/* * Copyright © 2014 Broadcom * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** * @file vc4_simulator.c * * Implements VC4 simulation on top of a non-VC4 GEM fd. * * This file's goal is to emulate the VC4 ioctls' behavior in the kernel on * top of the simpenrose software simulator. Generally, VC4 driver BOs have a * GEM-side copy of their contents and a simulator-side memory area that the * GEM contents get copied into during simulation. Once simulation is done, * the simulator's data is copied back out to the GEM BOs, so that rendering * appears on the screen as if actual hardware rendering had been done. * * One of the limitations of this code is that we shouldn't really need a * GEM-side BO for non-window-system BOs. However, do we need unique BO * handles for each of our GEM bos so that this file can look up its state * from the handle passed in at submit ioctl time (also, a couple of places * outside of this file still call ioctls directly on the fd). * * Another limitation is that BO import doesn't work unless the underlying * window system's BO size matches what VC4 is going to use, which of course * doesn't work out in practice. This means that for now, only DRI3 (VC4 * makes the winsys BOs) is supported, not DRI2 (window system makes the winys * BOs). */ #ifdef USE_VC4_SIMULATOR #include <sys/mman.h> #include "xf86drm.h" #include "util/u_memory.h" #include "util/u_mm.h" #include "util/ralloc.h" #include "vc4_screen.h" #include "vc4_cl_dump.h" #include "vc4_context.h" #include "kernel/vc4_drv.h" #include "vc4_simulator_validate.h" #include "simpenrose/simpenrose.h" /** Global (across GEM fds) state for the simulator */ static struct vc4_simulator_state { mtx_t mutex; void *mem; ssize_t mem_size; struct mem_block *heap; struct mem_block *overflow; /** Mapping from GEM handle to struct vc4_simulator_bo * */ struct hash_table *fd_map; int refcount; } sim_state = { .mutex = _MTX_INITIALIZER_NP, }; /** Per-GEM-fd state for the simulator. */ struct vc4_simulator_file { int fd; /* This is weird -- we make a "vc4_device" per file, even though on * the kernel side this is a global. We do this so that kernel code * calling us for BO allocation can get to our screen. */ struct drm_device dev; /** Mapping from GEM handle to struct vc4_simulator_bo * */ struct hash_table *bo_map; }; /** Wrapper for drm_vc4_bo tracking the simulator-specific state. */ struct vc4_simulator_bo { struct drm_vc4_bo base; struct vc4_simulator_file *file; /** Area for this BO within sim_state->mem */ struct mem_block *block; void *winsys_map; uint32_t winsys_stride; int handle; }; static void * int_to_key(int key) { return (void *)(uintptr_t)key; } static struct vc4_simulator_file * vc4_get_simulator_file_for_fd(int fd) { struct hash_entry *entry = _mesa_hash_table_search(sim_state.fd_map, int_to_key(fd + 1)); return entry ? entry->data : NULL; } /* A marker placed just after each BO, then checked after rendering to make * sure it's still there. */ #define BO_SENTINEL 0xfedcba98 #define PAGE_ALIGN2 12 /** * Allocates space in simulator memory and returns a tracking struct for it * that also contains the drm_gem_cma_object struct. */ static struct vc4_simulator_bo * vc4_create_simulator_bo(int fd, int handle, unsigned size) { struct vc4_simulator_file *file = vc4_get_simulator_file_for_fd(fd); struct vc4_simulator_bo *sim_bo = rzalloc(file, struct vc4_simulator_bo); struct drm_vc4_bo *bo = &sim_bo->base; struct drm_gem_cma_object *obj = &bo->base; size = align(size, 4096); sim_bo->file = file; sim_bo->handle = handle; mtx_lock(&sim_state.mutex); sim_bo->block = u_mmAllocMem(sim_state.heap, size + 4, PAGE_ALIGN2, 0); mtx_unlock(&sim_state.mutex); assert(sim_bo->block); obj->base.size = size; obj->base.dev = &file->dev; obj->vaddr = sim_state.mem + sim_bo->block->ofs; obj->paddr = simpenrose_hw_addr(obj->vaddr); *(uint32_t *)(obj->vaddr + size) = BO_SENTINEL; /* A handle of 0 is used for vc4_gem.c internal allocations that * don't need to go in the lookup table. */ if (handle != 0) { mtx_lock(&sim_state.mutex); _mesa_hash_table_insert(file->bo_map, int_to_key(handle), bo); mtx_unlock(&sim_state.mutex); } return sim_bo; } static void vc4_free_simulator_bo(struct vc4_simulator_bo *sim_bo) { struct vc4_simulator_file *sim_file = sim_bo->file; struct drm_vc4_bo *bo = &sim_bo->base; struct drm_gem_cma_object *obj = &bo->base; if (sim_bo->winsys_map) munmap(sim_bo->winsys_map, obj->base.size); mtx_lock(&sim_state.mutex); u_mmFreeMem(sim_bo->block); if (sim_bo->handle) { struct hash_entry *entry = _mesa_hash_table_search(sim_file->bo_map, int_to_key(sim_bo->handle)); _mesa_hash_table_remove(sim_file->bo_map, entry); } mtx_unlock(&sim_state.mutex); ralloc_free(sim_bo); } static struct vc4_simulator_bo * vc4_get_simulator_bo(struct vc4_simulator_file *file, int gem_handle) { mtx_lock(&sim_state.mutex); struct hash_entry *entry = _mesa_hash_table_search(file->bo_map, int_to_key(gem_handle)); mtx_unlock(&sim_state.mutex); return entry ? entry->data : NULL; } struct drm_gem_cma_object * drm_gem_cma_create(struct drm_device *dev, size_t size) { struct vc4_screen *screen = dev->screen; struct vc4_simulator_bo *sim_bo = vc4_create_simulator_bo(screen->fd, 0, size); return &sim_bo->base.base; } static int vc4_simulator_pin_bos(struct drm_device *dev, struct vc4_job *job, struct vc4_exec_info *exec) { int fd = dev->screen->fd; struct vc4_simulator_file *file = vc4_get_simulator_file_for_fd(fd); struct drm_vc4_submit_cl *args = exec->args; struct vc4_bo **bos = job->bo_pointers.base; exec->bo_count = args->bo_handle_count; exec->bo = calloc(exec->bo_count, sizeof(void *)); for (int i = 0; i < exec->bo_count; i++) { struct vc4_bo *bo = bos[i]; struct vc4_simulator_bo *sim_bo = vc4_get_simulator_bo(file, bo->handle); struct drm_vc4_bo *drm_bo = &sim_bo->base; struct drm_gem_cma_object *obj = &drm_bo->base; drm_bo->bo = bo; #if 0 fprintf(stderr, "bo hindex %d: %s\n", i, bo->name); #endif vc4_bo_map(bo); memcpy(obj->vaddr, bo->map, bo->size); exec->bo[i] = obj; /* The kernel does this validation at shader create ioctl * time. */ if (strcmp(bo->name, "code") == 0) { drm_bo->validated_shader = vc4_validate_shader(obj); if (!drm_bo->validated_shader) abort(); } } return 0; } static int vc4_simulator_unpin_bos(struct vc4_exec_info *exec) { for (int i = 0; i < exec->bo_count; i++) { struct drm_gem_cma_object *obj = exec->bo[i]; struct drm_vc4_bo *drm_bo = to_vc4_bo(&obj->base); struct vc4_bo *bo = drm_bo->bo; assert(*(uint32_t *)(obj->vaddr + obj->base.size) == BO_SENTINEL); memcpy(bo->map, obj->vaddr, bo->size); if (drm_bo->validated_shader) { free(drm_bo->validated_shader->texture_samples); free(drm_bo->validated_shader); } } free(exec->bo); return 0; } static void vc4_dump_to_file(struct vc4_exec_info *exec) { static int dumpno = 0; struct drm_vc4_get_hang_state *state; struct drm_vc4_get_hang_state_bo *bo_state; unsigned int dump_version = 0; if (!(vc4_debug & VC4_DEBUG_DUMP)) return; state = calloc(1, sizeof(*state)); int unref_count = 0; list_for_each_entry_safe(struct drm_vc4_bo, bo, &exec->unref_list, unref_head) { unref_count++; } /* Add one more for the overflow area that isn't wrapped in a BO. */ state->bo_count = exec->bo_count + unref_count + 1; bo_state = calloc(state->bo_count, sizeof(*bo_state)); char *filename = NULL; asprintf(&filename, "vc4-dri-%d.dump", dumpno++); FILE *f = fopen(filename, "w+"); if (!f) { fprintf(stderr, "Couldn't open %s: %s", filename, strerror(errno)); return; } fwrite(&dump_version, sizeof(dump_version), 1, f); state->ct0ca = exec->ct0ca; state->ct0ea = exec->ct0ea; state->ct1ca = exec->ct1ca; state->ct1ea = exec->ct1ea; state->start_bin = exec->ct0ca; state->start_render = exec->ct1ca; fwrite(state, sizeof(*state), 1, f); int i; for (i = 0; i < exec->bo_count; i++) { struct drm_gem_cma_object *cma_bo = exec->bo[i]; bo_state[i].handle = i; /* Not used by the parser. */ bo_state[i].paddr = cma_bo->paddr; bo_state[i].size = cma_bo->base.size; } list_for_each_entry_safe(struct drm_vc4_bo, bo, &exec->unref_list, unref_head) { struct drm_gem_cma_object *cma_bo = &bo->base; bo_state[i].handle = 0; bo_state[i].paddr = cma_bo->paddr; bo_state[i].size = cma_bo->base.size; i++; } /* Add the static overflow memory area. */ bo_state[i].handle = exec->bo_count; bo_state[i].paddr = sim_state.overflow->ofs; bo_state[i].size = sim_state.overflow->size; i++; fwrite(bo_state, sizeof(*bo_state), state->bo_count, f); for (int i = 0; i < exec->bo_count; i++) { struct drm_gem_cma_object *cma_bo = exec->bo[i]; fwrite(cma_bo->vaddr, cma_bo->base.size, 1, f); } list_for_each_entry_safe(struct drm_vc4_bo, bo, &exec->unref_list, unref_head) { struct drm_gem_cma_object *cma_bo = &bo->base; fwrite(cma_bo->vaddr, cma_bo->base.size, 1, f); } void *overflow = calloc(1, sim_state.overflow->size); fwrite(overflow, 1, sim_state.overflow->size, f); free(overflow); free(state); free(bo_state); fclose(f); } int vc4_simulator_flush(struct vc4_context *vc4, struct drm_vc4_submit_cl *args, struct vc4_job *job) { struct vc4_screen *screen = vc4->screen; int fd = screen->fd; struct vc4_simulator_file *file = vc4_get_simulator_file_for_fd(fd); struct vc4_surface *csurf = vc4_surface(vc4->framebuffer.cbufs[0]); struct vc4_resource *ctex = csurf ? vc4_resource(csurf->base.texture) : NULL; struct vc4_simulator_bo *csim_bo = ctex ? vc4_get_simulator_bo(file, ctex->bo->handle) : NULL; uint32_t winsys_stride = ctex ? csim_bo->winsys_stride : 0; uint32_t sim_stride = ctex ? ctex->slices[0].stride : 0; uint32_t row_len = MIN2(sim_stride, winsys_stride); struct vc4_exec_info exec; struct drm_device *dev = &file->dev; int ret; memset(&exec, 0, sizeof(exec)); list_inithead(&exec.unref_list); if (ctex && csim_bo->winsys_map) { #if 0 fprintf(stderr, "%dx%d %d %d %d\n", ctex->base.b.width0, ctex->base.b.height0, winsys_stride, sim_stride, ctex->bo->size); #endif for (int y = 0; y < ctex->base.height0; y++) { memcpy(ctex->bo->map + y * sim_stride, csim_bo->winsys_map + y * winsys_stride, row_len); } } exec.args = args; ret = vc4_simulator_pin_bos(dev, job, &exec); if (ret) return ret; ret = vc4_cl_validate(dev, &exec); if (ret) return ret; if (vc4_debug & VC4_DEBUG_CL) { fprintf(stderr, "RCL:\n"); vc4_dump_cl(sim_state.mem + exec.ct1ca, exec.ct1ea - exec.ct1ca, true); } vc4_dump_to_file(&exec); if (exec.ct0ca != exec.ct0ea) { int bfc = simpenrose_do_binning(exec.ct0ca, exec.ct0ea); if (bfc != 1) { fprintf(stderr, "Binning returned %d flushes, should be 1.\n", bfc); fprintf(stderr, "Relocated binning command list:\n"); vc4_dump_cl(sim_state.mem + exec.ct0ca, exec.ct0ea - exec.ct0ca, false); abort(); } } int rfc = simpenrose_do_rendering(exec.ct1ca, exec.ct1ea); if (rfc != 1) { fprintf(stderr, "Rendering returned %d frames, should be 1.\n", rfc); fprintf(stderr, "Relocated render command list:\n"); vc4_dump_cl(sim_state.mem + exec.ct1ca, exec.ct1ea - exec.ct1ca, true); abort(); } ret = vc4_simulator_unpin_bos(&exec); if (ret) return ret; list_for_each_entry_safe(struct drm_vc4_bo, bo, &exec.unref_list, unref_head) { struct vc4_simulator_bo *sim_bo = (struct vc4_simulator_bo *)bo; struct drm_gem_cma_object *obj = &sim_bo->base.base; list_del(&bo->unref_head); assert(*(uint32_t *)(obj->vaddr + obj->base.size) == BO_SENTINEL); vc4_free_simulator_bo(sim_bo); } if (ctex && csim_bo->winsys_map) { for (int y = 0; y < ctex->base.height0; y++) { memcpy(csim_bo->winsys_map + y * winsys_stride, ctex->bo->map + y * sim_stride, row_len); } } return 0; } /** * Map the underlying GEM object from the real hardware GEM handle. */ static void * vc4_simulator_map_winsys_bo(int fd, struct vc4_simulator_bo *sim_bo) { struct drm_vc4_bo *bo = &sim_bo->base; struct drm_gem_cma_object *obj = &bo->base; int ret; void *map; struct drm_mode_map_dumb map_dumb = { .handle = sim_bo->handle, }; ret = drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &map_dumb); if (ret != 0) { fprintf(stderr, "map ioctl failure\n"); abort(); } map = mmap(NULL, obj->base.size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, map_dumb.offset); if (map == MAP_FAILED) { fprintf(stderr, "mmap of bo %d (offset 0x%016llx, size %d) failed\n", sim_bo->handle, (long long)map_dumb.offset, (int)obj->base.size); abort(); } return map; } /** * Do fixups after a BO has been opened from a handle. * * This could be done at DRM_IOCTL_GEM_OPEN/DRM_IOCTL_GEM_PRIME_FD_TO_HANDLE * time, but we're still using drmPrimeFDToHandle() so we have this helper to * be called afterward instead. */ void vc4_simulator_open_from_handle(int fd, uint32_t winsys_stride, int handle, uint32_t size) { struct vc4_simulator_bo *sim_bo = vc4_create_simulator_bo(fd, handle, size); sim_bo->winsys_stride = winsys_stride; sim_bo->winsys_map = vc4_simulator_map_winsys_bo(fd, sim_bo); } /** * Simulated ioctl(fd, DRM_VC4_CREATE_BO) implementation. * * Making a VC4 BO is just a matter of making a corresponding BO on the host. */ static int vc4_simulator_create_bo_ioctl(int fd, struct drm_vc4_create_bo *args) { int ret; struct drm_mode_create_dumb create = { .width = 128, .bpp = 8, .height = (args->size + 127) / 128, }; ret = drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &create); assert(create.size >= args->size); args->handle = create.handle; vc4_create_simulator_bo(fd, create.handle, args->size); return ret; } /** * Simulated ioctl(fd, DRM_VC4_CREATE_SHADER_BO) implementation. * * In simulation we defer shader validation until exec time. Just make a host * BO and memcpy the contents in. */ static int vc4_simulator_create_shader_bo_ioctl(int fd, struct drm_vc4_create_shader_bo *args) { int ret; struct drm_mode_create_dumb create = { .width = 128, .bpp = 8, .height = (args->size + 127) / 128, }; ret = drmIoctl(fd, DRM_IOCTL_MODE_CREATE_DUMB, &create); if (ret) return ret; assert(create.size >= args->size); args->handle = create.handle; vc4_create_simulator_bo(fd, create.handle, args->size); struct drm_mode_map_dumb map = { .handle = create.handle }; ret = drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &map); if (ret) return ret; void *shader = mmap(NULL, args->size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, map.offset); memcpy(shader, (void *)(uintptr_t)args->data, args->size); munmap(shader, args->size); return 0; } /** * Simulated ioctl(fd, DRM_VC4_MMAP_BO) implementation. * * We just pass this straight through to dumb mmap. */ static int vc4_simulator_mmap_bo_ioctl(int fd, struct drm_vc4_mmap_bo *args) { int ret; struct drm_mode_map_dumb map = { .handle = args->handle, }; ret = drmIoctl(fd, DRM_IOCTL_MODE_MAP_DUMB, &map); args->offset = map.offset; return ret; } static int vc4_simulator_gem_close_ioctl(int fd, struct drm_gem_close *args) { /* Free the simulator's internal tracking. */ struct vc4_simulator_file *file = vc4_get_simulator_file_for_fd(fd); struct vc4_simulator_bo *sim_bo = vc4_get_simulator_bo(file, args->handle); vc4_free_simulator_bo(sim_bo); /* Pass the call on down. */ return drmIoctl(fd, DRM_IOCTL_GEM_CLOSE, args); } static int vc4_simulator_get_param_ioctl(int fd, struct drm_vc4_get_param *args) { switch (args->param) { case DRM_VC4_PARAM_SUPPORTS_BRANCHES: case DRM_VC4_PARAM_SUPPORTS_ETC1: case DRM_VC4_PARAM_SUPPORTS_THREADED_FS: case DRM_VC4_PARAM_SUPPORTS_FIXED_RCL_ORDER: args->value = true; return 0; case DRM_VC4_PARAM_SUPPORTS_MADVISE: errno = -EINVAL; return -1; case DRM_VC4_PARAM_V3D_IDENT0: args->value = 0x02000000; return 0; case DRM_VC4_PARAM_V3D_IDENT1: args->value = 0x00000001; return 0; default: fprintf(stderr, "Unknown DRM_IOCTL_VC4_GET_PARAM(%lld)\n", (long long)args->param); abort(); }; } int vc4_simulator_ioctl(int fd, unsigned long request, void *args) { switch (request) { case DRM_IOCTL_VC4_CREATE_BO: return vc4_simulator_create_bo_ioctl(fd, args); case DRM_IOCTL_VC4_CREATE_SHADER_BO: return vc4_simulator_create_shader_bo_ioctl(fd, args); case DRM_IOCTL_VC4_MMAP_BO: return vc4_simulator_mmap_bo_ioctl(fd, args); case DRM_IOCTL_VC4_WAIT_BO: case DRM_IOCTL_VC4_WAIT_SEQNO: /* We do all of the vc4 rendering synchronously, so we just * return immediately on the wait ioctls. This ignores any * native rendering to the host BO, so it does mean we race on * front buffer rendering. */ return 0; case DRM_IOCTL_VC4_LABEL_BO: /* This is just debug information, nothing to do. */ return 0; case DRM_IOCTL_VC4_GET_TILING: case DRM_IOCTL_VC4_SET_TILING: /* Disable these for now, since the sharing with i965 requires * linear buffers. */ errno = -EINVAL; return -1; case DRM_IOCTL_VC4_GET_PARAM: return vc4_simulator_get_param_ioctl(fd, args); case DRM_IOCTL_GEM_CLOSE: return vc4_simulator_gem_close_ioctl(fd, args); case DRM_IOCTL_GEM_OPEN: case DRM_IOCTL_GEM_FLINK: return drmIoctl(fd, request, args); default: fprintf(stderr, "Unknown ioctl 0x%08x\n", (int)request); abort(); } } static void vc4_simulator_init_global(void) { mtx_lock(&sim_state.mutex); if (sim_state.refcount++) { mtx_unlock(&sim_state.mutex); return; } sim_state.mem_size = 256 * 1024 * 1024; sim_state.mem = calloc(sim_state.mem_size, 1); if (!sim_state.mem) abort(); sim_state.heap = u_mmInit(0, sim_state.mem_size); /* We supply our own memory so that we can have more aperture * available (256MB instead of simpenrose's default 64MB). */ simpenrose_init_hardware_supply_mem(sim_state.mem, sim_state.mem_size); /* Carve out low memory for tile allocation overflow. The kernel * should be automatically handling overflow memory setup on real * hardware, but for simulation we just get one shot to set up enough * overflow memory before execution. This overflow mem will be used * up over the whole lifetime of simpenrose (not reused on each * flush), so it had better be big. */ sim_state.overflow = u_mmAllocMem(sim_state.heap, 32 * 1024 * 1024, PAGE_ALIGN2, 0); simpenrose_supply_overflow_mem(sim_state.overflow->ofs, sim_state.overflow->size); mtx_unlock(&sim_state.mutex); sim_state.fd_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); } void vc4_simulator_init(struct vc4_screen *screen) { vc4_simulator_init_global(); screen->sim_file = rzalloc(screen, struct vc4_simulator_file); screen->sim_file->bo_map = _mesa_hash_table_create(screen->sim_file, _mesa_hash_pointer, _mesa_key_pointer_equal); mtx_lock(&sim_state.mutex); _mesa_hash_table_insert(sim_state.fd_map, int_to_key(screen->fd + 1), screen->sim_file); mtx_unlock(&sim_state.mutex); screen->sim_file->dev.screen = screen; } void vc4_simulator_destroy(struct vc4_screen *screen) { mtx_lock(&sim_state.mutex); if (!--sim_state.refcount) { _mesa_hash_table_destroy(sim_state.fd_map, NULL); u_mmDestroy(sim_state.heap); free(sim_state.mem); /* No memsetting it, because it contains the mutex. */ } mtx_unlock(&sim_state.mutex); } #endif /* USE_VC4_SIMULATOR */