/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */

/*
 * Copyright (C) 2014 Rob Clark <robclark@freedesktop.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Rob Clark <robclark@freedesktop.org>
 */

#include "freedreno_query_hw.h"
#include "freedreno_context.h"
#include "freedreno_util.h"

#include "fd4_query.h"
#include "fd4_context.h"
#include "fd4_draw.h"
#include "fd4_format.h"


struct fd_rb_samp_ctrs {
	uint64_t ctr[16];
};

/*
 * Occlusion Query:
 *
 * OCCLUSION_COUNTER and OCCLUSION_PREDICATE differ only in how they
 * interpret results
 */

static struct fd_hw_sample *
occlusion_get_sample(struct fd_batch *batch, struct fd_ringbuffer *ring)
{
	struct fd_hw_sample *samp =
			fd_hw_sample_init(batch, sizeof(struct fd_rb_samp_ctrs));

	/* low bits of sample addr should be zero (since they are control
	 * flags in RB_SAMPLE_COUNT_CONTROL):
	 */
	debug_assert((samp->offset & 0x3) == 0);

	/* Set RB_SAMPLE_COUNT_ADDR to samp->offset plus value of
	 * HW_QUERY_BASE_REG register:
	 */
	OUT_PKT3(ring, CP_SET_CONSTANT, 3);
	OUT_RING(ring, CP_REG(REG_A4XX_RB_SAMPLE_COUNT_CONTROL) | 0x80000000);
	OUT_RING(ring, HW_QUERY_BASE_REG);
	OUT_RING(ring, A4XX_RB_SAMPLE_COUNT_CONTROL_COPY |
			samp->offset);

	OUT_PKT3(ring, CP_DRAW_INDX_OFFSET, 3);
	OUT_RING(ring, DRAW4(DI_PT_POINTLIST_PSIZE, DI_SRC_SEL_AUTO_INDEX,
						INDEX4_SIZE_32_BIT, USE_VISIBILITY));
	OUT_RING(ring, 1);             /* NumInstances */
	OUT_RING(ring, 0);             /* NumIndices */

	fd_event_write(batch, ring, ZPASS_DONE);

	return samp;
}

static uint64_t
count_samples(const struct fd_rb_samp_ctrs *start,
		const struct fd_rb_samp_ctrs *end)
{
	return end->ctr[0] - start->ctr[0];
}

static void
occlusion_counter_accumulate_result(struct fd_context *ctx,
		const void *start, const void *end,
		union pipe_query_result *result)
{
	uint64_t n = count_samples(start, end);
	result->u64 += n;
}

static void
occlusion_predicate_accumulate_result(struct fd_context *ctx,
		const void *start, const void *end,
		union pipe_query_result *result)
{
	uint64_t n = count_samples(start, end);
	result->b |= (n > 0);
}

/*
 * Time Elapsed Query:
 *
 * Note: we could in theory support timestamp queries, but they
 * won't give sensible results for tilers.
 */

static void
time_elapsed_enable(struct fd_context *ctx, struct fd_ringbuffer *ring)
{
	/* Right now, the assignment of countable to counter register is
	 * just hard coded.  If we start exposing more countables than we
	 * have counters, we will need to be more clever.
	 */
	fd_wfi(ctx->batch, ring);
	OUT_PKT0(ring, REG_A4XX_CP_PERFCTR_CP_SEL_0, 1);
	OUT_RING(ring, CP_ALWAYS_COUNT);
}

static struct fd_hw_sample *
time_elapsed_get_sample(struct fd_batch *batch, struct fd_ringbuffer *ring)
{
	struct fd_hw_sample *samp = fd_hw_sample_init(batch, sizeof(uint64_t));

	/* use unused part of vsc_size_mem as scratch space, to avoid
	 * extra allocation:
	 */
	struct fd_bo *scratch_bo = fd4_context(batch->ctx)->vsc_size_mem;
	const int sample_off = 128;
	const int addr_off = sample_off + 8;

	debug_assert(batch->ctx->screen->max_freq > 0);

	/* Basic issue is that we need to read counter value to a relative
	 * destination (with per-tile offset) rather than absolute dest
	 * addr.  But there is no pm4 packet that can do that.  This is
	 * where it would be *really* nice if we could write our own fw
	 * since afaict implementing the sort of packet we need would be
	 * trivial.
	 *
	 * Instead, we:
	 * (1) CP_REG_TO_MEM to do a 64b copy of counter to scratch buffer
	 * (2) CP_MEM_WRITE to write per-sample offset to scratch buffer
	 * (3) CP_REG_TO_MEM w/ accumulate flag to add the per-tile base
	 *     address to the per-sample offset in the scratch buffer
	 * (4) CP_MEM_TO_REG to copy resulting address from steps #2 and #3
	 *     to CP_ME_NRT_ADDR
	 * (5) CP_MEM_TO_REG's to copy saved counter value from scratch
	 *     buffer to CP_ME_NRT_DATA to trigger the write out to query
	 *     result buffer
	 *
	 * Straightforward, right?
	 *
	 * Maybe could swap the order of things in the scratch buffer to
	 * put address first, and copy back to CP_ME_NRT_ADDR+DATA in one
	 * shot, but that's really just polishing a turd..
	 */

	fd_wfi(batch, ring);

	/* copy sample counter _LO and _HI to scratch: */
	OUT_PKT3(ring, CP_REG_TO_MEM, 2);
	OUT_RING(ring, CP_REG_TO_MEM_0_REG(REG_A4XX_RBBM_PERFCTR_CP_0_LO) |
			CP_REG_TO_MEM_0_64B |
			CP_REG_TO_MEM_0_CNT(2-1)); /* write 2 regs to mem */
	OUT_RELOCW(ring, scratch_bo, sample_off, 0, 0);

	/* ok... here we really *would* like to use the CP_SET_CONSTANT
	 * mode which can add a constant to value in reg2 and write to
	 * reg1... *but* that only works for banked/context registers,
	 * and CP_ME_NRT_DATA isn't one of those.. so we need to do some
	 * CP math to the scratch buffer instead:
	 *
	 * (note first 8 bytes are counter value, use offset 0x8 for
	 * address calculation)
	 */

	/* per-sample offset to scratch bo: */
	OUT_PKT3(ring, CP_MEM_WRITE, 2);
	OUT_RELOCW(ring, scratch_bo, addr_off, 0, 0);
	OUT_RING(ring, samp->offset);

	/* now add to that the per-tile base: */
	OUT_PKT3(ring, CP_REG_TO_MEM, 2);
	OUT_RING(ring, CP_REG_TO_MEM_0_REG(HW_QUERY_BASE_REG) |
			CP_REG_TO_MEM_0_ACCUMULATE |
			CP_REG_TO_MEM_0_CNT(1-1));       /* readback 1 regs */
	OUT_RELOCW(ring, scratch_bo, addr_off, 0, 0);

	/* now copy that back to CP_ME_NRT_ADDR: */
	OUT_PKT3(ring, CP_MEM_TO_REG, 2);
	OUT_RING(ring, REG_A4XX_CP_ME_NRT_ADDR);
	OUT_RELOC(ring, scratch_bo, addr_off, 0, 0);

	/* and finally, copy sample from scratch buffer to CP_ME_NRT_DATA
	 * to trigger the write to result buffer
	 */
	OUT_PKT3(ring, CP_MEM_TO_REG, 2);
	OUT_RING(ring, REG_A4XX_CP_ME_NRT_DATA);
	OUT_RELOC(ring, scratch_bo, sample_off, 0, 0);

	/* and again to get the value of the _HI reg from scratch: */
	OUT_PKT3(ring, CP_MEM_TO_REG, 2);
	OUT_RING(ring, REG_A4XX_CP_ME_NRT_DATA);
	OUT_RELOC(ring, scratch_bo, sample_off + 0x4, 0, 0);

	/* Sigh.. */

	return samp;
}

static void
time_elapsed_accumulate_result(struct fd_context *ctx,
		const void *start, const void *end,
		union pipe_query_result *result)
{
	uint64_t n = *(uint64_t *)end - *(uint64_t *)start;
	/* max_freq is in Hz, convert cycle count to ns: */
	result->u64 += n * 1000000000 / ctx->screen->max_freq;
}

static void
timestamp_accumulate_result(struct fd_context *ctx,
		const void *start, const void *end,
		union pipe_query_result *result)
{
	/* just return the value from fist tile: */
	if (result->u64 != 0)
		return;
	uint64_t n = *(uint64_t *)start;
	/* max_freq is in Hz, convert cycle count to ns: */
	result->u64 = n * 1000000000 / ctx->screen->max_freq;
}

static const struct fd_hw_sample_provider occlusion_counter = {
		.query_type = PIPE_QUERY_OCCLUSION_COUNTER,
		.active = FD_STAGE_DRAW,
		.get_sample = occlusion_get_sample,
		.accumulate_result = occlusion_counter_accumulate_result,
};

static const struct fd_hw_sample_provider occlusion_predicate = {
		.query_type = PIPE_QUERY_OCCLUSION_PREDICATE,
		.active = FD_STAGE_DRAW,
		.get_sample = occlusion_get_sample,
		.accumulate_result = occlusion_predicate_accumulate_result,
};

static const struct fd_hw_sample_provider occlusion_predicate_conservative = {
		.query_type = PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE,
		.active = FD_STAGE_DRAW,
		.get_sample = occlusion_get_sample,
		.accumulate_result = occlusion_predicate_accumulate_result,
};

static const struct fd_hw_sample_provider time_elapsed = {
		.query_type = PIPE_QUERY_TIME_ELAPSED,
		.active = FD_STAGE_DRAW | FD_STAGE_CLEAR,
		.enable = time_elapsed_enable,
		.get_sample = time_elapsed_get_sample,
		.accumulate_result = time_elapsed_accumulate_result,
};

/* NOTE: timestamp query isn't going to give terribly sensible results
 * on a tiler.  But it is needed by qapitrace profile heatmap.  If you
 * add in a binning pass, the results get even more non-sensical.  So
 * we just return the timestamp on the first tile and hope that is
 * kind of good enough.
 */
static const struct fd_hw_sample_provider timestamp = {
		.query_type = PIPE_QUERY_TIMESTAMP,
		.active = FD_STAGE_ALL,
		.enable = time_elapsed_enable,
		.get_sample = time_elapsed_get_sample,
		.accumulate_result = timestamp_accumulate_result,
};

void fd4_query_context_init(struct pipe_context *pctx)
{
	struct fd_context *ctx = fd_context(pctx);

	ctx->create_query = fd_hw_create_query;
	ctx->query_prepare = fd_hw_query_prepare;
	ctx->query_prepare_tile = fd_hw_query_prepare_tile;
	ctx->query_set_stage = fd_hw_query_set_stage;

	fd_hw_query_register_provider(pctx, &occlusion_counter);
	fd_hw_query_register_provider(pctx, &occlusion_predicate);
	fd_hw_query_register_provider(pctx, &occlusion_predicate_conservative);
	fd_hw_query_register_provider(pctx, &time_elapsed);
	fd_hw_query_register_provider(pctx, &timestamp);
}