->data.memory_coherent = false; this->data.memory_volatile = false; this->data.memory_restrict = false; this->data.from_ssbo_unsized_array = false; this->data.fb_fetch_output = false; this->data.bindless = false; this->data.bound = false; if (type != NULL) { if (type->is_interface()) this->init_interface_type(type); else if (type->without_array()->is_interface()) this->init_interface_type(type->without_array()); } } const char * interpolation_string(unsigned interpolation) { switch (interpolation) { case INTERP_MODE_NONE: return "no"; case INTERP_MODE_SMOOTH: return "smooth"; case INTERP_MODE_FLAT: return "flat"; case INTERP_MODE_NOPERSPECTIVE: return "noperspective"; } assert(!"Should not get here."); return ""; } const char *const ir_variable::warn_extension_table[] = { "", "GL_ARB_shader_stencil_export", "GL_AMD_shader_stencil_export", }; void ir_variable::enable_extension_warning(const char *extension) { for (unsigned i = 0; i < ARRAY_SIZE(warn_extension_table); i++) { if (strcmp(warn_extension_table[i], extension) == 0) { this->data.warn_extension_index = i; return; } } assert(!"Should not get here."); this->data.warn_extension_index = 0; } const char * ir_variable::get_extension_warning() const { return this->data.warn_extension_index == 0 ? NULL : warn_extension_table[this->data.warn_extension_index]; } ir_function_signature::ir_function_signature(const glsl_type *return_type, builtin_available_predicate b) : ir_instruction(ir_type_function_signature), return_type(return_type), is_defined(false), intrinsic_id(ir_intrinsic_invalid), builtin_avail(b), _function(NULL) { this->origin = NULL; } bool ir_function_signature::is_builtin() const { return builtin_avail != NULL; } bool ir_function_signature::is_builtin_available(const _mesa_glsl_parse_state *state) const { /* We can't call the predicate without a state pointer, so just say that * the signature is available. At compile time, we need the filtering, * but also receive a valid state pointer. At link time, we're resolving * imported built-in prototypes to their definitions, which will always * be an exact match. So we can skip the filtering. */ if (state == NULL) return true; assert(builtin_avail != NULL); return builtin_avail(state); } static bool modes_match(unsigned a, unsigned b) { if (a == b) return true; /* Accept "in" vs. "const in" */ if ((a == ir_var_const_in && b == ir_var_function_in) || (b == ir_var_const_in && a == ir_var_function_in)) return true; return false; } const char * ir_function_signature::qualifiers_match(exec_list *params) { /* check that the qualifiers match. */ foreach_two_lists(a_node, &this->parameters, b_node, params) { ir_variable *a = (ir_variable *) a_node; ir_variable *b = (ir_variable *) b_node; if (a->data.read_only != b->data.read_only || !modes_match(a->data.mode, b->data.mode) || a->data.interpolation != b->data.interpolation || a->data.centroid != b->data.centroid || a->data.sample != b->data.sample || a->data.patch != b->data.patch || a->data.memory_read_only != b->data.memory_read_only || a->data.memory_write_only != b->data.memory_write_only || a->data.memory_coherent != b->data.memory_coherent || a->data.memory_volatile != b->data.memory_volatile || a->data.memory_restrict != b->data.memory_restrict) { /* parameter a's qualifiers don't match */ return a->name; } } return NULL; } void ir_function_signature::replace_parameters(exec_list *new_params) { /* Destroy all of the previous parameter information. If the previous * parameter information comes from the function prototype, it may either * specify incorrect parameter names or not have names at all. */ new_params->move_nodes_to(¶meters); } ir_function::ir_function(const char *name) : ir_instruction(ir_type_function) { this->subroutine_index = -1; this->name = ralloc_strdup(this, name); } bool ir_function::has_user_signature() { foreach_in_list(ir_function_signature, sig, &this->signatures) { if (!sig->is_builtin()) return true; } return false; } ir_rvalue * ir_rvalue::error_value(void *mem_ctx) { ir_rvalue *v = new(mem_ctx) ir_rvalue(ir_type_unset); v->type = glsl_type::error_type; return v; } void visit_exec_list(exec_list *list, ir_visitor *visitor) { foreach_in_list_safe(ir_instruction, node, list) { node->accept(visitor); } } static void steal_memory(ir_instruction *ir, void *new_ctx) { ir_variable *var = ir->as_variable(); ir_function *fn = ir->as_function(); ir_constant *constant = ir->as_constant(); if (var != NULL && var->constant_value != NULL) steal_memory(var->constant_value, ir); if (var != NULL && var->constant_initializer != NULL) steal_memory(var->constant_initializer, ir); if (fn != NULL && fn->subroutine_types) ralloc_steal(new_ctx, fn->subroutine_types); /* The components of aggregate constants are not visited by the normal * visitor, so steal their values by hand. */ if (constant != NULL && (constant->type->is_array() || constant->type->is_record())) { for (unsigned int i = 0; i < constant->type->length; i++) { steal_memory(constant->const_elements[i], ir); } } ralloc_steal(new_ctx, ir); } void reparent_ir(exec_list *list, void *mem_ctx) { foreach_in_list(ir_instruction, node, list) { visit_tree(node, steal_memory, mem_ctx); } } static ir_rvalue * try_min_one(ir_rvalue *ir) { ir_expression *expr = ir->as_expression(); if (!expr || expr->operation != ir_binop_min) return NULL; if (expr->operands[0]->is_one()) return expr->operands[1]; if (expr->operands[1]->is_one()) return expr->operands[0]; return NULL; } static ir_rvalue * try_max_zero(ir_rvalue *ir) { ir_expression *expr = ir->as_expression(); if (!expr || expr->operation != ir_binop_max) return NULL; if (expr->operands[0]->is_zero()) return expr->operands[1]; if (expr->operands[1]->is_zero()) return expr->operands[0]; return NULL; } ir_rvalue * ir_rvalue::as_rvalue_to_saturate() { ir_expression *expr = this->as_expression(); if (!expr) return NULL; ir_rvalue *max_zero = try_max_zero(expr); if (max_zero) { return try_min_one(max_zero); } else { ir_rvalue *min_one = try_min_one(expr); if (min_one) { return try_max_zero(min_one); } } return NULL; } unsigned vertices_per_prim(GLenum prim) { switch (prim) { case GL_POINTS: return 1; case GL_LINES: return 2; case GL_TRIANGLES: return 3; case GL_LINES_ADJACENCY: return 4; case GL_TRIANGLES_ADJACENCY: return 6; default: assert(!"Bad primitive"); return 3; } } /** * Generate a string describing the mode of a variable */ const char * mode_string(const ir_variable *var) { switch (var->data.mode) { case ir_var_auto: return (var->data.read_only) ? "global constant" : "global variable"; case ir_var_uniform: return "uniform"; case ir_var_shader_storage: return "buffer"; case ir_var_shader_in: return "shader input"; case ir_var_shader_out: return "shader output"; case ir_var_function_in: case ir_var_const_in: return "function input"; case ir_var_function_out: return "function output"; case ir_var_function_inout: return "function inout"; case ir_var_system_value: return "shader input"; case ir_var_temporary: return "compiler temporary"; case ir_var_mode_count: break; } assert(!"Should not get here."); return "invalid variable"; }