/* * Copyright © 2013 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "glsl_parser_extras.h" #include "ir.h" #include "ir_uniform.h" #include "linker.h" #include "main/macros.h" namespace { /* * Atomic counter uniform as seen by the program. */ struct active_atomic_counter_uniform { unsigned uniform_loc; ir_variable *var; }; /* * Atomic counter buffer referenced by the program. There is a one * to one correspondence between these and the objects that can be * queried using glGetActiveAtomicCounterBufferiv(). */ struct active_atomic_buffer { active_atomic_buffer() : uniforms(0), num_uniforms(0), stage_counter_references(), size(0) {} ~active_atomic_buffer() { free(uniforms); } void push_back(unsigned uniform_loc, ir_variable *var) { active_atomic_counter_uniform *new_uniforms; new_uniforms = (active_atomic_counter_uniform *) realloc(uniforms, sizeof(active_atomic_counter_uniform) * (num_uniforms + 1)); if (new_uniforms == NULL) { _mesa_error_no_memory(__func__); return; } uniforms = new_uniforms; uniforms[num_uniforms].uniform_loc = uniform_loc; uniforms[num_uniforms].var = var; num_uniforms++; } active_atomic_counter_uniform *uniforms; unsigned num_uniforms; unsigned stage_counter_references[MESA_SHADER_STAGES]; unsigned size; }; int cmp_actives(const void *a, const void *b) { const active_atomic_counter_uniform *const first = (active_atomic_counter_uniform *) a; const active_atomic_counter_uniform *const second = (active_atomic_counter_uniform *) b; return int(first->var->data.offset) - int(second->var->data.offset); } bool check_atomic_counters_overlap(const ir_variable *x, const ir_variable *y) { return ((x->data.offset >= y->data.offset && x->data.offset < y->data.offset + y->type->atomic_size()) || (y->data.offset >= x->data.offset && y->data.offset < x->data.offset + x->type->atomic_size())); } void process_atomic_variable(const glsl_type *t, struct gl_shader_program *prog, unsigned *uniform_loc, ir_variable *var, active_atomic_buffer *const buffers, unsigned *num_buffers, int *offset, const unsigned shader_stage) { /* FIXME: Arrays of arrays get counted separately. For example: * x1[3][3][2] = 9 uniforms, 18 atomic counters * x2[3][2] = 3 uniforms, 6 atomic counters * x3[2] = 1 uniform, 2 atomic counters * * However this code marks all the counters as active even when they * might not be used. */ if (t->is_array() && t->fields.array->is_array()) { for (unsigned i = 0; i < t->length; i++) { process_atomic_variable(t->fields.array, prog, uniform_loc, var, buffers, num_buffers, offset, shader_stage); } } else { active_atomic_buffer *buf = &buffers[var->data.binding]; gl_uniform_storage *const storage = &prog->data->UniformStorage[*uniform_loc]; /* If this is the first time the buffer is used, increment * the counter of buffers used. */ if (buf->size == 0) (*num_buffers)++; buf->push_back(*uniform_loc, var); /* When checking for atomic counters we should count every member in * an array as an atomic counter reference. */ if (t->is_array()) buf->stage_counter_references[shader_stage] += t->length; else buf->stage_counter_references[shader_stage]++; buf->size = MAX2(buf->size, *offset + t->atomic_size()); storage->offset = *offset; *offset += t->atomic_size(); (*uniform_loc)++; } } active_atomic_buffer * find_active_atomic_counters(struct gl_context *ctx, struct gl_shader_program *prog, unsigned *num_buffers) { active_atomic_buffer *const buffers = new active_atomic_buffer[ctx->Const.MaxAtomicBufferBindings]; *num_buffers = 0; for (unsigned i = 0; i < MESA_SHADER_STAGES; ++i) { struct gl_linked_shader *sh = prog->_LinkedShaders[i]; if (sh == NULL) continue; foreach_in_list(ir_instruction, node, sh->ir) { ir_variable *var = node->as_variable(); if (var && var->type->contains_atomic()) { int offset = var->data.offset; unsigned uniform_loc = var->data.location; process_atomic_variable(var->type, prog, &uniform_loc, var, buffers, num_buffers, &offset, i); } } } for (unsigned i = 0; i < ctx->Const.MaxAtomicBufferBindings; i++) { if (buffers[i].size == 0) continue; qsort(buffers[i].uniforms, buffers[i].num_uniforms, sizeof(active_atomic_counter_uniform), cmp_actives); for (unsigned j = 1; j < buffers[i].num_uniforms; j++) { /* If an overlapping counter found, it must be a reference to the * same counter from a different shader stage. */ if (check_atomic_counters_overlap(buffers[i].uniforms[j-1].var, buffers[i].uniforms[j].var) && strcmp(buffers[i].uniforms[j-1].var->name, buffers[i].uniforms[j].var->name) != 0) { linker_error(prog, "Atomic counter %s declared at offset %d " "which is already in use.", buffers[i].uniforms[j].var->name, buffers[i].uniforms[j].var->data.offset); } } } return buffers; } } void link_assign_atomic_counter_resources(struct gl_context *ctx, struct gl_shader_program *prog) { unsigned num_buffers; unsigned num_atomic_buffers[MESA_SHADER_STAGES] = {}; active_atomic_buffer *abs = find_active_atomic_counters(ctx, prog, &num_buffers); prog->data->AtomicBuffers = rzalloc_array(prog->data, gl_active_atomic_buffer, num_buffers); prog->data->NumAtomicBuffers = num_buffers; unsigned i = 0; for (unsigned binding = 0; binding < ctx->Const.MaxAtomicBufferBindings; binding++) { /* If the binding was not used, skip. */ if (abs[binding].size == 0) continue; active_atomic_buffer &ab = abs[binding]; gl_active_atomic_buffer &mab = prog->data->AtomicBuffers[i]; /* Assign buffer-specific fields. */ mab.Binding = binding; mab.MinimumSize = ab.size; mab.Uniforms = rzalloc_array(prog->data->AtomicBuffers, GLuint, ab.num_uniforms); mab.NumUniforms = ab.num_uniforms; /* Assign counter-specific fields. */ for (unsigned j = 0; j < ab.num_uniforms; j++) { ir_variable *const var = ab.uniforms[j].var; gl_uniform_storage *const storage = &prog->data->UniformStorage[ab.uniforms[j].uniform_loc]; mab.Uniforms[j] = ab.uniforms[j].uniform_loc; if (!var->data.explicit_binding) var->data.binding = i; storage->atomic_buffer_index = i; storage->offset = var->data.offset; storage->array_stride = (var->type->is_array() ? var->type->without_array()->atomic_size() : 0); if (!var->type->is_matrix()) storage->matrix_stride = 0; } /* Assign stage-specific fields. */ for (unsigned j = 0; j < MESA_SHADER_STAGES; ++j) { if (ab.stage_counter_references[j]) { mab.StageReferences[j] = GL_TRUE; num_atomic_buffers[j]++; } else { mab.StageReferences[j] = GL_FALSE; } } i++; } /* Store a list pointers to atomic buffers per stage and store the index * to the intra-stage buffer list in uniform storage. */ for (unsigned j = 0; j < MESA_SHADER_STAGES; ++j) { if (prog->_LinkedShaders[j] && num_atomic_buffers[j] > 0) { struct gl_program *gl_prog = prog->_LinkedShaders[j]->Program; gl_prog->info.num_abos = num_atomic_buffers[j]; gl_prog->sh.AtomicBuffers = rzalloc_array(gl_prog, gl_active_atomic_buffer *, num_atomic_buffers[j]); unsigned intra_stage_idx = 0; for (unsigned i = 0; i < num_buffers; i++) { struct gl_active_atomic_buffer *atomic_buffer = &prog->data->AtomicBuffers[i]; if (atomic_buffer->StageReferences[j]) { gl_prog->sh.AtomicBuffers[intra_stage_idx] = atomic_buffer; for (unsigned u = 0; u < atomic_buffer->NumUniforms; u++) { prog->data->UniformStorage[atomic_buffer->Uniforms[u]].opaque[j].index = intra_stage_idx; prog->data->UniformStorage[atomic_buffer->Uniforms[u]].opaque[j].active = true; } intra_stage_idx++; } } } } delete [] abs; assert(i == num_buffers); } void link_check_atomic_counter_resources(struct gl_context *ctx, struct gl_shader_program *prog) { unsigned num_buffers; active_atomic_buffer *const abs = find_active_atomic_counters(ctx, prog, &num_buffers); unsigned atomic_counters[MESA_SHADER_STAGES] = {}; unsigned atomic_buffers[MESA_SHADER_STAGES] = {}; unsigned total_atomic_counters = 0; unsigned total_atomic_buffers = 0; /* Sum the required resources. Note that this counts buffers and * counters referenced by several shader stages multiple times * against the combined limit -- That's the behavior the spec * requires. */ for (unsigned i = 0; i < ctx->Const.MaxAtomicBufferBindings; i++) { if (abs[i].size == 0) continue; for (unsigned j = 0; j < MESA_SHADER_STAGES; ++j) { const unsigned n = abs[i].stage_counter_references[j]; if (n) { atomic_counters[j] += n; total_atomic_counters += n; atomic_buffers[j]++; total_atomic_buffers++; } } } /* Check that they are within the supported limits. */ for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) { if (atomic_counters[i] > ctx->Const.Program[i].MaxAtomicCounters) linker_error(prog, "Too many %s shader atomic counters", _mesa_shader_stage_to_string(i)); if (atomic_buffers[i] > ctx->Const.Program[i].MaxAtomicBuffers) linker_error(prog, "Too many %s shader atomic counter buffers", _mesa_shader_stage_to_string(i)); } if (total_atomic_counters > ctx->Const.MaxCombinedAtomicCounters) linker_error(prog, "Too many combined atomic counters"); if (total_atomic_buffers > ctx->Const.MaxCombinedAtomicBuffers) linker_error(prog, "Too many combined atomic buffers"); delete [] abs; }