/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "ir.h" #include "ir_builder.h" #include "ir_optimization.h" #include "ir_rvalue_visitor.h" namespace { using namespace ir_builder; /** * A visitor that lowers built-in floating-point pack/unpack expressions * such packSnorm2x16. */ class lower_packing_builtins_visitor : public ir_rvalue_visitor { public: /** * \param op_mask is a bitmask of `enum lower_packing_builtins_op` */ explicit lower_packing_builtins_visitor(int op_mask) : op_mask(op_mask), progress(false) { factory.instructions = &factory_instructions; } virtual ~lower_packing_builtins_visitor() { assert(factory_instructions.is_empty()); } bool get_progress() { return progress; } void handle_rvalue(ir_rvalue **rvalue) { if (!*rvalue) return; ir_expression *expr = (*rvalue)->as_expression(); if (!expr) return; enum lower_packing_builtins_op lowering_op = choose_lowering_op(expr->operation); if (lowering_op == LOWER_PACK_UNPACK_NONE) return; setup_factory(ralloc_parent(expr)); ir_rvalue *op0 = expr->operands[0]; ralloc_steal(factory.mem_ctx, op0); switch (lowering_op) { case LOWER_PACK_SNORM_2x16: *rvalue = lower_pack_snorm_2x16(op0); break; case LOWER_PACK_SNORM_4x8: *rvalue = lower_pack_snorm_4x8(op0); break; case LOWER_PACK_UNORM_2x16: *rvalue = lower_pack_unorm_2x16(op0); break; case LOWER_PACK_UNORM_4x8: *rvalue = lower_pack_unorm_4x8(op0); break; case LOWER_PACK_HALF_2x16: *rvalue = lower_pack_half_2x16(op0); break; case LOWER_UNPACK_SNORM_2x16: *rvalue = lower_unpack_snorm_2x16(op0); break; case LOWER_UNPACK_SNORM_4x8: *rvalue = lower_unpack_snorm_4x8(op0); break; case LOWER_UNPACK_UNORM_2x16: *rvalue = lower_unpack_unorm_2x16(op0); break; case LOWER_UNPACK_UNORM_4x8: *rvalue = lower_unpack_unorm_4x8(op0); break; case LOWER_UNPACK_HALF_2x16: *rvalue = lower_unpack_half_2x16(op0); break; case LOWER_PACK_UNPACK_NONE: case LOWER_PACK_USE_BFI: case LOWER_PACK_USE_BFE: assert(!"not reached"); break; } teardown_factory(); progress = true; } private: const int op_mask; bool progress; ir_factory factory; exec_list factory_instructions; /** * Determine the needed lowering operation by filtering \a expr_op * through \ref op_mask. */ enum lower_packing_builtins_op choose_lowering_op(ir_expression_operation expr_op) { /* C++ regards int and enum as fundamentally different types. * So, we can't simply return from each case; we must cast the return * value. */ int result; switch (expr_op) { case ir_unop_pack_snorm_2x16: result = op_mask & LOWER_PACK_SNORM_2x16; break; case ir_unop_pack_snorm_4x8: result = op_mask & LOWER_PACK_SNORM_4x8; break; case ir_unop_pack_unorm_2x16: result = op_mask & LOWER_PACK_UNORM_2x16; break; case ir_unop_pack_unorm_4x8: result = op_mask & LOWER_PACK_UNORM_4x8; break; case ir_unop_pack_half_2x16: result = op_mask & LOWER_PACK_HALF_2x16; break; case ir_unop_unpack_snorm_2x16: result = op_mask & LOWER_UNPACK_SNORM_2x16; break; case ir_unop_unpack_snorm_4x8: result = op_mask & LOWER_UNPACK_SNORM_4x8; break; case ir_unop_unpack_unorm_2x16: result = op_mask & LOWER_UNPACK_UNORM_2x16; break; case ir_unop_unpack_unorm_4x8: result = op_mask & LOWER_UNPACK_UNORM_4x8; break; case ir_unop_unpack_half_2x16: result = op_mask & LOWER_UNPACK_HALF_2x16; break; default: result = LOWER_PACK_UNPACK_NONE; break; } return static_cast<enum lower_packing_builtins_op>(result); } void setup_factory(void *mem_ctx) { assert(factory.mem_ctx == NULL); assert(factory.instructions->is_empty()); factory.mem_ctx = mem_ctx; } void teardown_factory() { base_ir->insert_before(factory.instructions); assert(factory.instructions->is_empty()); factory.mem_ctx = NULL; } template <typename T> ir_constant* constant(T x) { return factory.constant(x); } /** * \brief Pack two uint16's into a single uint32. * * Interpret the given uvec2 as a uint16 pair. Pack the pair into a uint32 * where the least significant bits specify the first element of the pair. * Return the uint32. */ ir_rvalue* pack_uvec2_to_uint(ir_rvalue *uvec2_rval) { assert(uvec2_rval->type == glsl_type::uvec2_type); /* uvec2 u = UVEC2_RVAL; */ ir_variable *u = factory.make_temp(glsl_type::uvec2_type, "tmp_pack_uvec2_to_uint"); factory.emit(assign(u, uvec2_rval)); if (op_mask & LOWER_PACK_USE_BFI) { return bitfield_insert(bit_and(swizzle_x(u), constant(0xffffu)), swizzle_y(u), constant(16u), constant(16u)); } /* return (u.y << 16) | (u.x & 0xffff); */ return bit_or(lshift(swizzle_y(u), constant(16u)), bit_and(swizzle_x(u), constant(0xffffu))); } /** * \brief Pack four uint8's into a single uint32. * * Interpret the given uvec4 as a uint32 4-typle. Pack the 4-tuple into a * uint32 where the least significant bits specify the first element of the * 4-tuple. Return the uint32. */ ir_rvalue* pack_uvec4_to_uint(ir_rvalue *uvec4_rval) { assert(uvec4_rval->type == glsl_type::uvec4_type); ir_variable *u = factory.make_temp(glsl_type::uvec4_type, "tmp_pack_uvec4_to_uint"); if (op_mask & LOWER_PACK_USE_BFI) { /* uvec4 u = UVEC4_RVAL; */ factory.emit(assign(u, uvec4_rval)); return bitfield_insert(bitfield_insert( bitfield_insert( bit_and(swizzle_x(u), constant(0xffu)), swizzle_y(u), constant(8u), constant(8u)), swizzle_z(u), constant(16u), constant(8u)), swizzle_w(u), constant(24u), constant(8u)); } /* uvec4 u = UVEC4_RVAL & 0xff */ factory.emit(assign(u, bit_and(uvec4_rval, constant(0xffu)))); /* return (u.w << 24) | (u.z << 16) | (u.y << 8) | u.x; */ return bit_or(bit_or(lshift(swizzle_w(u), constant(24u)), lshift(swizzle_z(u), constant(16u))), bit_or(lshift(swizzle_y(u), constant(8u)), swizzle_x(u))); } /** * \brief Unpack a uint32 into two uint16's. * * Interpret the given uint32 as a uint16 pair where the uint32's least * significant bits specify the pair's first element. Return the uint16 * pair as a uvec2. */ ir_rvalue* unpack_uint_to_uvec2(ir_rvalue *uint_rval) { assert(uint_rval->type == glsl_type::uint_type); /* uint u = UINT_RVAL; */ ir_variable *u = factory.make_temp(glsl_type::uint_type, "tmp_unpack_uint_to_uvec2_u"); factory.emit(assign(u, uint_rval)); /* uvec2 u2; */ ir_variable *u2 = factory.make_temp(glsl_type::uvec2_type, "tmp_unpack_uint_to_uvec2_u2"); /* u2.x = u & 0xffffu; */ factory.emit(assign(u2, bit_and(u, constant(0xffffu)), WRITEMASK_X)); /* u2.y = u >> 16u; */ factory.emit(assign(u2, rshift(u, constant(16u)), WRITEMASK_Y)); return deref(u2).val; } /** * \brief Unpack a uint32 into two int16's. * * Specifically each 16-bit value is sign-extended to the full width of an * int32 on return. */ ir_rvalue * unpack_uint_to_ivec2(ir_rvalue *uint_rval) { assert(uint_rval->type == glsl_type::uint_type); if (!(op_mask & LOWER_PACK_USE_BFE)) { return rshift(lshift(u2i(unpack_uint_to_uvec2(uint_rval)), constant(16u)), constant(16u)); } ir_variable *i = factory.make_temp(glsl_type::int_type, "tmp_unpack_uint_to_ivec2_i"); factory.emit(assign(i, u2i(uint_rval))); /* ivec2 i2; */ ir_variable *i2 = factory.make_temp(glsl_type::ivec2_type, "tmp_unpack_uint_to_ivec2_i2"); factory.emit(assign(i2, bitfield_extract(i, constant(0), constant(16)), WRITEMASK_X)); factory.emit(assign(i2, bitfield_extract(i, constant(16), constant(16)), WRITEMASK_Y)); return deref(i2).val; } /** * \brief Unpack a uint32 into four uint8's. * * Interpret the given uint32 as a uint8 4-tuple where the uint32's least * significant bits specify the 4-tuple's first element. Return the uint8 * 4-tuple as a uvec4. */ ir_rvalue* unpack_uint_to_uvec4(ir_rvalue *uint_rval) { assert(uint_rval->type == glsl_type::uint_type); /* uint u = UINT_RVAL; */ ir_variable *u = factory.make_temp(glsl_type::uint_type, "tmp_unpack_uint_to_uvec4_u"); factory.emit(assign(u, uint_rval)); /* uvec4 u4; */ ir_variable *u4 = factory.make_temp(glsl_type::uvec4_type, "tmp_unpack_uint_to_uvec4_u4"); /* u4.x = u & 0xffu; */ factory.emit(assign(u4, bit_and(u, constant(0xffu)), WRITEMASK_X)); if (op_mask & LOWER_PACK_USE_BFE) { /* u4.y = bitfield_extract(u, 8, 8); */ factory.emit(assign(u4, bitfield_extract(u, constant(8u), constant(8u)), WRITEMASK_Y)); /* u4.z = bitfield_extract(u, 16, 8); */ factory.emit(assign(u4, bitfield_extract(u, constant(16u), constant(8u)), WRITEMASK_Z)); } else { /* u4.y = (u >> 8u) & 0xffu; */ factory.emit(assign(u4, bit_and(rshift(u, constant(8u)), constant(0xffu)), WRITEMASK_Y)); /* u4.z = (u >> 16u) & 0xffu; */ factory.emit(assign(u4, bit_and(rshift(u, constant(16u)), constant(0xffu)), WRITEMASK_Z)); } /* u4.w = (u >> 24u) */ factory.emit(assign(u4, rshift(u, constant(24u)), WRITEMASK_W)); return deref(u4).val; } /** * \brief Unpack a uint32 into four int8's. * * Specifically each 8-bit value is sign-extended to the full width of an * int32 on return. */ ir_rvalue * unpack_uint_to_ivec4(ir_rvalue *uint_rval) { assert(uint_rval->type == glsl_type::uint_type); if (!(op_mask & LOWER_PACK_USE_BFE)) { return rshift(lshift(u2i(unpack_uint_to_uvec4(uint_rval)), constant(24u)), constant(24u)); } ir_variable *i = factory.make_temp(glsl_type::int_type, "tmp_unpack_uint_to_ivec4_i"); factory.emit(assign(i, u2i(uint_rval))); /* ivec4 i4; */ ir_variable *i4 = factory.make_temp(glsl_type::ivec4_type, "tmp_unpack_uint_to_ivec4_i4"); factory.emit(assign(i4, bitfield_extract(i, constant(0), constant(8)), WRITEMASK_X)); factory.emit(assign(i4, bitfield_extract(i, constant(8), constant(8)), WRITEMASK_Y)); factory.emit(assign(i4, bitfield_extract(i, constant(16), constant(8)), WRITEMASK_Z)); factory.emit(assign(i4, bitfield_extract(i, constant(24), constant(8)), WRITEMASK_W)); return deref(i4).val; } /** * \brief Lower a packSnorm2x16 expression. * * \param vec2_rval is packSnorm2x16's input * \return packSnorm2x16's output as a uint rvalue */ ir_rvalue* lower_pack_snorm_2x16(ir_rvalue *vec2_rval) { /* From page 88 (94 of pdf) of the GLSL ES 3.00 spec: * * highp uint packSnorm2x16(vec2 v) * -------------------------------- * First, converts each component of the normalized floating-point value * v into 16-bit integer values. Then, the results are packed into the * returned 32-bit unsigned integer. * * The conversion for component c of v to fixed point is done as * follows: * * packSnorm2x16: round(clamp(c, -1, +1) * 32767.0) * * The first component of the vector will be written to the least * significant bits of the output; the last component will be written to * the most significant bits. * * This function generates IR that approximates the following pseudo-GLSL: * * return pack_uvec2_to_uint( * uvec2(ivec2( * round(clamp(VEC2_RVALUE, -1.0f, 1.0f) * 32767.0f)))); * * It is necessary to first convert the vec2 to ivec2 rather than directly * converting vec2 to uvec2 because the latter conversion is undefined. * From page 56 (62 of pdf) of the GLSL ES 3.00 spec: "It is undefined to * convert a negative floating point value to an uint". */ assert(vec2_rval->type == glsl_type::vec2_type); ir_rvalue *result = pack_uvec2_to_uint( i2u(f2i(round_even(mul(clamp(vec2_rval, constant(-1.0f), constant(1.0f)), constant(32767.0f)))))); assert(result->type == glsl_type::uint_type); return result; } /** * \brief Lower a packSnorm4x8 expression. * * \param vec4_rval is packSnorm4x8's input * \return packSnorm4x8's output as a uint rvalue */ ir_rvalue* lower_pack_snorm_4x8(ir_rvalue *vec4_rval) { /* From page 137 (143 of pdf) of the GLSL 4.30 spec: * * highp uint packSnorm4x8(vec4 v) * ------------------------------- * First, converts each component of the normalized floating-point value * v into 8-bit integer values. Then, the results are packed into the * returned 32-bit unsigned integer. * * The conversion for component c of v to fixed point is done as * follows: * * packSnorm4x8: round(clamp(c, -1, +1) * 127.0) * * The first component of the vector will be written to the least * significant bits of the output; the last component will be written to * the most significant bits. * * This function generates IR that approximates the following pseudo-GLSL: * * return pack_uvec4_to_uint( * uvec4(ivec4( * round(clamp(VEC4_RVALUE, -1.0f, 1.0f) * 127.0f)))); * * It is necessary to first convert the vec4 to ivec4 rather than directly * converting vec4 to uvec4 because the latter conversion is undefined. * From page 87 (93 of pdf) of the GLSL 4.30 spec: "It is undefined to * convert a negative floating point value to an uint". */ assert(vec4_rval->type == glsl_type::vec4_type); ir_rvalue *result = pack_uvec4_to_uint( i2u(f2i(round_even(mul(clamp(vec4_rval, constant(-1.0f), constant(1.0f)), constant(127.0f)))))); assert(result->type == glsl_type::uint_type); return result; } /** * \brief Lower an unpackSnorm2x16 expression. * * \param uint_rval is unpackSnorm2x16's input * \return unpackSnorm2x16's output as a vec2 rvalue */ ir_rvalue* lower_unpack_snorm_2x16(ir_rvalue *uint_rval) { /* From page 88 (94 of pdf) of the GLSL ES 3.00 spec: * * highp vec2 unpackSnorm2x16 (highp uint p) * ----------------------------------------- * First, unpacks a single 32-bit unsigned integer p into a pair of * 16-bit unsigned integers. Then, each component is converted to * a normalized floating-point value to generate the returned * two-component vector. * * The conversion for unpacked fixed-point value f to floating point is * done as follows: * * unpackSnorm2x16: clamp(f / 32767.0, -1,+1) * * The first component of the returned vector will be extracted from the * least significant bits of the input; the last component will be * extracted from the most significant bits. * * This function generates IR that approximates the following pseudo-GLSL: * * return clamp( * ((ivec2(unpack_uint_to_uvec2(UINT_RVALUE)) << 16) >> 16) / 32767.0f, * -1.0f, 1.0f); * * The above IR may appear unnecessarily complex, but the intermediate * conversion to ivec2 and the bit shifts are necessary to correctly unpack * negative floats. * * To see why, consider packing and then unpacking vec2(-1.0, 0.0). * packSnorm2x16 encodes -1.0 as the int16 0xffff. During unpacking, we * place that int16 into an int32, which results in the *positive* integer * 0x0000ffff. The int16's sign bit becomes, in the int32, the rather * unimportant bit 16. We must now extend the int16's sign bit into bits * 17-32, which is accomplished by left-shifting then right-shifting. */ assert(uint_rval->type == glsl_type::uint_type); ir_rvalue *result = clamp(div(i2f(unpack_uint_to_ivec2(uint_rval)), constant(32767.0f)), constant(-1.0f), constant(1.0f)); assert(result->type == glsl_type::vec2_type); return result; } /** * \brief Lower an unpackSnorm4x8 expression. * * \param uint_rval is unpackSnorm4x8's input * \return unpackSnorm4x8's output as a vec4 rvalue */ ir_rvalue* lower_unpack_snorm_4x8(ir_rvalue *uint_rval) { /* From page 137 (143 of pdf) of the GLSL 4.30 spec: * * highp vec4 unpackSnorm4x8 (highp uint p) * ---------------------------------------- * First, unpacks a single 32-bit unsigned integer p into four * 8-bit unsigned integers. Then, each component is converted to * a normalized floating-point value to generate the returned * four-component vector. * * The conversion for unpacked fixed-point value f to floating point is * done as follows: * * unpackSnorm4x8: clamp(f / 127.0, -1, +1) * * The first component of the returned vector will be extracted from the * least significant bits of the input; the last component will be * extracted from the most significant bits. * * This function generates IR that approximates the following pseudo-GLSL: * * return clamp( * ((ivec4(unpack_uint_to_uvec4(UINT_RVALUE)) << 24) >> 24) / 127.0f, * -1.0f, 1.0f); * * The above IR may appear unnecessarily complex, but the intermediate * conversion to ivec4 and the bit shifts are necessary to correctly unpack * negative floats. * * To see why, consider packing and then unpacking vec4(-1.0, 0.0, 0.0, * 0.0). packSnorm4x8 encodes -1.0 as the int8 0xff. During unpacking, we * place that int8 into an int32, which results in the *positive* integer * 0x000000ff. The int8's sign bit becomes, in the int32, the rather * unimportant bit 8. We must now extend the int8's sign bit into bits * 9-32, which is accomplished by left-shifting then right-shifting. */ assert(uint_rval->type == glsl_type::uint_type); ir_rvalue *result = clamp(div(i2f(unpack_uint_to_ivec4(uint_rval)), constant(127.0f)), constant(-1.0f), constant(1.0f)); assert(result->type == glsl_type::vec4_type); return result; } /** * \brief Lower a packUnorm2x16 expression. * * \param vec2_rval is packUnorm2x16's input * \return packUnorm2x16's output as a uint rvalue */ ir_rvalue* lower_pack_unorm_2x16(ir_rvalue *vec2_rval) { /* From page 88 (94 of pdf) of the GLSL ES 3.00 spec: * * highp uint packUnorm2x16 (vec2 v) * --------------------------------- * First, converts each component of the normalized floating-point value * v into 16-bit integer values. Then, the results are packed into the * returned 32-bit unsigned integer. * * The conversion for component c of v to fixed point is done as * follows: * * packUnorm2x16: round(clamp(c, 0, +1) * 65535.0) * * The first component of the vector will be written to the least * significant bits of the output; the last component will be written to * the most significant bits. * * This function generates IR that approximates the following pseudo-GLSL: * * return pack_uvec2_to_uint(uvec2( * round(clamp(VEC2_RVALUE, 0.0f, 1.0f) * 65535.0f))); * * Here it is safe to directly convert the vec2 to uvec2 because the vec2 * has been clamped to a non-negative range. */ assert(vec2_rval->type == glsl_type::vec2_type); ir_rvalue *result = pack_uvec2_to_uint( f2u(round_even(mul(saturate(vec2_rval), constant(65535.0f))))); assert(result->type == glsl_type::uint_type); return result; } /** * \brief Lower a packUnorm4x8 expression. * * \param vec4_rval is packUnorm4x8's input * \return packUnorm4x8's output as a uint rvalue */ ir_rvalue* lower_pack_unorm_4x8(ir_rvalue *vec4_rval) { /* From page 137 (143 of pdf) of the GLSL 4.30 spec: * * highp uint packUnorm4x8 (vec4 v) * -------------------------------- * First, converts each component of the normalized floating-point value * v into 8-bit integer values. Then, the results are packed into the * returned 32-bit unsigned integer. * * The conversion for component c of v to fixed point is done as * follows: * * packUnorm4x8: round(clamp(c, 0, +1) * 255.0) * * The first component of the vector will be written to the least * significant bits of the output; the last component will be written to * the most significant bits. * * This function generates IR that approximates the following pseudo-GLSL: * * return pack_uvec4_to_uint(uvec4( * round(clamp(VEC2_RVALUE, 0.0f, 1.0f) * 255.0f))); * * Here it is safe to directly convert the vec4 to uvec4 because the vec4 * has been clamped to a non-negative range. */ assert(vec4_rval->type == glsl_type::vec4_type); ir_rvalue *result = pack_uvec4_to_uint( f2u(round_even(mul(saturate(vec4_rval), constant(255.0f))))); assert(result->type == glsl_type::uint_type); return result; } /** * \brief Lower an unpackUnorm2x16 expression. * * \param uint_rval is unpackUnorm2x16's input * \return unpackUnorm2x16's output as a vec2 rvalue */ ir_rvalue* lower_unpack_unorm_2x16(ir_rvalue *uint_rval) { /* From page 89 (95 of pdf) of the GLSL ES 3.00 spec: * * highp vec2 unpackUnorm2x16 (highp uint p) * ----------------------------------------- * First, unpacks a single 32-bit unsigned integer p into a pair of * 16-bit unsigned integers. Then, each component is converted to * a normalized floating-point value to generate the returned * two-component vector. * * The conversion for unpacked fixed-point value f to floating point is * done as follows: * * unpackUnorm2x16: f / 65535.0 * * The first component of the returned vector will be extracted from the * least significant bits of the input; the last component will be * extracted from the most significant bits. * * This function generates IR that approximates the following pseudo-GLSL: * * return vec2(unpack_uint_to_uvec2(UINT_RVALUE)) / 65535.0; */ assert(uint_rval->type == glsl_type::uint_type); ir_rvalue *result = div(u2f(unpack_uint_to_uvec2(uint_rval)), constant(65535.0f)); assert(result->type == glsl_type::vec2_type); return result; } /** * \brief Lower an unpackUnorm4x8 expression. * * \param uint_rval is unpackUnorm4x8's input * \return unpackUnorm4x8's output as a vec4 rvalue */ ir_rvalue* lower_unpack_unorm_4x8(ir_rvalue *uint_rval) { /* From page 137 (143 of pdf) of the GLSL 4.30 spec: * * highp vec4 unpackUnorm4x8 (highp uint p) * ---------------------------------------- * First, unpacks a single 32-bit unsigned integer p into four * 8-bit unsigned integers. Then, each component is converted to * a normalized floating-point value to generate the returned * two-component vector. * * The conversion for unpacked fixed-point value f to floating point is * done as follows: * * unpackUnorm4x8: f / 255.0 * * The first component of the returned vector will be extracted from the * least significant bits of the input; the last component will be * extracted from the most significant bits. * * This function generates IR that approximates the following pseudo-GLSL: * * return vec4(unpack_uint_to_uvec4(UINT_RVALUE)) / 255.0; */ assert(uint_rval->type == glsl_type::uint_type); ir_rvalue *result = div(u2f(unpack_uint_to_uvec4(uint_rval)), constant(255.0f)); assert(result->type == glsl_type::vec4_type); return result; } /** * \brief Lower the component-wise calculation of packHalf2x16. * * \param f_rval is one component of packHafl2x16's input * \param e_rval is the unshifted exponent bits of f_rval * \param m_rval is the unshifted mantissa bits of f_rval * * \return a uint rvalue that encodes a float16 in its lower 16 bits */ ir_rvalue* pack_half_1x16_nosign(ir_rvalue *f_rval, ir_rvalue *e_rval, ir_rvalue *m_rval) { assert(e_rval->type == glsl_type::uint_type); assert(m_rval->type == glsl_type::uint_type); /* uint u16; */ ir_variable *u16 = factory.make_temp(glsl_type::uint_type, "tmp_pack_half_1x16_u16"); /* float f = FLOAT_RVAL; */ ir_variable *f = factory.make_temp(glsl_type::float_type, "tmp_pack_half_1x16_f"); factory.emit(assign(f, f_rval)); /* uint e = E_RVAL; */ ir_variable *e = factory.make_temp(glsl_type::uint_type, "tmp_pack_half_1x16_e"); factory.emit(assign(e, e_rval)); /* uint m = M_RVAL; */ ir_variable *m = factory.make_temp(glsl_type::uint_type, "tmp_pack_half_1x16_m"); factory.emit(assign(m, m_rval)); /* Preliminaries * ------------- * * For a float16, the bit layout is: * * sign: 15 * exponent: 10:14 * mantissa: 0:9 * * Let f16 be a float16 value. The sign, exponent, and mantissa * determine its value thus: * * if e16 = 0 and m16 = 0, then zero: (-1)^s16 * 0 (1) * if e16 = 0 and m16!= 0, then subnormal: (-1)^s16 * 2^(e16 - 14) * (m16 / 2^10) (2) * if 0 < e16 < 31, then normal: (-1)^s16 * 2^(e16 - 15) * (1 + m16 / 2^10) (3) * if e16 = 31 and m16 = 0, then infinite: (-1)^s16 * inf (4) * if e16 = 31 and m16 != 0, then NaN (5) * * where 0 <= m16 < 2^10. * * For a float32, the bit layout is: * * sign: 31 * exponent: 23:30 * mantissa: 0:22 * * Let f32 be a float32 value. The sign, exponent, and mantissa * determine its value thus: * * if e32 = 0 and m32 = 0, then zero: (-1)^s * 0 (10) * if e32 = 0 and m32 != 0, then subnormal: (-1)^s * 2^(e32 - 126) * (m32 / 2^23) (11) * if 0 < e32 < 255, then normal: (-1)^s * 2^(e32 - 127) * (1 + m32 / 2^23) (12) * if e32 = 255 and m32 = 0, then infinite: (-1)^s * inf (13) * if e32 = 255 and m32 != 0, then NaN (14) * * where 0 <= m32 < 2^23. * * The minimum and maximum normal float16 values are * * min_norm16 = 2^(1 - 15) * (1 + 0 / 2^10) = 2^(-14) (20) * max_norm16 = 2^(30 - 15) * (1 + 1023 / 2^10) (21) * * The step at max_norm16 is * * max_step16 = 2^5 (22) * * Observe that the float16 boundary values in equations 20-21 lie in the * range of normal float32 values. * * * Rounding Behavior * ----------------- * Not all float32 values can be exactly represented as a float16. We * round all such intermediate float32 values to the nearest float16; if * the float32 is exactly between to float16 values, we round to the one * with an even mantissa. This rounding behavior has several benefits: * * - It has no sign bias. * * - It reproduces the behavior of real hardware: opcode F32TO16 in Intel's * GPU ISA. * * - By reproducing the behavior of the GPU (at least on Intel hardware), * compile-time evaluation of constant packHalf2x16 GLSL expressions will * result in the same value as if the expression were executed on the * GPU. * * Calculation * ----------- * Our task is to compute s16, e16, m16 given f32. Since this function * ignores the sign bit, assume that s32 = s16 = 0. There are several * cases consider. */ factory.emit( /* Case 1) f32 is NaN * * The resultant f16 will also be NaN. */ /* if (e32 == 255 && m32 != 0) { */ if_tree(logic_and(equal(e, constant(0xffu << 23u)), logic_not(equal(m, constant(0u)))), assign(u16, constant(0x7fffu)), /* Case 2) f32 lies in the range [0, min_norm16). * * The resultant float16 will be either zero, subnormal, or normal. * * Solving * * f32 = min_norm16 (30) * * gives * * e32 = 113 and m32 = 0 (31) * * Therefore this case occurs if and only if * * e32 < 113 (32) */ /* } else if (e32 < 113) { */ if_tree(less(e, constant(113u << 23u)), /* u16 = uint(round_to_even(abs(f32) * float(1u << 24u))); */ assign(u16, f2u(round_even(mul(expr(ir_unop_abs, f), constant((float) (1 << 24)))))), /* Case 3) f32 lies in the range * [min_norm16, max_norm16 + max_step16). * * The resultant float16 will be either normal or infinite. * * Solving * * f32 = max_norm16 + max_step16 (40) * = 2^15 * (1 + 1023 / 2^10) + 2^5 (41) * = 2^16 (42) * gives * * e32 = 143 and m32 = 0 (43) * * We already solved the boundary condition f32 = min_norm16 above * in equation 31. Therefore this case occurs if and only if * * 113 <= e32 and e32 < 143 */ /* } else if (e32 < 143) { */ if_tree(less(e, constant(143u << 23u)), /* The addition below handles the case where the mantissa rounds * up to 1024 and bumps the exponent. * * u16 = ((e - (112u << 23u)) >> 13u) * + round_to_even((float(m) / (1u << 13u)); */ assign(u16, add(rshift(sub(e, constant(112u << 23u)), constant(13u)), f2u(round_even( div(u2f(m), constant((float) (1 << 13))))))), /* Case 4) f32 lies in the range [max_norm16 + max_step16, inf]. * * The resultant float16 will be infinite. * * The cases above caught all float32 values in the range * [0, max_norm16 + max_step16), so this is the fall-through case. */ /* } else { */ assign(u16, constant(31u << 10u)))))); /* } */ return deref(u16).val; } /** * \brief Lower a packHalf2x16 expression. * * \param vec2_rval is packHalf2x16's input * \return packHalf2x16's output as a uint rvalue */ ir_rvalue* lower_pack_half_2x16(ir_rvalue *vec2_rval) { /* From page 89 (95 of pdf) of the GLSL ES 3.00 spec: * * highp uint packHalf2x16 (mediump vec2 v) * ---------------------------------------- * Returns an unsigned integer obtained by converting the components of * a two-component floating-point vector to the 16-bit floating-point * representation found in the OpenGL ES Specification, and then packing * these two 16-bit integers into a 32-bit unsigned integer. * * The first vector component specifies the 16 least- significant bits * of the result; the second component specifies the 16 most-significant * bits. */ assert(vec2_rval->type == glsl_type::vec2_type); /* vec2 f = VEC2_RVAL; */ ir_variable *f = factory.make_temp(glsl_type::vec2_type, "tmp_pack_half_2x16_f"); factory.emit(assign(f, vec2_rval)); /* uvec2 f32 = bitcast_f2u(f); */ ir_variable *f32 = factory.make_temp(glsl_type::uvec2_type, "tmp_pack_half_2x16_f32"); factory.emit(assign(f32, expr(ir_unop_bitcast_f2u, f))); /* uvec2 f16; */ ir_variable *f16 = factory.make_temp(glsl_type::uvec2_type, "tmp_pack_half_2x16_f16"); /* Get f32's unshifted exponent bits. * * uvec2 e = f32 & 0x7f800000u; */ ir_variable *e = factory.make_temp(glsl_type::uvec2_type, "tmp_pack_half_2x16_e"); factory.emit(assign(e, bit_and(f32, constant(0x7f800000u)))); /* Get f32's unshifted mantissa bits. * * uvec2 m = f32 & 0x007fffffu; */ ir_variable *m = factory.make_temp(glsl_type::uvec2_type, "tmp_pack_half_2x16_m"); factory.emit(assign(m, bit_and(f32, constant(0x007fffffu)))); /* Set f16's exponent and mantissa bits. * * f16.x = pack_half_1x16_nosign(e.x, m.x); * f16.y = pack_half_1y16_nosign(e.y, m.y); */ factory.emit(assign(f16, pack_half_1x16_nosign(swizzle_x(f), swizzle_x(e), swizzle_x(m)), WRITEMASK_X)); factory.emit(assign(f16, pack_half_1x16_nosign(swizzle_y(f), swizzle_y(e), swizzle_y(m)), WRITEMASK_Y)); /* Set f16's sign bits. * * f16 |= (f32 & (1u << 31u) >> 16u; */ factory.emit( assign(f16, bit_or(f16, rshift(bit_and(f32, constant(1u << 31u)), constant(16u))))); /* return (f16.y << 16u) | f16.x; */ ir_rvalue *result = bit_or(lshift(swizzle_y(f16), constant(16u)), swizzle_x(f16)); assert(result->type == glsl_type::uint_type); return result; } /** * \brief Lower the component-wise calculation of unpackHalf2x16. * * Given a uint that encodes a float16 in its lower 16 bits, this function * returns a uint that encodes a float32 with the same value. The sign bit * of the float16 is ignored. * * \param e_rval is the unshifted exponent bits of a float16 * \param m_rval is the unshifted mantissa bits of a float16 * \param a uint rvalue that encodes a float32 */ ir_rvalue* unpack_half_1x16_nosign(ir_rvalue *e_rval, ir_rvalue *m_rval) { assert(e_rval->type == glsl_type::uint_type); assert(m_rval->type == glsl_type::uint_type); /* uint u32; */ ir_variable *u32 = factory.make_temp(glsl_type::uint_type, "tmp_unpack_half_1x16_u32"); /* uint e = E_RVAL; */ ir_variable *e = factory.make_temp(glsl_type::uint_type, "tmp_unpack_half_1x16_e"); factory.emit(assign(e, e_rval)); /* uint m = M_RVAL; */ ir_variable *m = factory.make_temp(glsl_type::uint_type, "tmp_unpack_half_1x16_m"); factory.emit(assign(m, m_rval)); /* Preliminaries * ------------- * * For a float16, the bit layout is: * * sign: 15 * exponent: 10:14 * mantissa: 0:9 * * Let f16 be a float16 value. The sign, exponent, and mantissa * determine its value thus: * * if e16 = 0 and m16 = 0, then zero: (-1)^s16 * 0 (1) * if e16 = 0 and m16!= 0, then subnormal: (-1)^s16 * 2^(e16 - 14) * (m16 / 2^10) (2) * if 0 < e16 < 31, then normal: (-1)^s16 * 2^(e16 - 15) * (1 + m16 / 2^10) (3) * if e16 = 31 and m16 = 0, then infinite: (-1)^s16 * inf (4) * if e16 = 31 and m16 != 0, then NaN (5) * * where 0 <= m16 < 2^10. * * For a float32, the bit layout is: * * sign: 31 * exponent: 23:30 * mantissa: 0:22 * * Let f32 be a float32 value. The sign, exponent, and mantissa * determine its value thus: * * if e32 = 0 and m32 = 0, then zero: (-1)^s * 0 (10) * if e32 = 0 and m32 != 0, then subnormal: (-1)^s * 2^(e32 - 126) * (m32 / 2^23) (11) * if 0 < e32 < 255, then normal: (-1)^s * 2^(e32 - 127) * (1 + m32 / 2^23) (12) * if e32 = 255 and m32 = 0, then infinite: (-1)^s * inf (13) * if e32 = 255 and m32 != 0, then NaN (14) * * where 0 <= m32 < 2^23. * * Calculation * ----------- * Our task is to compute s32, e32, m32 given f16. Since this function * ignores the sign bit, assume that s32 = s16 = 0. There are several * cases consider. */ factory.emit( /* Case 1) f16 is zero or subnormal. * * The simplest method of calcuating f32 in this case is * * f32 = f16 (20) * = 2^(-14) * (m16 / 2^10) (21) * = m16 / 2^(-24) (22) */ /* if (e16 == 0) { */ if_tree(equal(e, constant(0u)), /* u32 = bitcast_f2u(float(m) / float(1 << 24)); */ assign(u32, expr(ir_unop_bitcast_f2u, div(u2f(m), constant((float)(1 << 24))))), /* Case 2) f16 is normal. * * The equation * * f32 = f16 (30) * 2^(e32 - 127) * (1 + m32 / 2^23) = (31) * 2^(e16 - 15) * (1 + m16 / 2^10) * * can be decomposed into two * * 2^(e32 - 127) = 2^(e16 - 15) (32) * 1 + m32 / 2^23 = 1 + m16 / 2^10 (33) * * which solve to * * e32 = e16 + 112 (34) * m32 = m16 * 2^13 (35) */ /* } else if (e16 < 31)) { */ if_tree(less(e, constant(31u << 10u)), /* u32 = ((e + (112 << 10)) | m) << 13; */ assign(u32, lshift(bit_or(add(e, constant(112u << 10u)), m), constant(13u))), /* Case 3) f16 is infinite. */ if_tree(equal(m, constant(0u)), assign(u32, constant(255u << 23u)), /* Case 4) f16 is NaN. */ /* } else { */ assign(u32, constant(0x7fffffffu)))))); /* } */ return deref(u32).val; } /** * \brief Lower an unpackHalf2x16 expression. * * \param uint_rval is unpackHalf2x16's input * \return unpackHalf2x16's output as a vec2 rvalue */ ir_rvalue* lower_unpack_half_2x16(ir_rvalue *uint_rval) { /* From page 89 (95 of pdf) of the GLSL ES 3.00 spec: * * mediump vec2 unpackHalf2x16 (highp uint v) * ------------------------------------------ * Returns a two-component floating-point vector with components * obtained by unpacking a 32-bit unsigned integer into a pair of 16-bit * values, interpreting those values as 16-bit floating-point numbers * according to the OpenGL ES Specification, and converting them to * 32-bit floating-point values. * * The first component of the vector is obtained from the * 16 least-significant bits of v; the second component is obtained * from the 16 most-significant bits of v. */ assert(uint_rval->type == glsl_type::uint_type); /* uint u = RVALUE; * uvec2 f16 = uvec2(u.x & 0xffff, u.y >> 16); */ ir_variable *f16 = factory.make_temp(glsl_type::uvec2_type, "tmp_unpack_half_2x16_f16"); factory.emit(assign(f16, unpack_uint_to_uvec2(uint_rval))); /* uvec2 f32; */ ir_variable *f32 = factory.make_temp(glsl_type::uvec2_type, "tmp_unpack_half_2x16_f32"); /* Get f16's unshifted exponent bits. * * uvec2 e = f16 & 0x7c00u; */ ir_variable *e = factory.make_temp(glsl_type::uvec2_type, "tmp_unpack_half_2x16_e"); factory.emit(assign(e, bit_and(f16, constant(0x7c00u)))); /* Get f16's unshifted mantissa bits. * * uvec2 m = f16 & 0x03ffu; */ ir_variable *m = factory.make_temp(glsl_type::uvec2_type, "tmp_unpack_half_2x16_m"); factory.emit(assign(m, bit_and(f16, constant(0x03ffu)))); /* Set f32's exponent and mantissa bits. * * f32.x = unpack_half_1x16_nosign(e.x, m.x); * f32.y = unpack_half_1x16_nosign(e.y, m.y); */ factory.emit(assign(f32, unpack_half_1x16_nosign(swizzle_x(e), swizzle_x(m)), WRITEMASK_X)); factory.emit(assign(f32, unpack_half_1x16_nosign(swizzle_y(e), swizzle_y(m)), WRITEMASK_Y)); /* Set f32's sign bit. * * f32 |= (f16 & 0x8000u) << 16u; */ factory.emit(assign(f32, bit_or(f32, lshift(bit_and(f16, constant(0x8000u)), constant(16u))))); /* return bitcast_u2f(f32); */ ir_rvalue *result = expr(ir_unop_bitcast_u2f, f32); assert(result->type == glsl_type::vec2_type); return result; } }; } // namespace anonymous /** * \brief Lower the builtin packing functions. * * \param op_mask is a bitmask of `enum lower_packing_builtins_op`. */ bool lower_packing_builtins(exec_list *instructions, int op_mask) { lower_packing_builtins_visitor v(op_mask); visit_list_elements(&v, instructions, true); return v.get_progress(); }