/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "ir_reader.h" #include "glsl_parser_extras.h" #include "compiler/glsl_types.h" #include "s_expression.h" static const bool debug = false; namespace { class ir_reader { public: ir_reader(_mesa_glsl_parse_state *); void read(exec_list *instructions, const char *src, bool scan_for_protos); private: void *mem_ctx; _mesa_glsl_parse_state *state; void ir_read_error(s_expression *, const char *fmt, ...); const glsl_type *read_type(s_expression *); void scan_for_prototypes(exec_list *, s_expression *); ir_function *read_function(s_expression *, bool skip_body); void read_function_sig(ir_function *, s_expression *, bool skip_body); void read_instructions(exec_list *, s_expression *, ir_loop *); ir_instruction *read_instruction(s_expression *, ir_loop *); ir_variable *read_declaration(s_expression *); ir_if *read_if(s_expression *, ir_loop *); ir_loop *read_loop(s_expression *); ir_call *read_call(s_expression *); ir_return *read_return(s_expression *); ir_rvalue *read_rvalue(s_expression *); ir_assignment *read_assignment(s_expression *); ir_expression *read_expression(s_expression *); ir_swizzle *read_swizzle(s_expression *); ir_constant *read_constant(s_expression *); ir_texture *read_texture(s_expression *); ir_emit_vertex *read_emit_vertex(s_expression *); ir_end_primitive *read_end_primitive(s_expression *); ir_barrier *read_barrier(s_expression *); ir_dereference *read_dereference(s_expression *); ir_dereference_variable *read_var_ref(s_expression *); }; } /* anonymous namespace */ ir_reader::ir_reader(_mesa_glsl_parse_state *state) : state(state) { this->mem_ctx = state; } void _mesa_glsl_read_ir(_mesa_glsl_parse_state *state, exec_list *instructions, const char *src, bool scan_for_protos) { ir_reader r(state); r.read(instructions, src, scan_for_protos); } void ir_reader::read(exec_list *instructions, const char *src, bool scan_for_protos) { void *sx_mem_ctx = ralloc_context(NULL); s_expression *expr = s_expression::read_expression(sx_mem_ctx, src); if (expr == NULL) { ir_read_error(NULL, "couldn't parse S-Expression."); return; } if (scan_for_protos) { scan_for_prototypes(instructions, expr); if (state->error) return; } read_instructions(instructions, expr, NULL); ralloc_free(sx_mem_ctx); if (debug) validate_ir_tree(instructions); } void ir_reader::ir_read_error(s_expression *expr, const char *fmt, ...) { va_list ap; state->error = true; if (state->current_function != NULL) ralloc_asprintf_append(&state->info_log, "In function %s:\n", state->current_function->function_name()); ralloc_strcat(&state->info_log, "error: "); va_start(ap, fmt); ralloc_vasprintf_append(&state->info_log, fmt, ap); va_end(ap); ralloc_strcat(&state->info_log, "\n"); if (expr != NULL) { ralloc_strcat(&state->info_log, "...in this context:\n "); expr->print(); ralloc_strcat(&state->info_log, "\n\n"); } } const glsl_type * ir_reader::read_type(s_expression *expr) { s_expression *s_base_type; s_int *s_size; s_pattern pat[] = { "array", s_base_type, s_size }; if (MATCH(expr, pat)) { const glsl_type *base_type = read_type(s_base_type); if (base_type == NULL) { ir_read_error(NULL, "when reading base type of array type"); return NULL; } return glsl_type::get_array_instance(base_type, s_size->value()); } s_symbol *type_sym = SX_AS_SYMBOL(expr); if (type_sym == NULL) { ir_read_error(expr, "expected <type>"); return NULL; } const glsl_type *type = state->symbols->get_type(type_sym->value()); if (type == NULL) ir_read_error(expr, "invalid type: %s", type_sym->value()); return type; } void ir_reader::scan_for_prototypes(exec_list *instructions, s_expression *expr) { s_list *list = SX_AS_LIST(expr); if (list == NULL) { ir_read_error(expr, "Expected (<instruction> ...); found an atom."); return; } foreach_in_list(s_list, sub, &list->subexpressions) { if (!sub->is_list()) continue; // not a (function ...); ignore it. s_symbol *tag = SX_AS_SYMBOL(sub->subexpressions.get_head()); if (tag == NULL || strcmp(tag->value(), "function") != 0) continue; // not a (function ...); ignore it. ir_function *f = read_function(sub, true); if (f == NULL) return; instructions->push_tail(f); } } ir_function * ir_reader::read_function(s_expression *expr, bool skip_body) { bool added = false; s_symbol *name; s_pattern pat[] = { "function", name }; if (!PARTIAL_MATCH(expr, pat)) { ir_read_error(expr, "Expected (function <name> (signature ...) ...)"); return NULL; } ir_function *f = state->symbols->get_function(name->value()); if (f == NULL) { f = new(mem_ctx) ir_function(name->value()); added = state->symbols->add_function(f); assert(added); } /* Skip over "function" tag and function name (which are guaranteed to be * present by the above PARTIAL_MATCH call). */ exec_node *node = ((s_list *) expr)->subexpressions.get_head_raw()->next->next; for (/* nothing */; !node->is_tail_sentinel(); node = node->next) { s_expression *s_sig = (s_expression *) node; read_function_sig(f, s_sig, skip_body); } return added ? f : NULL; } static bool always_available(const _mesa_glsl_parse_state *) { return true; } void ir_reader::read_function_sig(ir_function *f, s_expression *expr, bool skip_body) { s_expression *type_expr; s_list *paramlist; s_list *body_list; s_pattern pat[] = { "signature", type_expr, paramlist, body_list }; if (!MATCH(expr, pat)) { ir_read_error(expr, "Expected (signature <type> (parameters ...) " "(<instruction> ...))"); return; } const glsl_type *return_type = read_type(type_expr); if (return_type == NULL) return; s_symbol *paramtag = SX_AS_SYMBOL(paramlist->subexpressions.get_head()); if (paramtag == NULL || strcmp(paramtag->value(), "parameters") != 0) { ir_read_error(paramlist, "Expected (parameters ...)"); return; } // Read the parameters list into a temporary place. exec_list hir_parameters; state->symbols->push_scope(); /* Skip over the "parameters" tag. */ exec_node *node = paramlist->subexpressions.get_head_raw()->next; for (/* nothing */; !node->is_tail_sentinel(); node = node->next) { ir_variable *var = read_declaration((s_expression *) node); if (var == NULL) return; hir_parameters.push_tail(var); } ir_function_signature *sig = f->exact_matching_signature(state, &hir_parameters); if (sig == NULL && skip_body) { /* If scanning for prototypes, generate a new signature. */ /* ir_reader doesn't know what languages support a given built-in, so * just say that they're always available. For now, other mechanisms * guarantee the right built-ins are available. */ sig = new(mem_ctx) ir_function_signature(return_type, always_available); f->add_signature(sig); } else if (sig != NULL) { const char *badvar = sig->qualifiers_match(&hir_parameters); if (badvar != NULL) { ir_read_error(expr, "function `%s' parameter `%s' qualifiers " "don't match prototype", f->name, badvar); return; } if (sig->return_type != return_type) { ir_read_error(expr, "function `%s' return type doesn't " "match prototype", f->name); return; } } else { /* No prototype for this body exists - skip it. */ state->symbols->pop_scope(); return; } assert(sig != NULL); sig->replace_parameters(&hir_parameters); if (!skip_body && !body_list->subexpressions.is_empty()) { if (sig->is_defined) { ir_read_error(expr, "function %s redefined", f->name); return; } state->current_function = sig; read_instructions(&sig->body, body_list, NULL); state->current_function = NULL; sig->is_defined = true; } state->symbols->pop_scope(); } void ir_reader::read_instructions(exec_list *instructions, s_expression *expr, ir_loop *loop_ctx) { // Read in a list of instructions s_list *list = SX_AS_LIST(expr); if (list == NULL) { ir_read_error(expr, "Expected (<instruction> ...); found an atom."); return; } foreach_in_list(s_expression, sub, &list->subexpressions) { ir_instruction *ir = read_instruction(sub, loop_ctx); if (ir != NULL) { /* Global variable declarations should be moved to the top, before * any functions that might use them. Functions are added to the * instruction stream when scanning for prototypes, so without this * hack, they always appear before variable declarations. */ if (state->current_function == NULL && ir->as_variable() != NULL) instructions->push_head(ir); else instructions->push_tail(ir); } } } ir_instruction * ir_reader::read_instruction(s_expression *expr, ir_loop *loop_ctx) { s_symbol *symbol = SX_AS_SYMBOL(expr); if (symbol != NULL) { if (strcmp(symbol->value(), "break") == 0 && loop_ctx != NULL) return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break); if (strcmp(symbol->value(), "continue") == 0 && loop_ctx != NULL) return new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_continue); } s_list *list = SX_AS_LIST(expr); if (list == NULL || list->subexpressions.is_empty()) { ir_read_error(expr, "Invalid instruction.\n"); return NULL; } s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head()); if (tag == NULL) { ir_read_error(expr, "expected instruction tag"); return NULL; } ir_instruction *inst = NULL; if (strcmp(tag->value(), "declare") == 0) { inst = read_declaration(list); } else if (strcmp(tag->value(), "assign") == 0) { inst = read_assignment(list); } else if (strcmp(tag->value(), "if") == 0) { inst = read_if(list, loop_ctx); } else if (strcmp(tag->value(), "loop") == 0) { inst = read_loop(list); } else if (strcmp(tag->value(), "call") == 0) { inst = read_call(list); } else if (strcmp(tag->value(), "return") == 0) { inst = read_return(list); } else if (strcmp(tag->value(), "function") == 0) { inst = read_function(list, false); } else if (strcmp(tag->value(), "emit-vertex") == 0) { inst = read_emit_vertex(list); } else if (strcmp(tag->value(), "end-primitive") == 0) { inst = read_end_primitive(list); } else if (strcmp(tag->value(), "barrier") == 0) { inst = read_barrier(list); } else { inst = read_rvalue(list); if (inst == NULL) ir_read_error(NULL, "when reading instruction"); } return inst; } ir_variable * ir_reader::read_declaration(s_expression *expr) { s_list *s_quals; s_expression *s_type; s_symbol *s_name; s_pattern pat[] = { "declare", s_quals, s_type, s_name }; if (!MATCH(expr, pat)) { ir_read_error(expr, "expected (declare (<qualifiers>) <type> <name>)"); return NULL; } const glsl_type *type = read_type(s_type); if (type == NULL) return NULL; ir_variable *var = new(mem_ctx) ir_variable(type, s_name->value(), ir_var_auto); foreach_in_list(s_symbol, qualifier, &s_quals->subexpressions) { if (!qualifier->is_symbol()) { ir_read_error(expr, "qualifier list must contain only symbols"); return NULL; } // FINISHME: Check for duplicate/conflicting qualifiers. if (strcmp(qualifier->value(), "centroid") == 0) { var->data.centroid = 1; } else if (strcmp(qualifier->value(), "sample") == 0) { var->data.sample = 1; } else if (strcmp(qualifier->value(), "patch") == 0) { var->data.patch = 1; } else if (strcmp(qualifier->value(), "invariant") == 0) { var->data.invariant = 1; } else if (strcmp(qualifier->value(), "uniform") == 0) { var->data.mode = ir_var_uniform; } else if (strcmp(qualifier->value(), "shader_storage") == 0) { var->data.mode = ir_var_shader_storage; } else if (strcmp(qualifier->value(), "auto") == 0) { var->data.mode = ir_var_auto; } else if (strcmp(qualifier->value(), "in") == 0) { var->data.mode = ir_var_function_in; } else if (strcmp(qualifier->value(), "shader_in") == 0) { var->data.mode = ir_var_shader_in; } else if (strcmp(qualifier->value(), "const_in") == 0) { var->data.mode = ir_var_const_in; } else if (strcmp(qualifier->value(), "out") == 0) { var->data.mode = ir_var_function_out; } else if (strcmp(qualifier->value(), "shader_out") == 0) { var->data.mode = ir_var_shader_out; } else if (strcmp(qualifier->value(), "inout") == 0) { var->data.mode = ir_var_function_inout; } else if (strcmp(qualifier->value(), "temporary") == 0) { var->data.mode = ir_var_temporary; } else if (strcmp(qualifier->value(), "stream1") == 0) { var->data.stream = 1; } else if (strcmp(qualifier->value(), "stream2") == 0) { var->data.stream = 2; } else if (strcmp(qualifier->value(), "stream3") == 0) { var->data.stream = 3; } else if (strcmp(qualifier->value(), "smooth") == 0) { var->data.interpolation = INTERP_MODE_SMOOTH; } else if (strcmp(qualifier->value(), "flat") == 0) { var->data.interpolation = INTERP_MODE_FLAT; } else if (strcmp(qualifier->value(), "noperspective") == 0) { var->data.interpolation = INTERP_MODE_NOPERSPECTIVE; } else { ir_read_error(expr, "unknown qualifier: %s", qualifier->value()); return NULL; } } // Add the variable to the symbol table state->symbols->add_variable(var); return var; } ir_if * ir_reader::read_if(s_expression *expr, ir_loop *loop_ctx) { s_expression *s_cond; s_expression *s_then; s_expression *s_else; s_pattern pat[] = { "if", s_cond, s_then, s_else }; if (!MATCH(expr, pat)) { ir_read_error(expr, "expected (if <condition> (<then>...) (<else>...))"); return NULL; } ir_rvalue *condition = read_rvalue(s_cond); if (condition == NULL) { ir_read_error(NULL, "when reading condition of (if ...)"); return NULL; } ir_if *iff = new(mem_ctx) ir_if(condition); read_instructions(&iff->then_instructions, s_then, loop_ctx); read_instructions(&iff->else_instructions, s_else, loop_ctx); if (state->error) { delete iff; iff = NULL; } return iff; } ir_loop * ir_reader::read_loop(s_expression *expr) { s_expression *s_body; s_pattern loop_pat[] = { "loop", s_body }; if (!MATCH(expr, loop_pat)) { ir_read_error(expr, "expected (loop <body>)"); return NULL; } ir_loop *loop = new(mem_ctx) ir_loop; read_instructions(&loop->body_instructions, s_body, loop); if (state->error) { delete loop; loop = NULL; } return loop; } ir_return * ir_reader::read_return(s_expression *expr) { s_expression *s_retval; s_pattern return_value_pat[] = { "return", s_retval}; s_pattern return_void_pat[] = { "return" }; if (MATCH(expr, return_value_pat)) { ir_rvalue *retval = read_rvalue(s_retval); if (retval == NULL) { ir_read_error(NULL, "when reading return value"); return NULL; } return new(mem_ctx) ir_return(retval); } else if (MATCH(expr, return_void_pat)) { return new(mem_ctx) ir_return; } else { ir_read_error(expr, "expected (return <rvalue>) or (return)"); return NULL; } } ir_rvalue * ir_reader::read_rvalue(s_expression *expr) { s_list *list = SX_AS_LIST(expr); if (list == NULL || list->subexpressions.is_empty()) return NULL; s_symbol *tag = SX_AS_SYMBOL(list->subexpressions.get_head()); if (tag == NULL) { ir_read_error(expr, "expected rvalue tag"); return NULL; } ir_rvalue *rvalue = read_dereference(list); if (rvalue != NULL || state->error) return rvalue; else if (strcmp(tag->value(), "swiz") == 0) { rvalue = read_swizzle(list); } else if (strcmp(tag->value(), "expression") == 0) { rvalue = read_expression(list); } else if (strcmp(tag->value(), "constant") == 0) { rvalue = read_constant(list); } else { rvalue = read_texture(list); if (rvalue == NULL && !state->error) ir_read_error(expr, "unrecognized rvalue tag: %s", tag->value()); } return rvalue; } ir_assignment * ir_reader::read_assignment(s_expression *expr) { s_expression *cond_expr = NULL; s_expression *lhs_expr, *rhs_expr; s_list *mask_list; s_pattern pat4[] = { "assign", mask_list, lhs_expr, rhs_expr }; s_pattern pat5[] = { "assign", cond_expr, mask_list, lhs_expr, rhs_expr }; if (!MATCH(expr, pat4) && !MATCH(expr, pat5)) { ir_read_error(expr, "expected (assign [<condition>] (<write mask>) " "<lhs> <rhs>)"); return NULL; } ir_rvalue *condition = NULL; if (cond_expr != NULL) { condition = read_rvalue(cond_expr); if (condition == NULL) { ir_read_error(NULL, "when reading condition of assignment"); return NULL; } } unsigned mask = 0; s_symbol *mask_symbol; s_pattern mask_pat[] = { mask_symbol }; if (MATCH(mask_list, mask_pat)) { const char *mask_str = mask_symbol->value(); unsigned mask_length = strlen(mask_str); if (mask_length > 4) { ir_read_error(expr, "invalid write mask: %s", mask_str); return NULL; } const unsigned idx_map[] = { 3, 0, 1, 2 }; /* w=bit 3, x=0, y=1, z=2 */ for (unsigned i = 0; i < mask_length; i++) { if (mask_str[i] < 'w' || mask_str[i] > 'z') { ir_read_error(expr, "write mask contains invalid character: %c", mask_str[i]); return NULL; } mask |= 1 << idx_map[mask_str[i] - 'w']; } } else if (!mask_list->subexpressions.is_empty()) { ir_read_error(mask_list, "expected () or (<write mask>)"); return NULL; } ir_dereference *lhs = read_dereference(lhs_expr); if (lhs == NULL) { ir_read_error(NULL, "when reading left-hand side of assignment"); return NULL; } ir_rvalue *rhs = read_rvalue(rhs_expr); if (rhs == NULL) { ir_read_error(NULL, "when reading right-hand side of assignment"); return NULL; } if (mask == 0 && (lhs->type->is_vector() || lhs->type->is_scalar())) { ir_read_error(expr, "non-zero write mask required."); return NULL; } return new(mem_ctx) ir_assignment(lhs, rhs, condition, mask); } ir_call * ir_reader::read_call(s_expression *expr) { s_symbol *name; s_list *params; s_list *s_return = NULL; ir_dereference_variable *return_deref = NULL; s_pattern void_pat[] = { "call", name, params }; s_pattern non_void_pat[] = { "call", name, s_return, params }; if (MATCH(expr, non_void_pat)) { return_deref = read_var_ref(s_return); if (return_deref == NULL) { ir_read_error(s_return, "when reading a call's return storage"); return NULL; } } else if (!MATCH(expr, void_pat)) { ir_read_error(expr, "expected (call <name> [<deref>] (<param> ...))"); return NULL; } exec_list parameters; foreach_in_list(s_expression, e, ¶ms->subexpressions) { ir_rvalue *param = read_rvalue(e); if (param == NULL) { ir_read_error(e, "when reading parameter to function call"); return NULL; } parameters.push_tail(param); } ir_function *f = state->symbols->get_function(name->value()); if (f == NULL) { ir_read_error(expr, "found call to undefined function %s", name->value()); return NULL; } ir_function_signature *callee = f->matching_signature(state, ¶meters, true); if (callee == NULL) { ir_read_error(expr, "couldn't find matching signature for function " "%s", name->value()); return NULL; } if (callee->return_type == glsl_type::void_type && return_deref) { ir_read_error(expr, "call has return value storage but void type"); return NULL; } else if (callee->return_type != glsl_type::void_type && !return_deref) { ir_read_error(expr, "call has non-void type but no return value storage"); return NULL; } return new(mem_ctx) ir_call(callee, return_deref, ¶meters); } ir_expression * ir_reader::read_expression(s_expression *expr) { s_expression *s_type; s_symbol *s_op; s_expression *s_arg[4] = {NULL}; s_pattern pat[] = { "expression", s_type, s_op, s_arg[0] }; if (!PARTIAL_MATCH(expr, pat)) { ir_read_error(expr, "expected (expression <type> <operator> " "<operand> [<operand>] [<operand>] [<operand>])"); return NULL; } s_arg[1] = (s_expression *) s_arg[0]->next; // may be tail sentinel s_arg[2] = (s_expression *) s_arg[1]->next; // may be tail sentinel or NULL if (s_arg[2]) s_arg[3] = (s_expression *) s_arg[2]->next; // may be tail sentinel or NULL const glsl_type *type = read_type(s_type); if (type == NULL) return NULL; /* Read the operator */ ir_expression_operation op = ir_expression::get_operator(s_op->value()); if (op == (ir_expression_operation) -1) { ir_read_error(expr, "invalid operator: %s", s_op->value()); return NULL; } /* Skip "expression" <type> <operation> by subtracting 3. */ int num_operands = (int) ((s_list *) expr)->subexpressions.length() - 3; int expected_operands = ir_expression::get_num_operands(op); if (num_operands != expected_operands) { ir_read_error(expr, "found %d expression operands, expected %d", num_operands, expected_operands); return NULL; } ir_rvalue *arg[4] = {NULL}; for (int i = 0; i < num_operands; i++) { arg[i] = read_rvalue(s_arg[i]); if (arg[i] == NULL) { ir_read_error(NULL, "when reading operand #%d of %s", i, s_op->value()); return NULL; } } return new(mem_ctx) ir_expression(op, type, arg[0], arg[1], arg[2], arg[3]); } ir_swizzle * ir_reader::read_swizzle(s_expression *expr) { s_symbol *swiz; s_expression *sub; s_pattern pat[] = { "swiz", swiz, sub }; if (!MATCH(expr, pat)) { ir_read_error(expr, "expected (swiz <swizzle> <rvalue>)"); return NULL; } if (strlen(swiz->value()) > 4) { ir_read_error(expr, "expected a valid swizzle; found %s", swiz->value()); return NULL; } ir_rvalue *rvalue = read_rvalue(sub); if (rvalue == NULL) return NULL; ir_swizzle *ir = ir_swizzle::create(rvalue, swiz->value(), rvalue->type->vector_elements); if (ir == NULL) ir_read_error(expr, "invalid swizzle"); return ir; } ir_constant * ir_reader::read_constant(s_expression *expr) { s_expression *type_expr; s_list *values; s_pattern pat[] = { "constant", type_expr, values }; if (!MATCH(expr, pat)) { ir_read_error(expr, "expected (constant <type> (...))"); return NULL; } const glsl_type *type = read_type(type_expr); if (type == NULL) return NULL; if (values == NULL) { ir_read_error(expr, "expected (constant <type> (...))"); return NULL; } if (type->is_array()) { unsigned elements_supplied = 0; exec_list elements; foreach_in_list(s_expression, elt, &values->subexpressions) { ir_constant *ir_elt = read_constant(elt); if (ir_elt == NULL) return NULL; elements.push_tail(ir_elt); elements_supplied++; } if (elements_supplied != type->length) { ir_read_error(values, "expected exactly %u array elements, " "given %u", type->length, elements_supplied); return NULL; } return new(mem_ctx) ir_constant(type, &elements); } ir_constant_data data = { { 0 } }; // Read in list of values (at most 16). unsigned k = 0; foreach_in_list(s_expression, expr, &values->subexpressions) { if (k >= 16) { ir_read_error(values, "expected at most 16 numbers"); return NULL; } if (type->is_float()) { s_number *value = SX_AS_NUMBER(expr); if (value == NULL) { ir_read_error(values, "expected numbers"); return NULL; } data.f[k] = value->fvalue(); } else { s_int *value = SX_AS_INT(expr); if (value == NULL) { ir_read_error(values, "expected integers"); return NULL; } switch (type->base_type) { case GLSL_TYPE_UINT: { data.u[k] = value->value(); break; } case GLSL_TYPE_INT: { data.i[k] = value->value(); break; } case GLSL_TYPE_BOOL: { data.b[k] = value->value(); break; } default: ir_read_error(values, "unsupported constant type"); return NULL; } } ++k; } if (k != type->components()) { ir_read_error(values, "expected %u constant values, found %u", type->components(), k); return NULL; } return new(mem_ctx) ir_constant(type, &data); } ir_dereference_variable * ir_reader::read_var_ref(s_expression *expr) { s_symbol *s_var; s_pattern var_pat[] = { "var_ref", s_var }; if (MATCH(expr, var_pat)) { ir_variable *var = state->symbols->get_variable(s_var->value()); if (var == NULL) { ir_read_error(expr, "undeclared variable: %s", s_var->value()); return NULL; } return new(mem_ctx) ir_dereference_variable(var); } return NULL; } ir_dereference * ir_reader::read_dereference(s_expression *expr) { s_expression *s_subject; s_expression *s_index; s_symbol *s_field; s_pattern array_pat[] = { "array_ref", s_subject, s_index }; s_pattern record_pat[] = { "record_ref", s_subject, s_field }; ir_dereference_variable *var_ref = read_var_ref(expr); if (var_ref != NULL) { return var_ref; } else if (MATCH(expr, array_pat)) { ir_rvalue *subject = read_rvalue(s_subject); if (subject == NULL) { ir_read_error(NULL, "when reading the subject of an array_ref"); return NULL; } ir_rvalue *idx = read_rvalue(s_index); if (idx == NULL) { ir_read_error(NULL, "when reading the index of an array_ref"); return NULL; } return new(mem_ctx) ir_dereference_array(subject, idx); } else if (MATCH(expr, record_pat)) { ir_rvalue *subject = read_rvalue(s_subject); if (subject == NULL) { ir_read_error(NULL, "when reading the subject of a record_ref"); return NULL; } return new(mem_ctx) ir_dereference_record(subject, s_field->value()); } return NULL; } ir_texture * ir_reader::read_texture(s_expression *expr) { s_symbol *tag = NULL; s_expression *s_type = NULL; s_expression *s_sampler = NULL; s_expression *s_coord = NULL; s_expression *s_offset = NULL; s_expression *s_proj = NULL; s_list *s_shadow = NULL; s_expression *s_lod = NULL; s_expression *s_sample_index = NULL; s_expression *s_component = NULL; ir_texture_opcode op = ir_tex; /* silence warning */ s_pattern tex_pattern[] = { "tex", s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow }; s_pattern lod_pattern[] = { "lod", s_type, s_sampler, s_coord }; s_pattern txf_pattern[] = { "txf", s_type, s_sampler, s_coord, s_offset, s_lod }; s_pattern txf_ms_pattern[] = { "txf_ms", s_type, s_sampler, s_coord, s_sample_index }; s_pattern txs_pattern[] = { "txs", s_type, s_sampler, s_lod }; s_pattern tg4_pattern[] = { "tg4", s_type, s_sampler, s_coord, s_offset, s_component }; s_pattern query_levels_pattern[] = { "query_levels", s_type, s_sampler }; s_pattern texture_samples_pattern[] = { "samples", s_type, s_sampler }; s_pattern other_pattern[] = { tag, s_type, s_sampler, s_coord, s_offset, s_proj, s_shadow, s_lod }; if (MATCH(expr, lod_pattern)) { op = ir_lod; } else if (MATCH(expr, tex_pattern)) { op = ir_tex; } else if (MATCH(expr, txf_pattern)) { op = ir_txf; } else if (MATCH(expr, txf_ms_pattern)) { op = ir_txf_ms; } else if (MATCH(expr, txs_pattern)) { op = ir_txs; } else if (MATCH(expr, tg4_pattern)) { op = ir_tg4; } else if (MATCH(expr, query_levels_pattern)) { op = ir_query_levels; } else if (MATCH(expr, texture_samples_pattern)) { op = ir_texture_samples; } else if (MATCH(expr, other_pattern)) { op = ir_texture::get_opcode(tag->value()); if (op == (ir_texture_opcode) -1) return NULL; } else { ir_read_error(NULL, "unexpected texture pattern %s", tag->value()); return NULL; } ir_texture *tex = new(mem_ctx) ir_texture(op); // Read return type const glsl_type *type = read_type(s_type); if (type == NULL) { ir_read_error(NULL, "when reading type in (%s ...)", tex->opcode_string()); return NULL; } // Read sampler (must be a deref) ir_dereference *sampler = read_dereference(s_sampler); if (sampler == NULL) { ir_read_error(NULL, "when reading sampler in (%s ...)", tex->opcode_string()); return NULL; } tex->set_sampler(sampler, type); if (op != ir_txs) { // Read coordinate (any rvalue) tex->coordinate = read_rvalue(s_coord); if (tex->coordinate == NULL) { ir_read_error(NULL, "when reading coordinate in (%s ...)", tex->opcode_string()); return NULL; } if (op != ir_txf_ms && op != ir_lod) { // Read texel offset - either 0 or an rvalue. s_int *si_offset = SX_AS_INT(s_offset); if (si_offset == NULL || si_offset->value() != 0) { tex->offset = read_rvalue(s_offset); if (tex->offset == NULL) { ir_read_error(s_offset, "expected 0 or an expression"); return NULL; } } } } if (op != ir_txf && op != ir_txf_ms && op != ir_txs && op != ir_lod && op != ir_tg4 && op != ir_query_levels && op != ir_texture_samples) { s_int *proj_as_int = SX_AS_INT(s_proj); if (proj_as_int && proj_as_int->value() == 1) { tex->projector = NULL; } else { tex->projector = read_rvalue(s_proj); if (tex->projector == NULL) { ir_read_error(NULL, "when reading projective divide in (%s ..)", tex->opcode_string()); return NULL; } } if (s_shadow->subexpressions.is_empty()) { tex->shadow_comparator = NULL; } else { tex->shadow_comparator = read_rvalue(s_shadow); if (tex->shadow_comparator == NULL) { ir_read_error(NULL, "when reading shadow comparator in (%s ..)", tex->opcode_string()); return NULL; } } } switch (op) { case ir_txb: tex->lod_info.bias = read_rvalue(s_lod); if (tex->lod_info.bias == NULL) { ir_read_error(NULL, "when reading LOD bias in (txb ...)"); return NULL; } break; case ir_txl: case ir_txf: case ir_txs: tex->lod_info.lod = read_rvalue(s_lod); if (tex->lod_info.lod == NULL) { ir_read_error(NULL, "when reading LOD in (%s ...)", tex->opcode_string()); return NULL; } break; case ir_txf_ms: tex->lod_info.sample_index = read_rvalue(s_sample_index); if (tex->lod_info.sample_index == NULL) { ir_read_error(NULL, "when reading sample_index in (txf_ms ...)"); return NULL; } break; case ir_txd: { s_expression *s_dx, *s_dy; s_pattern dxdy_pat[] = { s_dx, s_dy }; if (!MATCH(s_lod, dxdy_pat)) { ir_read_error(s_lod, "expected (dPdx dPdy) in (txd ...)"); return NULL; } tex->lod_info.grad.dPdx = read_rvalue(s_dx); if (tex->lod_info.grad.dPdx == NULL) { ir_read_error(NULL, "when reading dPdx in (txd ...)"); return NULL; } tex->lod_info.grad.dPdy = read_rvalue(s_dy); if (tex->lod_info.grad.dPdy == NULL) { ir_read_error(NULL, "when reading dPdy in (txd ...)"); return NULL; } break; } case ir_tg4: tex->lod_info.component = read_rvalue(s_component); if (tex->lod_info.component == NULL) { ir_read_error(NULL, "when reading component in (tg4 ...)"); return NULL; } break; default: // tex and lod don't have any extra parameters. break; }; return tex; } ir_emit_vertex * ir_reader::read_emit_vertex(s_expression *expr) { s_expression *s_stream = NULL; s_pattern pat[] = { "emit-vertex", s_stream }; if (MATCH(expr, pat)) { ir_rvalue *stream = read_dereference(s_stream); if (stream == NULL) { ir_read_error(NULL, "when reading stream info in emit-vertex"); return NULL; } return new(mem_ctx) ir_emit_vertex(stream); } ir_read_error(NULL, "when reading emit-vertex"); return NULL; } ir_end_primitive * ir_reader::read_end_primitive(s_expression *expr) { s_expression *s_stream = NULL; s_pattern pat[] = { "end-primitive", s_stream }; if (MATCH(expr, pat)) { ir_rvalue *stream = read_dereference(s_stream); if (stream == NULL) { ir_read_error(NULL, "when reading stream info in end-primitive"); return NULL; } return new(mem_ctx) ir_end_primitive(stream); } ir_read_error(NULL, "when reading end-primitive"); return NULL; } ir_barrier * ir_reader::read_barrier(s_expression *expr) { s_pattern pat[] = { "barrier" }; if (MATCH(expr, pat)) { return new(mem_ctx) ir_barrier(); } ir_read_error(NULL, "when reading barrier"); return NULL; }