#include <float.h>
#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_state.h"
#include "util/u_dynarray.h"
#include "util/u_inlines.h"
#include "util/u_debug.h"
#include "util/u_memory.h"

#include "pipe/p_shader_tokens.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_util.h"
#include "tgsi/tgsi_dump.h"
#include "tgsi/tgsi_ureg.h"

#include "nouveau_debug.h"
#include "nv_object.xml.h"
#include "nv30/nv30-40_3d.xml.h"
#include "nv30/nvfx_shader.h"
#include "nv30/nv30_state.h"

struct nvfx_fpc {
   struct nv30_fragprog *fp;

   unsigned max_temps;
   unsigned long long r_temps;
   unsigned long long r_temps_discard;
   struct nvfx_reg r_result[PIPE_MAX_SHADER_OUTPUTS];
   struct nvfx_reg r_input[PIPE_MAX_SHADER_INPUTS];
   struct nvfx_reg *r_temp;

   int num_regs;

   unsigned inst_offset;
   unsigned have_const;
   unsigned is_nv4x;

   struct util_dynarray imm_data;

   struct nvfx_reg* r_imm;
   unsigned nr_imm;

   struct util_dynarray if_stack;
   //struct util_dynarray loop_stack;
   struct util_dynarray label_relocs;
};

static inline struct nvfx_reg
temp(struct nvfx_fpc *fpc)
{
   int idx = __builtin_ctzll(~fpc->r_temps);

   if (idx >= fpc->max_temps) {
      NOUVEAU_ERR("out of temps!!\n");
      return nvfx_reg(NVFXSR_TEMP, 0);
   }

   fpc->r_temps |= (1ULL << idx);
   fpc->r_temps_discard |= (1ULL << idx);
   return nvfx_reg(NVFXSR_TEMP, idx);
}

static inline void
release_temps(struct nvfx_fpc *fpc)
{
   fpc->r_temps &= ~fpc->r_temps_discard;
   fpc->r_temps_discard = 0ULL;
}

static inline struct nvfx_reg
nvfx_fp_imm(struct nvfx_fpc *fpc, float a, float b, float c, float d)
{
   float v[4] = {a, b, c, d};
   int idx = fpc->imm_data.size >> 4;

   memcpy(util_dynarray_grow(&fpc->imm_data, sizeof(float) * 4), v, 4 * sizeof(float));
   return nvfx_reg(NVFXSR_IMM, idx);
}

static void
grow_insns(struct nvfx_fpc *fpc, int size)
{
   struct nv30_fragprog *fp = fpc->fp;

   fp->insn_len += size;
   fp->insn = realloc(fp->insn, sizeof(uint32_t) * fp->insn_len);
}

static void
emit_src(struct nvfx_fpc *fpc, int pos, struct nvfx_src src)
{
   struct nv30_fragprog *fp = fpc->fp;
   uint32_t *hw = &fp->insn[fpc->inst_offset];
   uint32_t sr = 0;

   switch (src.reg.type) {
   case NVFXSR_INPUT:
      sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
      hw[0] |= (src.reg.index << NVFX_FP_OP_INPUT_SRC_SHIFT);
      break;
   case NVFXSR_OUTPUT:
      sr |= NVFX_FP_REG_SRC_HALF;
      /* fall-through */
   case NVFXSR_TEMP:
      sr |= (NVFX_FP_REG_TYPE_TEMP << NVFX_FP_REG_TYPE_SHIFT);
      sr |= (src.reg.index << NVFX_FP_REG_SRC_SHIFT);
      break;
   case NVFXSR_IMM:
      if (!fpc->have_const) {
         grow_insns(fpc, 4);
         hw = &fp->insn[fpc->inst_offset];
         fpc->have_const = 1;
      }

      memcpy(&fp->insn[fpc->inst_offset + 4],
            (float*)fpc->imm_data.data + src.reg.index * 4,
            sizeof(uint32_t) * 4);

      sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
      break;
   case NVFXSR_CONST:
      if (!fpc->have_const) {
         grow_insns(fpc, 4);
         hw = &fp->insn[fpc->inst_offset];
         fpc->have_const = 1;
      }

      {
         struct nv30_fragprog_data *fpd;

         fp->consts = realloc(fp->consts, ++fp->nr_consts *
                    sizeof(*fpd));
         fpd = &fp->consts[fp->nr_consts - 1];
         fpd->offset = fpc->inst_offset + 4;
         fpd->index = src.reg.index;
         memset(&fp->insn[fpd->offset], 0, sizeof(uint32_t) * 4);
      }

      sr |= (NVFX_FP_REG_TYPE_CONST << NVFX_FP_REG_TYPE_SHIFT);
      break;
   case NVFXSR_NONE:
      sr |= (NVFX_FP_REG_TYPE_INPUT << NVFX_FP_REG_TYPE_SHIFT);
      break;
   default:
      assert(0);
   }

   if (src.negate)
      sr |= NVFX_FP_REG_NEGATE;

   if (src.abs)
      hw[1] |= (1 << (29 + pos));

   sr |= ((src.swz[0] << NVFX_FP_REG_SWZ_X_SHIFT) |
          (src.swz[1] << NVFX_FP_REG_SWZ_Y_SHIFT) |
          (src.swz[2] << NVFX_FP_REG_SWZ_Z_SHIFT) |
          (src.swz[3] << NVFX_FP_REG_SWZ_W_SHIFT));

   hw[pos + 1] |= sr;
}

static void
emit_dst(struct nvfx_fpc *fpc, struct nvfx_reg dst)
{
   struct nv30_fragprog *fp = fpc->fp;
   uint32_t *hw = &fp->insn[fpc->inst_offset];

   switch (dst.type) {
   case NVFXSR_OUTPUT:
      if (dst.index == 1)
         fp->fp_control |= 0x0000000e;
      else {
         hw[0] |= NVFX_FP_OP_OUT_REG_HALF;
         dst.index <<= 1;
      }
      /* fall-through */
   case NVFXSR_TEMP:
      if (fpc->num_regs < (dst.index + 1))
         fpc->num_regs = dst.index + 1;
      break;
   case NVFXSR_NONE:
      hw[0] |= (1 << 30);
      break;
   default:
      assert(0);
   }

   hw[0] |= (dst.index << NVFX_FP_OP_OUT_REG_SHIFT);
}

static void
nvfx_fp_emit(struct nvfx_fpc *fpc, struct nvfx_insn insn)
{
   struct nv30_fragprog *fp = fpc->fp;
   uint32_t *hw;

   fpc->inst_offset = fp->insn_len;
   fpc->have_const = 0;
   grow_insns(fpc, 4);
   hw = &fp->insn[fpc->inst_offset];
   memset(hw, 0, sizeof(uint32_t) * 4);

   if (insn.op == NVFX_FP_OP_OPCODE_KIL)
      fp->fp_control |= NV30_3D_FP_CONTROL_USES_KIL;
   hw[0] |= (insn.op << NVFX_FP_OP_OPCODE_SHIFT);
   hw[0] |= (insn.mask << NVFX_FP_OP_OUTMASK_SHIFT);
   hw[2] |= (insn.scale << NVFX_FP_OP_DST_SCALE_SHIFT);

   if (insn.sat)
      hw[0] |= NVFX_FP_OP_OUT_SAT;

   if (insn.cc_update)
      hw[0] |= NVFX_FP_OP_COND_WRITE_ENABLE;
   hw[1] |= (insn.cc_test << NVFX_FP_OP_COND_SHIFT);
   hw[1] |= ((insn.cc_swz[0] << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
        (insn.cc_swz[1] << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
        (insn.cc_swz[2] << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
        (insn.cc_swz[3] << NVFX_FP_OP_COND_SWZ_W_SHIFT));

   if(insn.unit >= 0)
   {
      hw[0] |= (insn.unit << NVFX_FP_OP_TEX_UNIT_SHIFT);
   }

   emit_dst(fpc, insn.dst);
   emit_src(fpc, 0, insn.src[0]);
   emit_src(fpc, 1, insn.src[1]);
   emit_src(fpc, 2, insn.src[2]);
}

#define arith(s,o,d,m,s0,s1,s2) \
       nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, -1, \
                       (d), (m), (s0), (s1), (s2))

#define tex(s,o,u,d,m,s0,s1,s2) \
   nvfx_insn((s), NVFX_FP_OP_OPCODE_##o, (u), \
                   (d), (m), (s0), none, none)

/* IF src.x != 0, as TGSI specifies */
static void
nv40_fp_if(struct nvfx_fpc *fpc, struct nvfx_src src)
{
   const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
   struct nvfx_insn insn = arith(0, MOV, none.reg, NVFX_FP_MASK_X, src, none, none);
   uint32_t *hw;
   insn.cc_update = 1;
   nvfx_fp_emit(fpc, insn);

   fpc->inst_offset = fpc->fp->insn_len;
   grow_insns(fpc, 4);
   hw = &fpc->fp->insn[fpc->inst_offset];
   /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
   hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
      NV40_FP_OP_OUT_NONE |
      (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
   /* Use .xxxx swizzle so that we check only src[0].x*/
   hw[1] = (0 << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
         (0 << NVFX_FP_OP_COND_SWZ_Y_SHIFT) |
         (0 << NVFX_FP_OP_COND_SWZ_Z_SHIFT) |
         (0 << NVFX_FP_OP_COND_SWZ_W_SHIFT) |
         (NVFX_FP_OP_COND_NE << NVFX_FP_OP_COND_SHIFT);
   hw[2] = 0; /* | NV40_FP_OP_OPCODE_IS_BRANCH | else_offset */
   hw[3] = 0; /* | endif_offset */
   util_dynarray_append(&fpc->if_stack, unsigned, fpc->inst_offset);
}

/* IF src.x != 0, as TGSI specifies */
static void
nv40_fp_cal(struct nvfx_fpc *fpc, unsigned target)
{
        struct nvfx_relocation reloc;
        uint32_t *hw;
        fpc->inst_offset = fpc->fp->insn_len;
        grow_insns(fpc, 4);
        hw = &fpc->fp->insn[fpc->inst_offset];
        /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
        hw[0] = (NV40_FP_OP_BRA_OPCODE_CAL << NVFX_FP_OP_OPCODE_SHIFT);
        /* Use .xxxx swizzle so that we check only src[0].x*/
        hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
                        (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
        hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
        hw[3] = 0;
        reloc.target = target;
        reloc.location = fpc->inst_offset + 2;
        util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
}

static void
nv40_fp_ret(struct nvfx_fpc *fpc)
{
   uint32_t *hw;
   fpc->inst_offset = fpc->fp->insn_len;
   grow_insns(fpc, 4);
   hw = &fpc->fp->insn[fpc->inst_offset];
   /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
   hw[0] = (NV40_FP_OP_BRA_OPCODE_RET << NVFX_FP_OP_OPCODE_SHIFT);
   /* Use .xxxx swizzle so that we check only src[0].x*/
   hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
         (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
   hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | call_offset */
   hw[3] = 0;
}

static void
nv40_fp_rep(struct nvfx_fpc *fpc, unsigned count, unsigned target)
{
        struct nvfx_relocation reloc;
        uint32_t *hw;
        fpc->inst_offset = fpc->fp->insn_len;
        grow_insns(fpc, 4);
        hw = &fpc->fp->insn[fpc->inst_offset];
        /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
        hw[0] = (NV40_FP_OP_BRA_OPCODE_REP << NVFX_FP_OP_OPCODE_SHIFT) |
                        NV40_FP_OP_OUT_NONE |
                        (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
        /* Use .xxxx swizzle so that we check only src[0].x*/
        hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_ALL_SHIFT) |
                        (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
        hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH |
                        (count << NV40_FP_OP_REP_COUNT1_SHIFT) |
                        (count << NV40_FP_OP_REP_COUNT2_SHIFT) |
                        (count << NV40_FP_OP_REP_COUNT3_SHIFT);
        hw[3] = 0; /* | end_offset */
        reloc.target = target;
        reloc.location = fpc->inst_offset + 3;
        util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
        //util_dynarray_append(&fpc->loop_stack, unsigned, target);
}

#if 0
/* documentation only */
/* warning: this only works forward, and probably only if not inside any IF */
static void
nv40_fp_bra(struct nvfx_fpc *fpc, unsigned target)
{
        struct nvfx_relocation reloc;
        uint32_t *hw;
        fpc->inst_offset = fpc->fp->insn_len;
        grow_insns(fpc, 4);
        hw = &fpc->fp->insn[fpc->inst_offset];
        /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
        hw[0] = (NV40_FP_OP_BRA_OPCODE_IF << NVFX_FP_OP_OPCODE_SHIFT) |
                NV40_FP_OP_OUT_NONE |
                (NVFX_FP_PRECISION_FP16 << NVFX_FP_OP_PRECISION_SHIFT);
        /* Use .xxxx swizzle so that we check only src[0].x*/
        hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
                        (NVFX_FP_OP_COND_FL << NVFX_FP_OP_COND_SHIFT);
        hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH; /* | else_offset */
        hw[3] = 0; /* | endif_offset */
        reloc.target = target;
        reloc.location = fpc->inst_offset + 2;
        util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
        reloc.target = target;
        reloc.location = fpc->inst_offset + 3;
        util_dynarray_append(&fpc->label_relocs, struct nvfx_relocation, reloc);
}
#endif

static void
nv40_fp_brk(struct nvfx_fpc *fpc)
{
   uint32_t *hw;
   fpc->inst_offset = fpc->fp->insn_len;
   grow_insns(fpc, 4);
   hw = &fpc->fp->insn[fpc->inst_offset];
   /* I really wonder why fp16 precision is used. Presumably the hardware ignores it? */
   hw[0] = (NV40_FP_OP_BRA_OPCODE_BRK << NVFX_FP_OP_OPCODE_SHIFT) |
      NV40_FP_OP_OUT_NONE;
   /* Use .xxxx swizzle so that we check only src[0].x*/
   hw[1] = (NVFX_SWZ_IDENTITY << NVFX_FP_OP_COND_SWZ_X_SHIFT) |
         (NVFX_FP_OP_COND_TR << NVFX_FP_OP_COND_SHIFT);
   hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH;
   hw[3] = 0;
}

static inline struct nvfx_src
tgsi_src(struct nvfx_fpc *fpc, const struct tgsi_full_src_register *fsrc)
{
   struct nvfx_src src;

   switch (fsrc->Register.File) {
   case TGSI_FILE_INPUT:
      src.reg = fpc->r_input[fsrc->Register.Index];
      break;
   case TGSI_FILE_CONSTANT:
      src.reg = nvfx_reg(NVFXSR_CONST, fsrc->Register.Index);
      break;
   case TGSI_FILE_IMMEDIATE:
      assert(fsrc->Register.Index < fpc->nr_imm);
      src.reg = fpc->r_imm[fsrc->Register.Index];
      break;
   case TGSI_FILE_TEMPORARY:
      src.reg = fpc->r_temp[fsrc->Register.Index];
      break;
   /* NV40 fragprog result regs are just temps, so this is simple */
   case TGSI_FILE_OUTPUT:
      src.reg = fpc->r_result[fsrc->Register.Index];
      break;
   default:
      NOUVEAU_ERR("bad src file\n");
      src.reg.index = 0;
      src.reg.type = 0;
      break;
   }

   src.abs = fsrc->Register.Absolute;
   src.negate = fsrc->Register.Negate;
   src.swz[0] = fsrc->Register.SwizzleX;
   src.swz[1] = fsrc->Register.SwizzleY;
   src.swz[2] = fsrc->Register.SwizzleZ;
   src.swz[3] = fsrc->Register.SwizzleW;
   src.indirect = 0;
   src.indirect_reg = 0;
   src.indirect_swz = 0;
   return src;
}

static inline struct nvfx_reg
tgsi_dst(struct nvfx_fpc *fpc, const struct tgsi_full_dst_register *fdst) {
   switch (fdst->Register.File) {
   case TGSI_FILE_OUTPUT:
      return fpc->r_result[fdst->Register.Index];
   case TGSI_FILE_TEMPORARY:
      return fpc->r_temp[fdst->Register.Index];
   case TGSI_FILE_NULL:
      return nvfx_reg(NVFXSR_NONE, 0);
   default:
      NOUVEAU_ERR("bad dst file %d\n", fdst->Register.File);
      return nvfx_reg(NVFXSR_NONE, 0);
   }
}

static inline int
tgsi_mask(uint tgsi)
{
   int mask = 0;

   if (tgsi & TGSI_WRITEMASK_X) mask |= NVFX_FP_MASK_X;
   if (tgsi & TGSI_WRITEMASK_Y) mask |= NVFX_FP_MASK_Y;
   if (tgsi & TGSI_WRITEMASK_Z) mask |= NVFX_FP_MASK_Z;
   if (tgsi & TGSI_WRITEMASK_W) mask |= NVFX_FP_MASK_W;
   return mask;
}

static bool
nvfx_fragprog_parse_instruction(struct nvfx_fpc *fpc,
            const struct tgsi_full_instruction *finst)
{
   const struct nvfx_src none = nvfx_src(nvfx_reg(NVFXSR_NONE, 0));
   struct nvfx_insn insn;
   struct nvfx_src src[3], tmp;
   struct nvfx_reg dst;
   int mask, sat, unit = 0;
   int ai = -1, ci = -1, ii = -1;
   int i;

   if (finst->Instruction.Opcode == TGSI_OPCODE_END)
      return true;

   for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
      const struct tgsi_full_src_register *fsrc;

      fsrc = &finst->Src[i];
      if (fsrc->Register.File == TGSI_FILE_TEMPORARY) {
         src[i] = tgsi_src(fpc, fsrc);
      }
   }

   for (i = 0; i < finst->Instruction.NumSrcRegs; i++) {
      const struct tgsi_full_src_register *fsrc;

      fsrc = &finst->Src[i];

      switch (fsrc->Register.File) {
      case TGSI_FILE_INPUT:
         if(fpc->fp->info.input_semantic_name[fsrc->Register.Index] == TGSI_SEMANTIC_FOG && (0
               || fsrc->Register.SwizzleX == PIPE_SWIZZLE_W
               || fsrc->Register.SwizzleY == PIPE_SWIZZLE_W
               || fsrc->Register.SwizzleZ == PIPE_SWIZZLE_W
               || fsrc->Register.SwizzleW == PIPE_SWIZZLE_W
               )) {
            /* hardware puts 0 in fogcoord.w, but GL/Gallium want 1 there */
            struct nvfx_src addend = nvfx_src(nvfx_fp_imm(fpc, 0, 0, 0, 1));
            addend.swz[0] = fsrc->Register.SwizzleX;
            addend.swz[1] = fsrc->Register.SwizzleY;
            addend.swz[2] = fsrc->Register.SwizzleZ;
            addend.swz[3] = fsrc->Register.SwizzleW;
            src[i] = nvfx_src(temp(fpc));
            nvfx_fp_emit(fpc, arith(0, ADD, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), addend, none));
         } else if (ai == -1 || ai == fsrc->Register.Index) {
            ai = fsrc->Register.Index;
            src[i] = tgsi_src(fpc, fsrc);
         } else {
            src[i] = nvfx_src(temp(fpc));
            nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
         }
         break;
      case TGSI_FILE_CONSTANT:
         if ((ci == -1 && ii == -1) ||
             ci == fsrc->Register.Index) {
            ci = fsrc->Register.Index;
            src[i] = tgsi_src(fpc, fsrc);
         } else {
            src[i] = nvfx_src(temp(fpc));
            nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
         }
         break;
      case TGSI_FILE_IMMEDIATE:
         if ((ci == -1 && ii == -1) ||
             ii == fsrc->Register.Index) {
            ii = fsrc->Register.Index;
            src[i] = tgsi_src(fpc, fsrc);
         } else {
            src[i] = nvfx_src(temp(fpc));
            nvfx_fp_emit(fpc, arith(0, MOV, src[i].reg, NVFX_FP_MASK_ALL, tgsi_src(fpc, fsrc), none, none));
         }
         break;
      case TGSI_FILE_TEMPORARY:
         /* handled above */
         break;
      case TGSI_FILE_SAMPLER:
         unit = fsrc->Register.Index;
         break;
      case TGSI_FILE_OUTPUT:
         break;
      default:
         NOUVEAU_ERR("bad src file\n");
         return false;
      }
   }

   dst  = tgsi_dst(fpc, &finst->Dst[0]);
   mask = tgsi_mask(finst->Dst[0].Register.WriteMask);
   sat  = finst->Instruction.Saturate;

   switch (finst->Instruction.Opcode) {
   case TGSI_OPCODE_ADD:
      nvfx_fp_emit(fpc, arith(sat, ADD, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_CEIL:
      tmp = nvfx_src(temp(fpc));
      nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, neg(src[0]), none, none));
      nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, neg(tmp), none, none));
      break;
   case TGSI_OPCODE_CMP:
      insn = arith(0, MOV, none.reg, mask, src[0], none, none);
      insn.cc_update = 1;
      nvfx_fp_emit(fpc, insn);

      insn = arith(sat, MOV, dst, mask, src[2], none, none);
      insn.cc_test = NVFX_COND_GE;
      nvfx_fp_emit(fpc, insn);

      insn = arith(sat, MOV, dst, mask, src[1], none, none);
      insn.cc_test = NVFX_COND_LT;
      nvfx_fp_emit(fpc, insn);
      break;
   case TGSI_OPCODE_COS:
      nvfx_fp_emit(fpc, arith(sat, COS, dst, mask, src[0], none, none));
      break;
   case TGSI_OPCODE_DDX:
      if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
         tmp = nvfx_src(temp(fpc));
         nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
         nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
         nvfx_fp_emit(fpc, arith(sat, DDX, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
         nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
      } else {
         nvfx_fp_emit(fpc, arith(sat, DDX, dst, mask, src[0], none, none));
      }
      break;
   case TGSI_OPCODE_DDY:
      if (mask & (NVFX_FP_MASK_Z | NVFX_FP_MASK_W)) {
         tmp = nvfx_src(temp(fpc));
         nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, swz(src[0], Z, W, Z, W), none, none));
         nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_Z | NVFX_FP_MASK_W, swz(tmp, X, Y, X, Y), none, none));
         nvfx_fp_emit(fpc, arith(sat, DDY, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], none, none));
         nvfx_fp_emit(fpc, arith(0, MOV, dst, mask, tmp, none, none));
      } else {
         nvfx_fp_emit(fpc, arith(sat, DDY, dst, mask, src[0], none, none));
      }
      break;
   case TGSI_OPCODE_DP2:
      tmp = nvfx_src(temp(fpc));
      nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, src[0], src[1], none));
      nvfx_fp_emit(fpc, arith(0, ADD, dst, mask, swz(tmp, X, X, X, X), swz(tmp, Y, Y, Y, Y), none));
      break;
   case TGSI_OPCODE_DP3:
      nvfx_fp_emit(fpc, arith(sat, DP3, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_DP4:
      nvfx_fp_emit(fpc, arith(sat, DP4, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_DST:
      nvfx_fp_emit(fpc, arith(sat, DST, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_EX2:
      nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, src[0], none, none));
      break;
   case TGSI_OPCODE_FLR:
      nvfx_fp_emit(fpc, arith(sat, FLR, dst, mask, src[0], none, none));
      break;
   case TGSI_OPCODE_FRC:
      nvfx_fp_emit(fpc, arith(sat, FRC, dst, mask, src[0], none, none));
      break;
   case TGSI_OPCODE_KILL:
      nvfx_fp_emit(fpc, arith(0, KIL, none.reg, 0, none, none, none));
      break;
   case TGSI_OPCODE_KILL_IF:
      insn = arith(0, MOV, none.reg, NVFX_FP_MASK_ALL, src[0], none, none);
      insn.cc_update = 1;
      nvfx_fp_emit(fpc, insn);

      insn = arith(0, KIL, none.reg, 0, none, none, none);
      insn.cc_test = NVFX_COND_LT;
      nvfx_fp_emit(fpc, insn);
      break;
   case TGSI_OPCODE_LG2:
      nvfx_fp_emit(fpc, arith(sat, LG2, dst, mask, src[0], none, none));
      break;
   case TGSI_OPCODE_LIT:
      if(!fpc->is_nv4x)
         nvfx_fp_emit(fpc, arith(sat, LIT_NV30, dst, mask, src[0], none, none));
      else {
         /* we use FLT_MIN, so that log2 never gives -infinity, and thus multiplication by
          * specular 0 always gives 0, so that ex2 gives 1, to satisfy the 0^0 = 1 requirement
          *
          * NOTE: if we start using half precision, we might need an fp16 FLT_MIN here instead
          */
         struct nvfx_src maxs = nvfx_src(nvfx_fp_imm(fpc, 0, FLT_MIN, 0, 0));
         tmp = nvfx_src(temp(fpc));
         if (ci>= 0 || ii >= 0) {
            nvfx_fp_emit(fpc, arith(0, MOV, tmp.reg, NVFX_FP_MASK_X | NVFX_FP_MASK_Y, maxs, none, none));
            maxs = tmp;
         }
         nvfx_fp_emit(fpc, arith(0, MAX, tmp.reg, NVFX_FP_MASK_Y | NVFX_FP_MASK_W, swz(src[0], X, X, X, Y), swz(maxs, X, X, Y, Y), none));
         nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), none, none));
         nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_W, swz(tmp, W, W, W, W), swz(src[0], W, W, W, W), none));
         nvfx_fp_emit(fpc, arith(sat, LITEX2_NV40, dst, mask, swz(tmp, Y, Y, W, W), none, none));
      }
      break;
   case TGSI_OPCODE_LRP:
      if(!fpc->is_nv4x)
         nvfx_fp_emit(fpc, arith(sat, LRP_NV30, dst, mask, src[0], src[1], src[2]));
      else {
         tmp = nvfx_src(temp(fpc));
         nvfx_fp_emit(fpc, arith(0, MAD, tmp.reg, mask, neg(src[0]), src[2], src[2]));
         nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], tmp));
      }
      break;
   case TGSI_OPCODE_MAD:
      nvfx_fp_emit(fpc, arith(sat, MAD, dst, mask, src[0], src[1], src[2]));
      break;
   case TGSI_OPCODE_MAX:
      nvfx_fp_emit(fpc, arith(sat, MAX, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_MIN:
      nvfx_fp_emit(fpc, arith(sat, MIN, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_MOV:
      nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, src[0], none, none));
      break;
   case TGSI_OPCODE_MUL:
      nvfx_fp_emit(fpc, arith(sat, MUL, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_NOP:
      break;
   case TGSI_OPCODE_POW:
      if(!fpc->is_nv4x)
         nvfx_fp_emit(fpc, arith(sat, POW_NV30, dst, mask, src[0], src[1], none));
      else {
         tmp = nvfx_src(temp(fpc));
         nvfx_fp_emit(fpc, arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, swz(src[0], X, X, X, X), none, none));
         nvfx_fp_emit(fpc, arith(0, MUL, tmp.reg, NVFX_FP_MASK_X, swz(tmp, X, X, X, X), swz(src[1], X, X, X, X), none));
         nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, swz(tmp, X, X, X, X), none, none));
      }
      break;
   case TGSI_OPCODE_RCP:
      nvfx_fp_emit(fpc, arith(sat, RCP, dst, mask, src[0], none, none));
      break;
   case TGSI_OPCODE_RSQ:
      if(!fpc->is_nv4x)
         nvfx_fp_emit(fpc, arith(sat, RSQ_NV30, dst, mask, abs(swz(src[0], X, X, X, X)), none, none));
      else {
         tmp = nvfx_src(temp(fpc));
         insn = arith(0, LG2, tmp.reg, NVFX_FP_MASK_X, abs(swz(src[0], X, X, X, X)), none, none);
         insn.scale = NVFX_FP_OP_DST_SCALE_INV_2X;
         nvfx_fp_emit(fpc, insn);
         nvfx_fp_emit(fpc, arith(sat, EX2, dst, mask, neg(swz(tmp, X, X, X, X)), none, none));
      }
      break;
   case TGSI_OPCODE_SEQ:
      nvfx_fp_emit(fpc, arith(sat, SEQ, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_SGE:
      nvfx_fp_emit(fpc, arith(sat, SGE, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_SGT:
      nvfx_fp_emit(fpc, arith(sat, SGT, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_SIN:
      nvfx_fp_emit(fpc, arith(sat, SIN, dst, mask, src[0], none, none));
      break;
   case TGSI_OPCODE_SLE:
      nvfx_fp_emit(fpc, arith(sat, SLE, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_SLT:
      nvfx_fp_emit(fpc, arith(sat, SLT, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_SNE:
      nvfx_fp_emit(fpc, arith(sat, SNE, dst, mask, src[0], src[1], none));
      break;
   case TGSI_OPCODE_SSG:
   {
      struct nvfx_src minones = swz(nvfx_src(nvfx_fp_imm(fpc, -1, -1, -1, -1)), X, X, X, X);

      insn = arith(sat, MOV, dst, mask, src[0], none, none);
      insn.cc_update = 1;
      nvfx_fp_emit(fpc, insn);

      insn = arith(0, STR, dst, mask, none, none, none);
      insn.cc_test = NVFX_COND_GT;
      nvfx_fp_emit(fpc, insn);

      if(!sat) {
         insn = arith(0, MOV, dst, mask, minones, none, none);
         insn.cc_test = NVFX_COND_LT;
         nvfx_fp_emit(fpc, insn);
      }
      break;
   }
   case TGSI_OPCODE_TEX:
      nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
      break;
        case TGSI_OPCODE_TRUNC:
                tmp = nvfx_src(temp(fpc));
                insn = arith(0, MOV, none.reg, mask, src[0], none, none);
                insn.cc_update = 1;
                nvfx_fp_emit(fpc, insn);

                nvfx_fp_emit(fpc, arith(0, FLR, tmp.reg, mask, abs(src[0]), none, none));
                nvfx_fp_emit(fpc, arith(sat, MOV, dst, mask, tmp, none, none));

                insn = arith(sat, MOV, dst, mask, neg(tmp), none, none);
                insn.cc_test = NVFX_COND_LT;
                nvfx_fp_emit(fpc, insn);
                break;
        case TGSI_OPCODE_TXB:
                nvfx_fp_emit(fpc, tex(sat, TXB, unit, dst, mask, src[0], none, none));
                break;
        case TGSI_OPCODE_TXL:
                if(fpc->is_nv4x)
                        nvfx_fp_emit(fpc, tex(sat, TXL_NV40, unit, dst, mask, src[0], none, none));
                else /* unsupported on nv30, use TEX and hope they like it */
                        nvfx_fp_emit(fpc, tex(sat, TEX, unit, dst, mask, src[0], none, none));
                break;
        case TGSI_OPCODE_TXP:
                nvfx_fp_emit(fpc, tex(sat, TXP, unit, dst, mask, src[0], none, none));
                break;

   case TGSI_OPCODE_IF:
      // MOVRC0 R31 (TR0.xyzw), R<src>:
      // IF (NE.xxxx) ELSE <else> END <end>
      if(!fpc->is_nv4x)
         goto nv3x_cflow;
      nv40_fp_if(fpc, src[0]);
      break;

   case TGSI_OPCODE_ELSE:
   {
      uint32_t *hw;
      if(!fpc->is_nv4x)
         goto nv3x_cflow;
      assert(util_dynarray_contains(&fpc->if_stack, unsigned));
      hw = &fpc->fp->insn[util_dynarray_top(&fpc->if_stack, unsigned)];
      hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
      break;
   }

   case TGSI_OPCODE_ENDIF:
   {
      uint32_t *hw;
      if(!fpc->is_nv4x)
         goto nv3x_cflow;
      assert(util_dynarray_contains(&fpc->if_stack, unsigned));
      hw = &fpc->fp->insn[util_dynarray_pop(&fpc->if_stack, unsigned)];
      if(!hw[2])
         hw[2] = NV40_FP_OP_OPCODE_IS_BRANCH | fpc->fp->insn_len;
      hw[3] = fpc->fp->insn_len;
      break;
   }

   case TGSI_OPCODE_BGNSUB:
   case TGSI_OPCODE_ENDSUB:
      /* nothing to do here */
      break;

   case TGSI_OPCODE_CAL:
      if(!fpc->is_nv4x)
         goto nv3x_cflow;
      nv40_fp_cal(fpc, finst->Label.Label);
      break;

   case TGSI_OPCODE_RET:
      if(!fpc->is_nv4x)
         goto nv3x_cflow;
      nv40_fp_ret(fpc);
      break;

   case TGSI_OPCODE_BGNLOOP:
      if(!fpc->is_nv4x)
         goto nv3x_cflow;
      /* TODO: we should support using two nested REPs to allow a > 255 iteration count */
      nv40_fp_rep(fpc, 255, finst->Label.Label);
      break;

   case TGSI_OPCODE_ENDLOOP:
      break;

   case TGSI_OPCODE_BRK:
      if(!fpc->is_nv4x)
         goto nv3x_cflow;
      nv40_fp_brk(fpc);
      break;

   case TGSI_OPCODE_CONT:
   {
      static int warned = 0;
      if(!warned) {
         NOUVEAU_ERR("Sorry, the continue keyword is not implemented: ignoring it.\n");
         warned = 1;
      }
      break;
   }

        default:
      NOUVEAU_ERR("invalid opcode %d\n", finst->Instruction.Opcode);
      return false;
   }

out:
   release_temps(fpc);
   return true;
nv3x_cflow:
   {
      static int warned = 0;
      if(!warned) {
         NOUVEAU_ERR(
               "Sorry, control flow instructions are not supported in hardware on nv3x: ignoring them\n"
               "If rendering is incorrect, try to disable GLSL support in the application.\n");
         warned = 1;
      }
   }
   goto out;
}

static bool
nvfx_fragprog_parse_decl_input(struct nvfx_fpc *fpc,
                               const struct tgsi_full_declaration *fdec)
{
   unsigned idx = fdec->Range.First;
   unsigned hw;

   switch (fdec->Semantic.Name) {
   case TGSI_SEMANTIC_POSITION:
      hw = NVFX_FP_OP_INPUT_SRC_POSITION;
      break;
   case TGSI_SEMANTIC_COLOR:
      hw = NVFX_FP_OP_INPUT_SRC_COL0 + fdec->Semantic.Index;
      break;
   case TGSI_SEMANTIC_FOG:
      hw = NVFX_FP_OP_INPUT_SRC_FOGC;
      break;
   case TGSI_SEMANTIC_FACE:
      hw = NV40_FP_OP_INPUT_SRC_FACING;
      break;
   case TGSI_SEMANTIC_TEXCOORD:
      assert(fdec->Semantic.Index < 8);
      fpc->fp->texcoord[fdec->Semantic.Index] = fdec->Semantic.Index;
      fpc->fp->texcoords |= (1 << fdec->Semantic.Index);
      fpc->fp->vp_or |= (0x00004000 << fdec->Semantic.Index);
      hw = NVFX_FP_OP_INPUT_SRC_TC(fdec->Semantic.Index);
      break;
   case TGSI_SEMANTIC_GENERIC:
   case TGSI_SEMANTIC_PCOORD:
      /* will be assigned to remaining TC slots later */
      return true;
   default:
      assert(0);
      return false;
   }

   fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw);
   return true;
}

static bool
nvfx_fragprog_assign_generic(struct nvfx_fpc *fpc,
                             const struct tgsi_full_declaration *fdec)
{
   unsigned num_texcoords = fpc->is_nv4x ? 10 : 8;
   unsigned idx = fdec->Range.First;
   unsigned hw;

   switch (fdec->Semantic.Name) {
   case TGSI_SEMANTIC_GENERIC:
   case TGSI_SEMANTIC_PCOORD:
      for (hw = 0; hw < num_texcoords; hw++) {
         if (fpc->fp->texcoord[hw] == 0xffff) {
            if (hw <= 7) {
               fpc->fp->texcoords |= (0x1 << hw);
               fpc->fp->vp_or |= (0x00004000 << hw);
            } else {
               fpc->fp->vp_or |= (0x00001000 << (hw - 8));
            }
            if (fdec->Semantic.Name == TGSI_SEMANTIC_PCOORD) {
               fpc->fp->texcoord[hw] = 0xfffe;
               fpc->fp->point_sprite_control |= (0x00000100 << hw);
            } else {
               fpc->fp->texcoord[hw] = fdec->Semantic.Index + 8;
            }
            hw = NVFX_FP_OP_INPUT_SRC_TC(hw);
            fpc->r_input[idx] = nvfx_reg(NVFXSR_INPUT, hw);
            return true;
         }
      }
      return false;
   default:
      return true;
   }
}

static bool
nvfx_fragprog_parse_decl_output(struct nvfx_fpc *fpc,
            const struct tgsi_full_declaration *fdec)
{
   unsigned idx = fdec->Range.First;
   unsigned hw;

   switch (fdec->Semantic.Name) {
   case TGSI_SEMANTIC_POSITION:
      hw = 1;
      break;
   case TGSI_SEMANTIC_COLOR:
      hw = ~0;
      switch (fdec->Semantic.Index) {
      case 0: hw = 0; break;
      case 1: hw = 2; break;
      case 2: hw = 3; break;
      case 3: hw = 4; break;
      }
      if(hw > ((fpc->is_nv4x) ? 4 : 2)) {
         NOUVEAU_ERR("bad rcol index\n");
         return false;
      }
      break;
   default:
      NOUVEAU_ERR("bad output semantic\n");
      return false;
   }

   fpc->r_result[idx] = nvfx_reg(NVFXSR_OUTPUT, hw);
   fpc->r_temps |= (1ULL << hw);
   return true;
}

static bool
nvfx_fragprog_prepare(struct nvfx_fpc *fpc)
{
   struct tgsi_parse_context p;
   int high_temp = -1, i;

   fpc->r_imm = CALLOC(fpc->fp->info.immediate_count, sizeof(struct nvfx_reg));

   tgsi_parse_init(&p, fpc->fp->pipe.tokens);
   while (!tgsi_parse_end_of_tokens(&p)) {
      const union tgsi_full_token *tok = &p.FullToken;

      tgsi_parse_token(&p);
      switch(tok->Token.Type) {
      case TGSI_TOKEN_TYPE_DECLARATION:
      {
         const struct tgsi_full_declaration *fdec;
         fdec = &p.FullToken.FullDeclaration;
         switch (fdec->Declaration.File) {
         case TGSI_FILE_INPUT:
            if (!nvfx_fragprog_parse_decl_input(fpc, fdec))
               goto out_err;
            break;
         case TGSI_FILE_OUTPUT:
            if (!nvfx_fragprog_parse_decl_output(fpc, fdec))
               goto out_err;
            break;
         case TGSI_FILE_TEMPORARY:
            if (fdec->Range.Last > high_temp) {
               high_temp =
                  fdec->Range.Last;
            }
            break;
         default:
            break;
         }
      }
         break;
      case TGSI_TOKEN_TYPE_IMMEDIATE:
      {
         struct tgsi_full_immediate *imm;

         imm = &p.FullToken.FullImmediate;
         assert(imm->Immediate.DataType == TGSI_IMM_FLOAT32);
         assert(fpc->nr_imm < fpc->fp->info.immediate_count);

         fpc->r_imm[fpc->nr_imm++] = nvfx_fp_imm(fpc, imm->u[0].Float, imm->u[1].Float, imm->u[2].Float, imm->u[3].Float);
         break;
      }
      default:
         break;
      }
   }
   tgsi_parse_free(&p);

   tgsi_parse_init(&p, fpc->fp->pipe.tokens);
   while (!tgsi_parse_end_of_tokens(&p)) {
      const struct tgsi_full_declaration *fdec;
      tgsi_parse_token(&p);
      switch(p.FullToken.Token.Type) {
      case TGSI_TOKEN_TYPE_DECLARATION:
         fdec = &p.FullToken.FullDeclaration;
         switch (fdec->Declaration.File) {
         case TGSI_FILE_INPUT:
            if (!nvfx_fragprog_assign_generic(fpc, fdec))
               goto out_err;
            break;
         default:
            break;
         }
         break;
      default:
         break;
      }
   }
   tgsi_parse_free(&p);

   if (++high_temp) {
      fpc->r_temp = CALLOC(high_temp, sizeof(struct nvfx_reg));
      for (i = 0; i < high_temp; i++)
         fpc->r_temp[i] = temp(fpc);
      fpc->r_temps_discard = 0ULL;
   }

   return true;

out_err:
   FREE(fpc->r_temp);
   fpc->r_temp = NULL;

   tgsi_parse_free(&p);
   return false;
}

DEBUG_GET_ONCE_BOOL_OPTION(nvfx_dump_fp, "NVFX_DUMP_FP", false)

void
_nvfx_fragprog_translate(uint16_t oclass, struct nv30_fragprog *fp)
{
   struct tgsi_parse_context parse;
   struct nvfx_fpc *fpc = NULL;
   struct util_dynarray insns;

   fp->translated = false;
   fp->point_sprite_control = 0;
   fp->vp_or = 0;

   fpc = CALLOC_STRUCT(nvfx_fpc);
   if (!fpc)
      goto out_err;

   fpc->is_nv4x = (oclass >= NV40_3D_CLASS) ? ~0 : 0;
   fpc->max_temps = fpc->is_nv4x ? 48 : 32;
   fpc->fp = fp;
   fpc->num_regs = 2;
   memset(fp->texcoord, 0xff, sizeof(fp->texcoord));

   if (fp->info.properties[TGSI_PROPERTY_FS_COORD_ORIGIN])
      fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_ORIGIN_INVERTED;
   if (fp->info.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER])
      fp->coord_conventions |= NV30_3D_COORD_CONVENTIONS_CENTER_INTEGER;
   if (fp->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS])
      fp->rt_enable |= NV30_3D_RT_ENABLE_MRT;

   if (!nvfx_fragprog_prepare(fpc))
      goto out_err;

   tgsi_parse_init(&parse, fp->pipe.tokens);
   util_dynarray_init(&insns, NULL);

   while (!tgsi_parse_end_of_tokens(&parse)) {
      tgsi_parse_token(&parse);

      switch (parse.FullToken.Token.Type) {
      case TGSI_TOKEN_TYPE_INSTRUCTION:
      {
         const struct tgsi_full_instruction *finst;

         util_dynarray_append(&insns, unsigned, fp->insn_len);
         finst = &parse.FullToken.FullInstruction;
         if (!nvfx_fragprog_parse_instruction(fpc, finst))
            goto out_err;
      }
         break;
      default:
         break;
      }
   }
   util_dynarray_append(&insns, unsigned, fp->insn_len);

   for(unsigned i = 0; i < fpc->label_relocs.size; i += sizeof(struct nvfx_relocation))
   {
      struct nvfx_relocation* label_reloc = (struct nvfx_relocation*)((char*)fpc->label_relocs.data + i);
      fp->insn[label_reloc->location] |= ((unsigned*)insns.data)[label_reloc->target];
   }
   util_dynarray_fini(&insns);

   if(!fpc->is_nv4x)
      fp->fp_control |= (fpc->num_regs-1)/2;
   else
      fp->fp_control |= fpc->num_regs << NV40_3D_FP_CONTROL_TEMP_COUNT__SHIFT;

   /* Terminate final instruction */
   if(fp->insn)
      fp->insn[fpc->inst_offset] |= 0x00000001;

   /* Append NOP + END instruction for branches to the end of the program */
   fpc->inst_offset = fp->insn_len;
   grow_insns(fpc, 4);
   fp->insn[fpc->inst_offset + 0] = 0x00000001;
   fp->insn[fpc->inst_offset + 1] = 0x00000000;
   fp->insn[fpc->inst_offset + 2] = 0x00000000;
   fp->insn[fpc->inst_offset + 3] = 0x00000000;

   if(debug_get_option_nvfx_dump_fp())
   {
      debug_printf("\n");
      tgsi_dump(fp->pipe.tokens, 0);

      debug_printf("\n%s fragment program:\n", fpc->is_nv4x ? "nv4x" : "nv3x");
      for (unsigned i = 0; i < fp->insn_len; i += 4)
         debug_printf("%3u: %08x %08x %08x %08x\n", i >> 2, fp->insn[i], fp->insn[i + 1], fp->insn[i + 2], fp->insn[i + 3]);
      debug_printf("\n");
   }

   fp->translated = true;

out:
   tgsi_parse_free(&parse);
   if (fpc)
   {
      FREE(fpc->r_temp);
      FREE(fpc->r_imm);
      util_dynarray_fini(&fpc->if_stack);
      util_dynarray_fini(&fpc->label_relocs);
      util_dynarray_fini(&fpc->imm_data);
      //util_dynarray_fini(&fpc->loop_stack);
      FREE(fpc);
   }

   return;

out_err:
   _debug_printf("Error: failed to compile this fragment program:\n");
   tgsi_dump(fp->pipe.tokens, 0);
   goto out;
}