/* Copyright © 2011 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "brw_vec4.h" #include "brw_cfg.h" #include "brw_eu.h" #include "common/gen_debug.h" using namespace brw; static void generate_math1_gen4(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src) { gen4_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, src, BRW_MATH_PRECISION_FULL); } static void check_gen6_math_src_arg(struct brw_reg src) { /* Source swizzles are ignored. */ assert(!src.abs); assert(!src.negate); assert(src.swizzle == BRW_SWIZZLE_XYZW); } static void generate_math_gen6(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* Can't do writemask because math can't be align16. */ assert(dst.writemask == WRITEMASK_XYZW); /* Source swizzles are ignored. */ check_gen6_math_src_arg(src0); if (src1.file == BRW_GENERAL_REGISTER_FILE) check_gen6_math_src_arg(src1); brw_set_default_access_mode(p, BRW_ALIGN_1); gen6_math(p, dst, brw_math_function(inst->opcode), src0, src1); brw_set_default_access_mode(p, BRW_ALIGN_16); } static void generate_math2_gen4(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13 * "Message Payload": * * "Operand0[7]. For the INT DIV functions, this operand is the * denominator." * ... * "Operand1[7]. For the INT DIV functions, this operand is the * numerator." */ bool is_int_div = inst->opcode != SHADER_OPCODE_POW; struct brw_reg &op0 = is_int_div ? src1 : src0; struct brw_reg &op1 = is_int_div ? src0 : src1; brw_push_insn_state(p); brw_set_default_saturate(p, false); brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1); brw_pop_insn_state(p); gen4_math(p, dst, brw_math_function(inst->opcode), inst->base_mrf, op0, BRW_MATH_PRECISION_FULL); } static void generate_tex(struct brw_codegen *p, struct brw_vue_prog_data *prog_data, gl_shader_stage stage, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg surface_index, struct brw_reg sampler_index) { const struct gen_device_info *devinfo = p->devinfo; int msg_type = -1; if (devinfo->gen >= 5) { switch (inst->opcode) { case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXL: if (inst->shadow_compare) { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD; } break; case SHADER_OPCODE_TXD: if (inst->shadow_compare) { /* Gen7.5+. Otherwise, lowered by brw_lower_texture_gradients(). */ assert(devinfo->gen >= 8 || devinfo->is_haswell); msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE; } else { msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS; } break; case SHADER_OPCODE_TXF: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_TXF_CMS_W: assert(devinfo->gen >= 9); msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W; break; case SHADER_OPCODE_TXF_CMS: if (devinfo->gen >= 7) msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS; else msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD; break; case SHADER_OPCODE_TXF_MCS: assert(devinfo->gen >= 7); msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS; break; case SHADER_OPCODE_TXS: msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO; break; case SHADER_OPCODE_TG4: if (inst->shadow_compare) { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C; } else { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4; } break; case SHADER_OPCODE_TG4_OFFSET: if (inst->shadow_compare) { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C; } else { msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO; } break; case SHADER_OPCODE_SAMPLEINFO: msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO; break; default: unreachable("should not get here: invalid vec4 texture opcode"); } } else { switch (inst->opcode) { case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXL: if (inst->shadow_compare) { msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE; assert(inst->mlen == 3); } else { msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD; assert(inst->mlen == 2); } break; case SHADER_OPCODE_TXD: /* There is no sample_d_c message; comparisons are done manually. */ msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS; assert(inst->mlen == 4); break; case SHADER_OPCODE_TXF: msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD; assert(inst->mlen == 2); break; case SHADER_OPCODE_TXS: msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO; assert(inst->mlen == 2); break; default: unreachable("should not get here: invalid vec4 texture opcode"); } } assert(msg_type != -1); assert(sampler_index.type == BRW_REGISTER_TYPE_UD); /* Load the message header if present. If there's a texture offset, we need * to set it up explicitly and load the offset bitfield. Otherwise, we can * use an implied move from g0 to the first message register. */ if (inst->header_size != 0) { if (devinfo->gen < 6 && !inst->offset) { /* Set up an implied move from g0 to the MRF. */ src = brw_vec8_grf(0, 0); } else { struct brw_reg header = retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD); uint32_t dw2 = 0; /* Explicitly set up the message header by copying g0 to the MRF. */ brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); brw_set_default_access_mode(p, BRW_ALIGN_1); if (inst->offset) /* Set the texel offset bits in DWord 2. */ dw2 = inst->offset; if (devinfo->gen >= 9) /* SKL+ overloads BRW_SAMPLER_SIMD_MODE_SIMD4X2 to also do SIMD8D, * based on bit 22 in the header. */ dw2 |= GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2; /* The VS, DS, and FS stages have the g0.2 payload delivered as 0, * so header0.2 is 0 when g0 is copied. The HS and GS stages do * not, so we must set to to 0 to avoid setting undesirable bits * in the message header. */ if (dw2 || stage == MESA_SHADER_TESS_CTRL || stage == MESA_SHADER_GEOMETRY) { brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(dw2)); } brw_adjust_sampler_state_pointer(p, header, sampler_index); brw_pop_insn_state(p); } } uint32_t return_format; switch (dst.type) { case BRW_REGISTER_TYPE_D: return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32; break; case BRW_REGISTER_TYPE_UD: return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32; break; default: return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32; break; } uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 || inst->opcode == SHADER_OPCODE_TG4_OFFSET) ? prog_data->base.binding_table.gather_texture_start : prog_data->base.binding_table.texture_start; if (surface_index.file == BRW_IMMEDIATE_VALUE && sampler_index.file == BRW_IMMEDIATE_VALUE) { uint32_t surface = surface_index.ud; uint32_t sampler = sampler_index.ud; brw_SAMPLE(p, dst, inst->base_mrf, src, surface + base_binding_table_index, sampler % 16, msg_type, 1, /* response length */ inst->mlen, inst->header_size != 0, BRW_SAMPLER_SIMD_MODE_SIMD4X2, return_format); brw_mark_surface_used(&prog_data->base, sampler + base_binding_table_index); } else { /* Non-constant sampler index. */ struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD)); struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD)); struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD)); brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_access_mode(p, BRW_ALIGN_1); if (brw_regs_equal(&surface_reg, &sampler_reg)) { brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101)); } else { if (sampler_reg.file == BRW_IMMEDIATE_VALUE) { brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8)); } else { brw_SHL(p, addr, sampler_reg, brw_imm_ud(8)); brw_OR(p, addr, addr, surface_reg); } } if (base_binding_table_index) brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index)); brw_AND(p, addr, addr, brw_imm_ud(0xfff)); brw_pop_insn_state(p); if (inst->base_mrf != -1) gen6_resolve_implied_move(p, &src, inst->base_mrf); /* dst = send(offset, a0.0 | <descriptor>) */ brw_inst *insn = brw_send_indirect_message( p, BRW_SFID_SAMPLER, dst, src, addr); brw_set_sampler_message(p, insn, 0 /* surface */, 0 /* sampler */, msg_type, 1 /* rlen */, inst->mlen /* mlen */, inst->header_size != 0 /* header */, BRW_SAMPLER_SIMD_MODE_SIMD4X2, return_format); /* visitor knows more than we do about the surface limit required, * so has already done marking. */ } } static void generate_vs_urb_write(struct brw_codegen *p, vec4_instruction *inst) { brw_urb_WRITE(p, brw_null_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ brw_vec8_grf(0, 0), /* src */ inst->urb_write_flags, inst->mlen, 0, /* response len */ inst->offset, /* urb destination offset */ BRW_URB_SWIZZLE_INTERLEAVE); } static void generate_gs_urb_write(struct brw_codegen *p, vec4_instruction *inst) { struct brw_reg src = brw_message_reg(inst->base_mrf); brw_urb_WRITE(p, brw_null_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ src, inst->urb_write_flags, inst->mlen, 0, /* response len */ inst->offset, /* urb destination offset */ BRW_URB_SWIZZLE_INTERLEAVE); } static void generate_gs_urb_write_allocate(struct brw_codegen *p, vec4_instruction *inst) { struct brw_reg src = brw_message_reg(inst->base_mrf); /* We pass the temporary passed in src0 as the writeback register */ brw_urb_WRITE(p, inst->src[0].as_brw_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ src, BRW_URB_WRITE_ALLOCATE_COMPLETE, inst->mlen, 1, /* response len */ inst->offset, /* urb destination offset */ BRW_URB_SWIZZLE_INTERLEAVE); /* Now put allocated urb handle in dst.0 */ brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, get_element_ud(inst->dst.as_brw_reg(), 0), get_element_ud(inst->src[0].as_brw_reg(), 0)); brw_pop_insn_state(p); } static void generate_gs_thread_end(struct brw_codegen *p, vec4_instruction *inst) { struct brw_reg src = brw_message_reg(inst->base_mrf); brw_urb_WRITE(p, brw_null_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ src, BRW_URB_WRITE_EOT | inst->urb_write_flags, inst->mlen, 0, /* response len */ 0, /* urb destination offset */ BRW_URB_SWIZZLE_INTERLEAVE); } static void generate_gs_set_write_offset(struct brw_codegen *p, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message * Header: M0.3): * * Slot 0 Offset. This field, after adding to the Global Offset field * in the message descriptor, specifies the offset (in 256-bit units) * from the start of the URB entry, as referenced by URB Handle 0, at * which the data will be accessed. * * Similar text describes DWORD M0.4, which is slot 1 offset. * * Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components * of the register for geometry shader invocations 0 and 1) by the * immediate value in src1, and store the result in DWORDs 3 and 4 of dst. * * We can do this with the following EU instruction: * * mul(2) dst.3<1>UD src0<8;2,4>UD src1<...>UW { Align1 WE_all } */ brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); assert(p->devinfo->gen >= 7 && src1.file == BRW_IMMEDIATE_VALUE && src1.type == BRW_REGISTER_TYPE_UD && src1.ud <= USHRT_MAX); if (src0.file == BRW_IMMEDIATE_VALUE) { brw_MOV(p, suboffset(stride(dst, 2, 2, 1), 3), brw_imm_ud(src0.ud * src1.ud)); } else { brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4), retype(src1, BRW_REGISTER_TYPE_UW)); } brw_pop_insn_state(p); } static void generate_gs_set_vertex_count(struct brw_codegen *p, struct brw_reg dst, struct brw_reg src) { brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); if (p->devinfo->gen >= 8) { /* Move the vertex count into the second MRF for the EOT write. */ brw_MOV(p, retype(brw_message_reg(dst.nr + 1), BRW_REGISTER_TYPE_UD), src); } else { /* If we think of the src and dst registers as composed of 8 DWORDs each, * we want to pick up the contents of DWORDs 0 and 4 from src, truncate * them to WORDs, and then pack them into DWORD 2 of dst. * * It's easier to get the EU to do this if we think of the src and dst * registers as composed of 16 WORDS each; then, we want to pick up the * contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5 * of dst. * * We can do that by the following EU instruction: * * mov (2) dst.4<1>:uw src<8;1,0>:uw { Align1, Q1, NoMask } */ brw_set_default_access_mode(p, BRW_ALIGN_1); brw_MOV(p, suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4), stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0)); } brw_pop_insn_state(p); } static void generate_gs_svb_write(struct brw_codegen *p, struct brw_vue_prog_data *prog_data, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { int binding = inst->sol_binding; bool final_write = inst->sol_final_write; brw_push_insn_state(p); brw_set_default_exec_size(p, BRW_EXECUTE_4); /* Copy Vertex data into M0.x */ brw_MOV(p, stride(dst, 4, 4, 1), stride(retype(src0, BRW_REGISTER_TYPE_UD), 4, 4, 1)); brw_pop_insn_state(p); brw_push_insn_state(p); /* Send SVB Write */ brw_svb_write(p, final_write ? src1 : brw_null_reg(), /* dest == src1 */ 1, /* msg_reg_nr */ dst, /* src0 == previous dst */ BRW_GEN6_SOL_BINDING_START + binding, /* binding_table_index */ final_write); /* send_commit_msg */ /* Finally, wait for the write commit to occur so that we can proceed to * other things safely. * * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3: * * The write commit does not modify the destination register, but * merely clears the dependency associated with the destination * register. Thus, a simple “mov” instruction using the register as a * source is sufficient to wait for the write commit to occur. */ if (final_write) { brw_MOV(p, src1, src1); } brw_pop_insn_state(p); } static void generate_gs_svb_set_destination_index(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src) { int vertex = inst->sol_vertex; brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, get_element_ud(dst, 5), get_element_ud(src, vertex)); brw_pop_insn_state(p); } static void generate_gs_set_dword_2(struct brw_codegen *p, struct brw_reg dst, struct brw_reg src) { brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, suboffset(vec1(dst), 2), suboffset(vec1(src), 0)); brw_pop_insn_state(p); } static void generate_gs_prepare_channel_masks(struct brw_codegen *p, struct brw_reg dst) { /* We want to left shift just DWORD 4 (the x component belonging to the * second geometry shader invocation) by 4 bits. So generate the * instruction: * * shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all } */ dst = suboffset(vec1(dst), 4); brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_SHL(p, dst, dst, brw_imm_ud(4)); brw_pop_insn_state(p); } static void generate_gs_set_channel_masks(struct brw_codegen *p, struct brw_reg dst, struct brw_reg src) { /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message * Header: M0.5): * * 15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask * * When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1 * DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls * Vertex 0 DATA[7]. This bit is ANDed with the corresponding * channel enable to determine the final channel enable. For the * URB_READ_OWORD & URB_READ_HWORD messages, when final channel * enable is 1 it indicates that Vertex 1 DATA [3] will be included * in the writeback message. For the URB_WRITE_OWORD & * URB_WRITE_HWORD messages, when final channel enable is 1 it * indicates that Vertex 1 DATA [3] will be written to the surface. * * 0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included * 1: Vertex DATA [3] / Vertex 0 DATA[7] channel included * * 14 Vertex 1 DATA [2] Channel Mask * 13 Vertex 1 DATA [1] Channel Mask * 12 Vertex 1 DATA [0] Channel Mask * 11 Vertex 0 DATA [3] Channel Mask * 10 Vertex 0 DATA [2] Channel Mask * 9 Vertex 0 DATA [1] Channel Mask * 8 Vertex 0 DATA [0] Channel Mask * * (This is from a section of the PRM that is agnostic to the particular * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to * geometry shader invocations 0 and 1, respectively). Since we have the * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0, * and the enable flags for geometry shader invocation 1 in bits 7:0 of * DWORD 4, we just need to OR them together and store the result in bits * 15:8 of DWORD 5. * * It's easier to get the EU to do this if we think of the src and dst * registers as composed of 32 bytes each; then, we want to pick up the * contents of bytes 0 and 16 from src, OR them together, and store them in * byte 21. * * We can do that by the following EU instruction: * * or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all } * * Note: this relies on the source register having zeros in (a) bits 7:4 of * DWORD 0 and (b) bits 3:0 of DWORD 4. We can rely on (b) because the * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to * contain valid channel mask values (which are in the range 0x0-0xf). */ dst = retype(dst, BRW_REGISTER_TYPE_UB); src = retype(src, BRW_REGISTER_TYPE_UB); brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16)); brw_pop_insn_state(p); } static void generate_gs_get_instance_id(struct brw_codegen *p, struct brw_reg dst) { /* We want to right shift R0.0 & R0.1 by GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT * and store into dst.0 & dst.4. So generate the instruction: * * shr(8) dst<1> R0<1,4,0> GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT { align1 WE_normal 1Q } */ brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); dst = retype(dst, BRW_REGISTER_TYPE_UD); struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); brw_SHR(p, dst, stride(r0, 1, 4, 0), brw_imm_ud(GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT)); brw_pop_insn_state(p); } static void generate_gs_ff_sync_set_primitives(struct brw_codegen *p, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1, struct brw_reg src2) { brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); /* Save src0 data in 16:31 bits of dst.0 */ brw_AND(p, suboffset(vec1(dst), 0), suboffset(vec1(src0), 0), brw_imm_ud(0xffffu)); brw_SHL(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), brw_imm_ud(16)); /* Save src1 data in 0:15 bits of dst.0 */ brw_AND(p, suboffset(vec1(src2), 0), suboffset(vec1(src1), 0), brw_imm_ud(0xffffu)); brw_OR(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), suboffset(vec1(src2), 0)); brw_pop_insn_state(p); } static void generate_gs_ff_sync(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src0, struct brw_reg src1) { /* This opcode uses an implied MRF register for: * - the header of the ff_sync message. And as such it is expected to be * initialized to r0 before calling here. * - the destination where we will write the allocated URB handle. */ struct brw_reg header = retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD); /* Overwrite dword 0 of the header (SO vertices to write) and * dword 1 (number of primitives written). */ brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_MOV(p, get_element_ud(header, 0), get_element_ud(src1, 0)); brw_MOV(p, get_element_ud(header, 1), get_element_ud(src0, 0)); brw_pop_insn_state(p); /* Allocate URB handle in dst */ brw_ff_sync(p, dst, 0, header, 1, /* allocate */ 1, /* response length */ 0 /* eot */); /* Now put allocated urb handle in header.0 */ brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, get_element_ud(header, 0), get_element_ud(dst, 0)); /* src1 is not an immediate when we use transform feedback */ if (src1.file != BRW_IMMEDIATE_VALUE) { brw_set_default_exec_size(p, BRW_EXECUTE_4); brw_MOV(p, brw_vec4_grf(src1.nr, 0), brw_vec4_grf(dst.nr, 1)); } brw_pop_insn_state(p); } static void generate_gs_set_primitive_id(struct brw_codegen *p, struct brw_reg dst) { /* In gen6, PrimitiveID is delivered in R0.1 of the payload */ struct brw_reg src = brw_vec8_grf(0, 0); brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_MOV(p, get_element_ud(dst, 0), get_element_ud(src, 1)); brw_pop_insn_state(p); } static void generate_tcs_get_instance_id(struct brw_codegen *p, struct brw_reg dst) { const struct gen_device_info *devinfo = p->devinfo; const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail; /* "Instance Count" comes as part of the payload in r0.2 bits 23:17. * * Since we operate in SIMD4x2 mode, we need run half as many threads * as necessary. So we assign (2i + 1, 2i) as the thread counts. We * shift right by one less to accomplish the multiplication by two. */ dst = retype(dst, BRW_REGISTER_TYPE_UD); struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); const int mask = ivb ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17); const int shift = ivb ? 16 : 17; brw_AND(p, get_element_ud(dst, 0), get_element_ud(r0, 2), brw_imm_ud(mask)); brw_SHR(p, get_element_ud(dst, 0), get_element_ud(dst, 0), brw_imm_ud(shift - 1)); brw_ADD(p, get_element_ud(dst, 4), get_element_ud(dst, 0), brw_imm_ud(1)); brw_pop_insn_state(p); } static void generate_tcs_urb_write(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg urb_header) { const struct gen_device_info *devinfo = p->devinfo; brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, brw_null_reg()); brw_set_src0(p, send, urb_header); brw_set_message_descriptor(p, send, BRW_SFID_URB, inst->mlen /* mlen */, 0 /* rlen */, true /* header */, false /* eot */); brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_WRITE_OWORD); brw_inst_set_urb_global_offset(devinfo, send, inst->offset); if (inst->urb_write_flags & BRW_URB_WRITE_EOT) { brw_inst_set_eot(devinfo, send, 1); } else { brw_inst_set_urb_per_slot_offset(devinfo, send, 1); brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE); } /* what happens to swizzles? */ } static void generate_tcs_input_urb_offsets(struct brw_codegen *p, struct brw_reg dst, struct brw_reg vertex, struct brw_reg offset) { /* Generates an URB read/write message header for HS/DS operation. * Inputs are a vertex index, and a byte offset from the beginning of * the vertex. */ /* If `vertex` is not an immediate, we clobber a0.0 */ assert(vertex.file == BRW_IMMEDIATE_VALUE || vertex.file == BRW_GENERAL_REGISTER_FILE); assert(vertex.type == BRW_REGISTER_TYPE_UD || vertex.type == BRW_REGISTER_TYPE_D); assert(dst.file == BRW_GENERAL_REGISTER_FILE); brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, dst, brw_imm_ud(0)); /* m0.5 bits 8-15 are channel enables */ brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00)); /* m0.0-0.1: URB handles */ if (vertex.file == BRW_IMMEDIATE_VALUE) { uint32_t vertex_index = vertex.ud; struct brw_reg index_reg = brw_vec1_grf( 1 + (vertex_index >> 3), vertex_index & 7); brw_MOV(p, vec2(get_element_ud(dst, 0)), retype(index_reg, BRW_REGISTER_TYPE_UD)); } else { /* Use indirect addressing. ICP Handles are DWords (single channels * of a register) and start at g1.0. * * In order to start our region at g1.0, we add 8 to the vertex index, * effectively skipping over the 8 channels in g0.0. This gives us a * DWord offset to the ICP Handle. * * Indirect addressing works in terms of bytes, so we then multiply * the DWord offset by 4 (by shifting left by 2). */ struct brw_reg addr = brw_address_reg(0); /* bottom half: m0.0 = g[1.0 + vertex.0]UD */ brw_ADD(p, addr, retype(get_element_ud(vertex, 0), BRW_REGISTER_TYPE_UW), brw_imm_uw(0x8)); brw_SHL(p, addr, addr, brw_imm_uw(2)); brw_MOV(p, get_element_ud(dst, 0), deref_1ud(brw_indirect(0, 0), 0)); /* top half: m0.1 = g[1.0 + vertex.4]UD */ brw_ADD(p, addr, retype(get_element_ud(vertex, 4), BRW_REGISTER_TYPE_UW), brw_imm_uw(0x8)); brw_SHL(p, addr, addr, brw_imm_uw(2)); brw_MOV(p, get_element_ud(dst, 1), deref_1ud(brw_indirect(0, 0), 0)); } /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */ if (offset.file != ARF) brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0)); brw_pop_insn_state(p); } static void generate_tcs_output_urb_offsets(struct brw_codegen *p, struct brw_reg dst, struct brw_reg write_mask, struct brw_reg offset) { /* Generates an URB read/write message header for HS/DS operation, for the patch URB entry. */ assert(dst.file == BRW_GENERAL_REGISTER_FILE || dst.file == BRW_MESSAGE_REGISTER_FILE); assert(write_mask.file == BRW_IMMEDIATE_VALUE); assert(write_mask.type == BRW_REGISTER_TYPE_UD); brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, dst, brw_imm_ud(0)); unsigned mask = write_mask.ud; /* m0.5 bits 15:12 and 11:8 are channel enables */ brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud((mask << 8) | (mask << 12))); /* HS patch URB handle is delivered in r0.0 */ struct brw_reg urb_handle = brw_vec1_grf(0, 0); /* m0.0-0.1: URB handles */ brw_MOV(p, vec2(get_element_ud(dst, 0)), retype(urb_handle, BRW_REGISTER_TYPE_UD)); /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */ if (offset.file != ARF) brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0)); brw_pop_insn_state(p); } static void generate_tes_create_input_read_header(struct brw_codegen *p, struct brw_reg dst) { brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); /* Initialize the register to 0 */ brw_MOV(p, dst, brw_imm_ud(0)); /* Enable all the channels in m0.5 bits 15:8 */ brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00)); /* Copy g1.3 (the patch URB handle) to m0.0 and m0.1. For safety, * mask out irrelevant "Reserved" bits, as they're not marked MBZ. */ brw_AND(p, vec2(get_element_ud(dst, 0)), retype(brw_vec1_grf(1, 3), BRW_REGISTER_TYPE_UD), brw_imm_ud(0x1fff)); brw_pop_insn_state(p); } static void generate_tes_add_indirect_urb_offset(struct brw_codegen *p, struct brw_reg dst, struct brw_reg header, struct brw_reg offset) { brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, dst, header); /* m0.3-0.4: 128-bit-granular offsets into the URB from the handles */ brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0)); brw_pop_insn_state(p); } static void generate_vec4_urb_read(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg header) { const struct gen_device_info *devinfo = p->devinfo; assert(header.file == BRW_GENERAL_REGISTER_FILE); assert(header.type == BRW_REGISTER_TYPE_UD); brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); brw_set_message_descriptor(p, send, BRW_SFID_URB, 1 /* mlen */, 1 /* rlen */, true /* header */, false /* eot */); brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD); brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE); brw_inst_set_urb_per_slot_offset(devinfo, send, 1); brw_inst_set_urb_global_offset(devinfo, send, inst->offset); } static void generate_tcs_release_input(struct brw_codegen *p, struct brw_reg header, struct brw_reg vertex, struct brw_reg is_unpaired) { const struct gen_device_info *devinfo = p->devinfo; assert(vertex.file == BRW_IMMEDIATE_VALUE); assert(vertex.type == BRW_REGISTER_TYPE_UD); /* m0.0-0.1: URB handles */ struct brw_reg urb_handles = retype(brw_vec2_grf(1 + (vertex.ud >> 3), vertex.ud & 7), BRW_REGISTER_TYPE_UD); brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, header, brw_imm_ud(0)); brw_MOV(p, vec2(get_element_ud(header, 0)), urb_handles); brw_pop_insn_state(p); brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, brw_null_reg()); brw_set_src0(p, send, header); brw_set_message_descriptor(p, send, BRW_SFID_URB, 1 /* mlen */, 0 /* rlen */, true /* header */, false /* eot */); brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD); brw_inst_set_urb_complete(devinfo, send, 1); brw_inst_set_urb_swizzle_control(devinfo, send, is_unpaired.ud ? BRW_URB_SWIZZLE_NONE : BRW_URB_SWIZZLE_INTERLEAVE); } static void generate_tcs_thread_end(struct brw_codegen *p, vec4_instruction *inst) { struct brw_reg header = brw_message_reg(inst->base_mrf); brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_MOV(p, header, brw_imm_ud(0)); brw_MOV(p, get_element_ud(header, 5), brw_imm_ud(WRITEMASK_X << 8)); brw_MOV(p, get_element_ud(header, 0), retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)); brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_imm_ud(0u)); brw_pop_insn_state(p); brw_urb_WRITE(p, brw_null_reg(), /* dest */ inst->base_mrf, /* starting mrf reg nr */ header, BRW_URB_WRITE_EOT | BRW_URB_WRITE_OWORD | BRW_URB_WRITE_USE_CHANNEL_MASKS, inst->mlen, 0, /* response len */ 0, /* urb destination offset */ 0); } static void generate_tes_get_primitive_id(struct brw_codegen *p, struct brw_reg dst) { brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_MOV(p, dst, retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_D)); brw_pop_insn_state(p); } static void generate_tcs_get_primitive_id(struct brw_codegen *p, struct brw_reg dst) { brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_MOV(p, dst, retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD)); brw_pop_insn_state(p); } static void generate_tcs_create_barrier_header(struct brw_codegen *p, struct brw_vue_prog_data *prog_data, struct brw_reg dst) { const struct gen_device_info *devinfo = p->devinfo; const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail; struct brw_reg m0_2 = get_element_ud(dst, 2); unsigned instances = ((struct brw_tcs_prog_data *) prog_data)->instances; brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); /* Zero the message header */ brw_MOV(p, retype(dst, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u)); /* Copy "Barrier ID" from r0.2, bits 16:13 (Gen7.5+) or 15:12 (Gen7) */ brw_AND(p, m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD), brw_imm_ud(ivb ? INTEL_MASK(15, 12) : INTEL_MASK(16, 13))); /* Shift it up to bits 27:24. */ brw_SHL(p, m0_2, get_element_ud(dst, 2), brw_imm_ud(ivb ? 12 : 11)); /* Set the Barrier Count and the enable bit */ brw_OR(p, m0_2, m0_2, brw_imm_ud(instances << 9 | (1 << 15))); brw_pop_insn_state(p); } static void generate_oword_dual_block_offsets(struct brw_codegen *p, struct brw_reg m1, struct brw_reg index) { int second_vertex_offset; if (p->devinfo->gen >= 6) second_vertex_offset = 1; else second_vertex_offset = 16; m1 = retype(m1, BRW_REGISTER_TYPE_D); /* Set up M1 (message payload). Only the block offsets in M1.0 and * M1.4 are used, and the rest are ignored. */ struct brw_reg m1_0 = suboffset(vec1(m1), 0); struct brw_reg m1_4 = suboffset(vec1(m1), 4); struct brw_reg index_0 = suboffset(vec1(index), 0); struct brw_reg index_4 = suboffset(vec1(index), 4); brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_MOV(p, m1_0, index_0); if (index.file == BRW_IMMEDIATE_VALUE) { index_4.ud += second_vertex_offset; brw_MOV(p, m1_4, index_4); } else { brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset)); } brw_pop_insn_state(p); } static void generate_unpack_flags(struct brw_codegen *p, struct brw_reg dst) { brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_access_mode(p, BRW_ALIGN_1); struct brw_reg flags = brw_flag_reg(0, 0); struct brw_reg dst_0 = suboffset(vec1(dst), 0); struct brw_reg dst_4 = suboffset(vec1(dst), 4); brw_AND(p, dst_0, flags, brw_imm_ud(0x0f)); brw_AND(p, dst_4, flags, brw_imm_ud(0xf0)); brw_SHR(p, dst_4, dst_4, brw_imm_ud(4)); brw_pop_insn_state(p); } static void generate_scratch_read(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg index) { const struct gen_device_info *devinfo = p->devinfo; struct brw_reg header = brw_vec8_grf(0, 0); gen6_resolve_implied_move(p, &header, inst->base_mrf); generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1), index); uint32_t msg_type; if (devinfo->gen >= 6) msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else if (devinfo->gen == 5 || devinfo->is_g4x) msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; const unsigned target_cache = devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE : devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE : BRW_DATAPORT_READ_TARGET_RENDER_CACHE; /* Each of the 8 channel enables is considered for whether each * dword is written. */ brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (devinfo->gen < 6) brw_inst_set_cond_modifier(devinfo, send, inst->base_mrf); brw_set_dp_read_message(p, send, brw_scratch_surface_idx(p), BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, target_cache, 2, /* mlen */ true, /* header_present */ 1 /* rlen */); } static void generate_scratch_write(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg index) { const struct gen_device_info *devinfo = p->devinfo; const unsigned target_cache = (devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE : devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE : BRW_DATAPORT_READ_TARGET_RENDER_CACHE); struct brw_reg header = brw_vec8_grf(0, 0); bool write_commit; /* If the instruction is predicated, we'll predicate the send, not * the header setup. */ brw_set_default_predicate_control(p, false); gen6_resolve_implied_move(p, &header, inst->base_mrf); generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1), index); brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D), retype(src, BRW_REGISTER_TYPE_D)); uint32_t msg_type; if (devinfo->gen >= 7) msg_type = GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE; else if (devinfo->gen == 6) msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE; else msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE; brw_set_default_predicate_control(p, inst->predicate); /* Pre-gen6, we have to specify write commits to ensure ordering * between reads and writes within a thread. Afterwards, that's * guaranteed and write commits only matter for inter-thread * synchronization. */ if (devinfo->gen >= 6) { write_commit = false; } else { /* The visitor set up our destination register to be g0. This * means that when the next read comes along, we will end up * reading from g0 and causing a block on the write commit. For * write-after-read, we are relying on the value of the previous * read being used (and thus blocking on completion) before our * write is executed. This means we have to be careful in * instruction scheduling to not violate this assumption. */ write_commit = true; } /* Each of the 8 channel enables is considered for whether each * dword is written. */ brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (devinfo->gen < 6) brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf); brw_set_dp_write_message(p, send, brw_scratch_surface_idx(p), BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, target_cache, 3, /* mlen */ true, /* header present */ false, /* not a render target write */ write_commit, /* rlen */ false, /* eot */ write_commit); } static void generate_pull_constant_load(struct brw_codegen *p, struct brw_vue_prog_data *prog_data, vec4_instruction *inst, struct brw_reg dst, struct brw_reg index, struct brw_reg offset) { const struct gen_device_info *devinfo = p->devinfo; const unsigned target_cache = (devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_SAMPLER_CACHE : BRW_DATAPORT_READ_TARGET_DATA_CACHE); assert(index.file == BRW_IMMEDIATE_VALUE && index.type == BRW_REGISTER_TYPE_UD); uint32_t surf_index = index.ud; struct brw_reg header = brw_vec8_grf(0, 0); gen6_resolve_implied_move(p, &header, inst->base_mrf); if (devinfo->gen >= 6) { if (offset.file == BRW_IMMEDIATE_VALUE) { brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_D), brw_imm_d(offset.ud >> 4)); } else { brw_SHR(p, retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_D), offset, brw_imm_d(4)); } } else { brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), BRW_REGISTER_TYPE_D), offset); } uint32_t msg_type; if (devinfo->gen >= 6) msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else if (devinfo->gen == 5 || devinfo->is_g4x) msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; else msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ; /* Each of the 8 channel enables is considered for whether each * dword is written. */ brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, send, dst); brw_set_src0(p, send, header); if (devinfo->gen < 6) brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf); brw_set_dp_read_message(p, send, surf_index, BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD, msg_type, target_cache, 2, /* mlen */ true, /* header_present */ 1 /* rlen */); } static void generate_get_buffer_size(struct brw_codegen *p, struct brw_vue_prog_data *prog_data, vec4_instruction *inst, struct brw_reg dst, struct brw_reg src, struct brw_reg surf_index) { assert(p->devinfo->gen >= 7); assert(surf_index.type == BRW_REGISTER_TYPE_UD && surf_index.file == BRW_IMMEDIATE_VALUE); brw_SAMPLE(p, dst, inst->base_mrf, src, surf_index.ud, 0, GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO, 1, /* response length */ inst->mlen, inst->header_size > 0, BRW_SAMPLER_SIMD_MODE_SIMD4X2, BRW_SAMPLER_RETURN_FORMAT_SINT32); brw_mark_surface_used(&prog_data->base, surf_index.ud); } static void generate_pull_constant_load_gen7(struct brw_codegen *p, struct brw_vue_prog_data *prog_data, vec4_instruction *inst, struct brw_reg dst, struct brw_reg surf_index, struct brw_reg offset) { assert(surf_index.type == BRW_REGISTER_TYPE_UD); if (surf_index.file == BRW_IMMEDIATE_VALUE) { brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND); brw_set_dest(p, insn, dst); brw_set_src0(p, insn, offset); brw_set_sampler_message(p, insn, surf_index.ud, 0, /* LD message ignores sampler unit */ GEN5_SAMPLER_MESSAGE_SAMPLE_LD, 1, /* rlen */ inst->mlen, inst->header_size != 0, BRW_SAMPLER_SIMD_MODE_SIMD4X2, 0); brw_mark_surface_used(&prog_data->base, surf_index.ud); } else { struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD)); brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_access_mode(p, BRW_ALIGN_1); /* a0.0 = surf_index & 0xff */ brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND); brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1); brw_set_dest(p, insn_and, addr); brw_set_src0(p, insn_and, vec1(retype(surf_index, BRW_REGISTER_TYPE_UD))); brw_set_src1(p, insn_and, brw_imm_ud(0x0ff)); brw_pop_insn_state(p); /* dst = send(offset, a0.0 | <descriptor>) */ brw_inst *insn = brw_send_indirect_message( p, BRW_SFID_SAMPLER, dst, offset, addr); brw_set_sampler_message(p, insn, 0 /* surface */, 0 /* sampler */, GEN5_SAMPLER_MESSAGE_SAMPLE_LD, 1 /* rlen */, inst->mlen, inst->header_size != 0, BRW_SAMPLER_SIMD_MODE_SIMD4X2, 0); } } static void generate_set_simd4x2_header_gen9(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst) { brw_push_insn_state(p); brw_set_default_mask_control(p, BRW_MASK_DISABLE); brw_set_default_exec_size(p, BRW_EXECUTE_8); brw_MOV(p, vec8(dst), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD)); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_MOV(p, get_element_ud(dst, 2), brw_imm_ud(GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2)); brw_pop_insn_state(p); } static void generate_mov_indirect(struct brw_codegen *p, vec4_instruction *inst, struct brw_reg dst, struct brw_reg reg, struct brw_reg indirect, struct brw_reg length) { assert(indirect.type == BRW_REGISTER_TYPE_UD); assert(p->devinfo->gen >= 6); unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr * (REG_SIZE / 2); /* This instruction acts in align1 mode */ assert(dst.writemask == WRITEMASK_XYZW); if (indirect.file == BRW_IMMEDIATE_VALUE) { imm_byte_offset += indirect.ud; reg.nr = imm_byte_offset / REG_SIZE; reg.subnr = (imm_byte_offset / (REG_SIZE / 2)) % 2; unsigned shift = (imm_byte_offset / 4) % 4; reg.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift); brw_MOV(p, dst, reg); } else { brw_push_insn_state(p); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_set_default_mask_control(p, BRW_MASK_DISABLE); struct brw_reg addr = vec8(brw_address_reg(0)); /* We need to move the indirect value into the address register. In * order to make things make some sense, we want to respect at least the * X component of the swizzle. In order to do that, we need to convert * the subnr (probably 0) to an align1 subnr and add in the swizzle. */ assert(brw_is_single_value_swizzle(indirect.swizzle)); indirect.subnr = (indirect.subnr * 4 + BRW_GET_SWZ(indirect.swizzle, 0)); /* We then use a region of <8,4,0>:uw to pick off the first 2 bytes of * the indirect and splat it out to all four channels of the given half * of a0. */ indirect.subnr *= 2; indirect = stride(retype(indirect, BRW_REGISTER_TYPE_UW), 8, 4, 0); brw_ADD(p, addr, indirect, brw_imm_uw(imm_byte_offset)); /* Now we need to incorporate the swizzle from the source register */ if (reg.swizzle != BRW_SWIZZLE_XXXX) { uint32_t uv_swiz = BRW_GET_SWZ(reg.swizzle, 0) << 2 | BRW_GET_SWZ(reg.swizzle, 1) << 6 | BRW_GET_SWZ(reg.swizzle, 2) << 10 | BRW_GET_SWZ(reg.swizzle, 3) << 14; uv_swiz |= uv_swiz << 16; brw_ADD(p, addr, addr, brw_imm_uv(uv_swiz)); } brw_MOV(p, dst, retype(brw_VxH_indirect(0, 0), reg.type)); brw_pop_insn_state(p); } } static void generate_code(struct brw_codegen *p, const struct brw_compiler *compiler, void *log_data, const nir_shader *nir, struct brw_vue_prog_data *prog_data, const struct cfg_t *cfg) { const struct gen_device_info *devinfo = p->devinfo; const char *stage_abbrev = _mesa_shader_stage_to_abbrev(nir->info.stage); bool debug_flag = INTEL_DEBUG & intel_debug_flag_for_shader_stage(nir->info.stage); struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg); int spill_count = 0, fill_count = 0; int loop_count = 0; foreach_block_and_inst (block, vec4_instruction, inst, cfg) { struct brw_reg src[3], dst; if (unlikely(debug_flag)) disasm_annotate(disasm_info, inst, p->next_insn_offset); for (unsigned int i = 0; i < 3; i++) { src[i] = inst->src[i].as_brw_reg(); } dst = inst->dst.as_brw_reg(); brw_set_default_predicate_control(p, inst->predicate); brw_set_default_predicate_inverse(p, inst->predicate_inverse); brw_set_default_flag_reg(p, 0, inst->flag_subreg); brw_set_default_saturate(p, inst->saturate); brw_set_default_mask_control(p, inst->force_writemask_all); brw_set_default_acc_write_control(p, inst->writes_accumulator); assert(inst->group % inst->exec_size == 0); assert(inst->group % 4 == 0); /* There are some instructions where the destination is 64-bit * but we retype it to a smaller type. In that case, we cannot * double the exec_size. */ const bool is_df = (get_exec_type_size(inst) == 8 || inst->dst.type == BRW_REGISTER_TYPE_DF) && inst->opcode != VEC4_OPCODE_PICK_LOW_32BIT && inst->opcode != VEC4_OPCODE_PICK_HIGH_32BIT && inst->opcode != VEC4_OPCODE_SET_LOW_32BIT && inst->opcode != VEC4_OPCODE_SET_HIGH_32BIT; unsigned exec_size = inst->exec_size; if (devinfo->gen == 7 && !devinfo->is_haswell && is_df) exec_size *= 2; brw_set_default_exec_size(p, cvt(exec_size) - 1); if (!inst->force_writemask_all) brw_set_default_group(p, inst->group); assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen)); assert(inst->mlen <= BRW_MAX_MSG_LENGTH); unsigned pre_emit_nr_insn = p->nr_insn; switch (inst->opcode) { case VEC4_OPCODE_UNPACK_UNIFORM: case BRW_OPCODE_MOV: brw_MOV(p, dst, src[0]); break; case BRW_OPCODE_ADD: brw_ADD(p, dst, src[0], src[1]); break; case BRW_OPCODE_MUL: brw_MUL(p, dst, src[0], src[1]); break; case BRW_OPCODE_MACH: brw_MACH(p, dst, src[0], src[1]); break; case BRW_OPCODE_MAD: assert(devinfo->gen >= 6); brw_MAD(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_FRC: brw_FRC(p, dst, src[0]); break; case BRW_OPCODE_RNDD: brw_RNDD(p, dst, src[0]); break; case BRW_OPCODE_RNDE: brw_RNDE(p, dst, src[0]); break; case BRW_OPCODE_RNDZ: brw_RNDZ(p, dst, src[0]); break; case BRW_OPCODE_AND: brw_AND(p, dst, src[0], src[1]); break; case BRW_OPCODE_OR: brw_OR(p, dst, src[0], src[1]); break; case BRW_OPCODE_XOR: brw_XOR(p, dst, src[0], src[1]); break; case BRW_OPCODE_NOT: brw_NOT(p, dst, src[0]); break; case BRW_OPCODE_ASR: brw_ASR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHR: brw_SHR(p, dst, src[0], src[1]); break; case BRW_OPCODE_SHL: brw_SHL(p, dst, src[0], src[1]); break; case BRW_OPCODE_CMP: brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]); break; case BRW_OPCODE_SEL: brw_SEL(p, dst, src[0], src[1]); break; case BRW_OPCODE_DPH: brw_DPH(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP4: brw_DP4(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP3: brw_DP3(p, dst, src[0], src[1]); break; case BRW_OPCODE_DP2: brw_DP2(p, dst, src[0], src[1]); break; case BRW_OPCODE_F32TO16: assert(devinfo->gen >= 7); brw_F32TO16(p, dst, src[0]); break; case BRW_OPCODE_F16TO32: assert(devinfo->gen >= 7); brw_F16TO32(p, dst, src[0]); break; case BRW_OPCODE_LRP: assert(devinfo->gen >= 6); brw_LRP(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_BFREV: assert(devinfo->gen >= 7); brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD), retype(src[0], BRW_REGISTER_TYPE_UD)); break; case BRW_OPCODE_FBH: assert(devinfo->gen >= 7); brw_FBH(p, retype(dst, src[0].type), src[0]); break; case BRW_OPCODE_FBL: assert(devinfo->gen >= 7); brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD), retype(src[0], BRW_REGISTER_TYPE_UD)); break; case BRW_OPCODE_LZD: brw_LZD(p, dst, src[0]); break; case BRW_OPCODE_CBIT: assert(devinfo->gen >= 7); brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD), retype(src[0], BRW_REGISTER_TYPE_UD)); break; case BRW_OPCODE_ADDC: assert(devinfo->gen >= 7); brw_ADDC(p, dst, src[0], src[1]); break; case BRW_OPCODE_SUBB: assert(devinfo->gen >= 7); brw_SUBB(p, dst, src[0], src[1]); break; case BRW_OPCODE_MAC: brw_MAC(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFE: assert(devinfo->gen >= 7); brw_BFE(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_BFI1: assert(devinfo->gen >= 7); brw_BFI1(p, dst, src[0], src[1]); break; case BRW_OPCODE_BFI2: assert(devinfo->gen >= 7); brw_BFI2(p, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_IF: if (!inst->src[0].is_null()) { /* The instruction has an embedded compare (only allowed on gen6) */ assert(devinfo->gen == 6); gen6_IF(p, inst->conditional_mod, src[0], src[1]); } else { brw_inst *if_inst = brw_IF(p, BRW_EXECUTE_8); brw_inst_set_pred_control(p->devinfo, if_inst, inst->predicate); } break; case BRW_OPCODE_ELSE: brw_ELSE(p); break; case BRW_OPCODE_ENDIF: brw_ENDIF(p); break; case BRW_OPCODE_DO: brw_DO(p, BRW_EXECUTE_8); break; case BRW_OPCODE_BREAK: brw_BREAK(p); brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_CONTINUE: brw_CONT(p); brw_set_default_predicate_control(p, BRW_PREDICATE_NONE); break; case BRW_OPCODE_WHILE: brw_WHILE(p); loop_count++; break; case SHADER_OPCODE_RCP: case SHADER_OPCODE_RSQ: case SHADER_OPCODE_SQRT: case SHADER_OPCODE_EXP2: case SHADER_OPCODE_LOG2: case SHADER_OPCODE_SIN: case SHADER_OPCODE_COS: assert(inst->conditional_mod == BRW_CONDITIONAL_NONE); if (devinfo->gen >= 7) { gen6_math(p, dst, brw_math_function(inst->opcode), src[0], brw_null_reg()); } else if (devinfo->gen == 6) { generate_math_gen6(p, inst, dst, src[0], brw_null_reg()); } else { generate_math1_gen4(p, inst, dst, src[0]); } break; case SHADER_OPCODE_POW: case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: assert(inst->conditional_mod == BRW_CONDITIONAL_NONE); if (devinfo->gen >= 7) { gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]); } else if (devinfo->gen == 6) { generate_math_gen6(p, inst, dst, src[0], src[1]); } else { generate_math2_gen4(p, inst, dst, src[0], src[1]); } break; case SHADER_OPCODE_TEX: case SHADER_OPCODE_TXD: case SHADER_OPCODE_TXF: case SHADER_OPCODE_TXF_CMS: case SHADER_OPCODE_TXF_CMS_W: case SHADER_OPCODE_TXF_MCS: case SHADER_OPCODE_TXL: case SHADER_OPCODE_TXS: case SHADER_OPCODE_TG4: case SHADER_OPCODE_TG4_OFFSET: case SHADER_OPCODE_SAMPLEINFO: generate_tex(p, prog_data, nir->info.stage, inst, dst, src[0], src[1], src[2]); break; case SHADER_OPCODE_GET_BUFFER_SIZE: generate_get_buffer_size(p, prog_data, inst, dst, src[0], src[1]); break; case VS_OPCODE_URB_WRITE: generate_vs_urb_write(p, inst); break; case SHADER_OPCODE_GEN4_SCRATCH_READ: generate_scratch_read(p, inst, dst, src[0]); fill_count++; break; case SHADER_OPCODE_GEN4_SCRATCH_WRITE: generate_scratch_write(p, inst, dst, src[0], src[1]); spill_count++; break; case VS_OPCODE_PULL_CONSTANT_LOAD: generate_pull_constant_load(p, prog_data, inst, dst, src[0], src[1]); break; case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7: generate_pull_constant_load_gen7(p, prog_data, inst, dst, src[0], src[1]); break; case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9: generate_set_simd4x2_header_gen9(p, inst, dst); break; case GS_OPCODE_URB_WRITE: generate_gs_urb_write(p, inst); break; case GS_OPCODE_URB_WRITE_ALLOCATE: generate_gs_urb_write_allocate(p, inst); break; case GS_OPCODE_SVB_WRITE: generate_gs_svb_write(p, prog_data, inst, dst, src[0], src[1]); break; case GS_OPCODE_SVB_SET_DST_INDEX: generate_gs_svb_set_destination_index(p, inst, dst, src[0]); break; case GS_OPCODE_THREAD_END: generate_gs_thread_end(p, inst); break; case GS_OPCODE_SET_WRITE_OFFSET: generate_gs_set_write_offset(p, dst, src[0], src[1]); break; case GS_OPCODE_SET_VERTEX_COUNT: generate_gs_set_vertex_count(p, dst, src[0]); break; case GS_OPCODE_FF_SYNC: generate_gs_ff_sync(p, inst, dst, src[0], src[1]); break; case GS_OPCODE_FF_SYNC_SET_PRIMITIVES: generate_gs_ff_sync_set_primitives(p, dst, src[0], src[1], src[2]); break; case GS_OPCODE_SET_PRIMITIVE_ID: generate_gs_set_primitive_id(p, dst); break; case GS_OPCODE_SET_DWORD_2: generate_gs_set_dword_2(p, dst, src[0]); break; case GS_OPCODE_PREPARE_CHANNEL_MASKS: generate_gs_prepare_channel_masks(p, dst); break; case GS_OPCODE_SET_CHANNEL_MASKS: generate_gs_set_channel_masks(p, dst, src[0]); break; case GS_OPCODE_GET_INSTANCE_ID: generate_gs_get_instance_id(p, dst); break; case SHADER_OPCODE_SHADER_TIME_ADD: brw_shader_time_add(p, src[0], prog_data->base.binding_table.shader_time_start); brw_mark_surface_used(&prog_data->base, prog_data->base.binding_table.shader_time_start); break; case SHADER_OPCODE_UNTYPED_ATOMIC: assert(src[2].file == BRW_IMMEDIATE_VALUE); brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen, !inst->dst.is_null()); break; case SHADER_OPCODE_UNTYPED_SURFACE_READ: assert(src[2].file == BRW_IMMEDIATE_VALUE); brw_untyped_surface_read(p, dst, src[0], src[1], inst->mlen, src[2].ud); break; case SHADER_OPCODE_UNTYPED_SURFACE_WRITE: assert(src[2].file == BRW_IMMEDIATE_VALUE); brw_untyped_surface_write(p, src[0], src[1], inst->mlen, src[2].ud); break; case SHADER_OPCODE_TYPED_ATOMIC: assert(src[2].file == BRW_IMMEDIATE_VALUE); brw_typed_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen, !inst->dst.is_null()); break; case SHADER_OPCODE_TYPED_SURFACE_READ: assert(src[2].file == BRW_IMMEDIATE_VALUE); brw_typed_surface_read(p, dst, src[0], src[1], inst->mlen, src[2].ud); break; case SHADER_OPCODE_TYPED_SURFACE_WRITE: assert(src[2].file == BRW_IMMEDIATE_VALUE); brw_typed_surface_write(p, src[0], src[1], inst->mlen, src[2].ud); break; case SHADER_OPCODE_MEMORY_FENCE: brw_memory_fence(p, dst); break; case SHADER_OPCODE_FIND_LIVE_CHANNEL: { const struct brw_reg mask = brw_stage_has_packed_dispatch(devinfo, nir->info.stage, &prog_data->base) ? brw_imm_ud(~0u) : brw_dmask_reg(); brw_find_live_channel(p, dst, mask); break; } case SHADER_OPCODE_BROADCAST: assert(inst->force_writemask_all); brw_broadcast(p, dst, src[0], src[1]); break; case VS_OPCODE_UNPACK_FLAGS_SIMD4X2: generate_unpack_flags(p, dst); break; case VEC4_OPCODE_MOV_BYTES: { /* Moves the low byte from each channel, using an Align1 access mode * and a <4,1,0> source region. */ assert(src[0].type == BRW_REGISTER_TYPE_UB || src[0].type == BRW_REGISTER_TYPE_B); brw_set_default_access_mode(p, BRW_ALIGN_1); src[0].vstride = BRW_VERTICAL_STRIDE_4; src[0].width = BRW_WIDTH_1; src[0].hstride = BRW_HORIZONTAL_STRIDE_0; brw_MOV(p, dst, src[0]); brw_set_default_access_mode(p, BRW_ALIGN_16); break; } case VEC4_OPCODE_DOUBLE_TO_F32: case VEC4_OPCODE_DOUBLE_TO_D32: case VEC4_OPCODE_DOUBLE_TO_U32: { assert(type_sz(src[0].type) == 8); assert(type_sz(dst.type) == 8); brw_reg_type dst_type; switch (inst->opcode) { case VEC4_OPCODE_DOUBLE_TO_F32: dst_type = BRW_REGISTER_TYPE_F; break; case VEC4_OPCODE_DOUBLE_TO_D32: dst_type = BRW_REGISTER_TYPE_D; break; case VEC4_OPCODE_DOUBLE_TO_U32: dst_type = BRW_REGISTER_TYPE_UD; break; default: unreachable("Not supported conversion"); } dst = retype(dst, dst_type); brw_set_default_access_mode(p, BRW_ALIGN_1); /* When converting from DF->F, we set destination's stride as 2 as an * aligment requirement. But in IVB/BYT, each DF implicitly writes * two floats, being the first one the converted value. So we don't * need to explicitly set stride 2, but 1. */ struct brw_reg spread_dst; if (devinfo->gen == 7 && !devinfo->is_haswell) spread_dst = stride(dst, 8, 4, 1); else spread_dst = stride(dst, 8, 4, 2); brw_MOV(p, spread_dst, src[0]); brw_set_default_access_mode(p, BRW_ALIGN_16); break; } case VEC4_OPCODE_TO_DOUBLE: { assert(type_sz(src[0].type) == 4); assert(type_sz(dst.type) == 8); brw_set_default_access_mode(p, BRW_ALIGN_1); brw_MOV(p, dst, src[0]); brw_set_default_access_mode(p, BRW_ALIGN_16); break; } case VEC4_OPCODE_PICK_LOW_32BIT: case VEC4_OPCODE_PICK_HIGH_32BIT: { /* Stores the low/high 32-bit of each 64-bit element in src[0] into * dst using ALIGN1 mode and a <8,4,2>:UD region on the source. */ assert(type_sz(src[0].type) == 8); assert(type_sz(dst.type) == 4); brw_set_default_access_mode(p, BRW_ALIGN_1); dst = retype(dst, BRW_REGISTER_TYPE_UD); dst.hstride = BRW_HORIZONTAL_STRIDE_1; src[0] = retype(src[0], BRW_REGISTER_TYPE_UD); if (inst->opcode == VEC4_OPCODE_PICK_HIGH_32BIT) src[0] = suboffset(src[0], 1); src[0] = spread(src[0], 2); brw_MOV(p, dst, src[0]); brw_set_default_access_mode(p, BRW_ALIGN_16); break; } case VEC4_OPCODE_SET_LOW_32BIT: case VEC4_OPCODE_SET_HIGH_32BIT: { /* Reads consecutive 32-bit elements from src[0] and writes * them to the low/high 32-bit of each 64-bit element in dst. */ assert(type_sz(src[0].type) == 4); assert(type_sz(dst.type) == 8); brw_set_default_access_mode(p, BRW_ALIGN_1); dst = retype(dst, BRW_REGISTER_TYPE_UD); if (inst->opcode == VEC4_OPCODE_SET_HIGH_32BIT) dst = suboffset(dst, 1); dst.hstride = BRW_HORIZONTAL_STRIDE_2; src[0] = retype(src[0], BRW_REGISTER_TYPE_UD); brw_MOV(p, dst, src[0]); brw_set_default_access_mode(p, BRW_ALIGN_16); break; } case VEC4_OPCODE_PACK_BYTES: { /* Is effectively: * * mov(8) dst<16,4,1>:UB src<4,1,0>:UB * * but destinations' only regioning is horizontal stride, so instead we * have to use two instructions: * * mov(4) dst<1>:UB src<4,1,0>:UB * mov(4) dst.16<1>:UB src.16<4,1,0>:UB * * where they pack the four bytes from the low and high four DW. */ assert(_mesa_is_pow_two(dst.writemask) && dst.writemask != 0); unsigned offset = __builtin_ctz(dst.writemask); dst.type = BRW_REGISTER_TYPE_UB; brw_set_default_access_mode(p, BRW_ALIGN_1); src[0].type = BRW_REGISTER_TYPE_UB; src[0].vstride = BRW_VERTICAL_STRIDE_4; src[0].width = BRW_WIDTH_1; src[0].hstride = BRW_HORIZONTAL_STRIDE_0; dst.subnr = offset * 4; struct brw_inst *insn = brw_MOV(p, dst, src[0]); brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4); brw_inst_set_no_dd_clear(p->devinfo, insn, true); brw_inst_set_no_dd_check(p->devinfo, insn, inst->no_dd_check); src[0].subnr = 16; dst.subnr = 16 + offset * 4; insn = brw_MOV(p, dst, src[0]); brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4); brw_inst_set_no_dd_clear(p->devinfo, insn, inst->no_dd_clear); brw_inst_set_no_dd_check(p->devinfo, insn, true); brw_set_default_access_mode(p, BRW_ALIGN_16); break; } case TCS_OPCODE_URB_WRITE: generate_tcs_urb_write(p, inst, src[0]); break; case VEC4_OPCODE_URB_READ: generate_vec4_urb_read(p, inst, dst, src[0]); break; case TCS_OPCODE_SET_INPUT_URB_OFFSETS: generate_tcs_input_urb_offsets(p, dst, src[0], src[1]); break; case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS: generate_tcs_output_urb_offsets(p, dst, src[0], src[1]); break; case TCS_OPCODE_GET_INSTANCE_ID: generate_tcs_get_instance_id(p, dst); break; case TCS_OPCODE_GET_PRIMITIVE_ID: generate_tcs_get_primitive_id(p, dst); break; case TCS_OPCODE_CREATE_BARRIER_HEADER: generate_tcs_create_barrier_header(p, prog_data, dst); break; case TES_OPCODE_CREATE_INPUT_READ_HEADER: generate_tes_create_input_read_header(p, dst); break; case TES_OPCODE_ADD_INDIRECT_URB_OFFSET: generate_tes_add_indirect_urb_offset(p, dst, src[0], src[1]); break; case TES_OPCODE_GET_PRIMITIVE_ID: generate_tes_get_primitive_id(p, dst); break; case TCS_OPCODE_SRC0_010_IS_ZERO: /* If src_reg had stride like fs_reg, we wouldn't need this. */ brw_MOV(p, brw_null_reg(), stride(src[0], 0, 1, 0)); break; case TCS_OPCODE_RELEASE_INPUT: generate_tcs_release_input(p, dst, src[0], src[1]); break; case TCS_OPCODE_THREAD_END: generate_tcs_thread_end(p, inst); break; case SHADER_OPCODE_BARRIER: brw_barrier(p, src[0]); brw_WAIT(p); break; case SHADER_OPCODE_MOV_INDIRECT: generate_mov_indirect(p, inst, dst, src[0], src[1], src[2]); break; case BRW_OPCODE_DIM: assert(devinfo->is_haswell); assert(src[0].type == BRW_REGISTER_TYPE_DF); assert(dst.type == BRW_REGISTER_TYPE_DF); brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F)); break; default: unreachable("Unsupported opcode"); } if (inst->opcode == VEC4_OPCODE_PACK_BYTES) { /* Handled dependency hints in the generator. */ assert(!inst->conditional_mod); } else if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) { assert(p->nr_insn == pre_emit_nr_insn + 1 || !"conditional_mod, no_dd_check, or no_dd_clear set for IR " "emitting more than 1 instruction"); brw_inst *last = &p->store[pre_emit_nr_insn]; if (inst->conditional_mod) brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod); brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear); brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check); } } brw_set_uip_jip(p, 0); /* end of program sentinel */ disasm_new_inst_group(disasm_info, p->next_insn_offset); #ifndef NDEBUG bool validated = #else if (unlikely(debug_flag)) #endif brw_validate_instructions(devinfo, p->store, 0, p->next_insn_offset, disasm_info); int before_size = p->next_insn_offset; brw_compact_instructions(p, 0, disasm_info); int after_size = p->next_insn_offset; if (unlikely(debug_flag)) { fprintf(stderr, "Native code for %s %s shader %s:\n", nir->info.label ? nir->info.label : "unnamed", _mesa_shader_stage_to_string(nir->info.stage), nir->info.name); fprintf(stderr, "%s vec4 shader: %d instructions. %d loops. %u cycles. %d:%d " "spills:fills. Compacted %d to %d bytes (%.0f%%)\n", stage_abbrev, before_size / 16, loop_count, cfg->cycle_count, spill_count, fill_count, before_size, after_size, 100.0f * (before_size - after_size) / before_size); dump_assembly(p->store, disasm_info); } ralloc_free(disasm_info); assert(validated); compiler->shader_debug_log(log_data, "%s vec4 shader: %d inst, %d loops, %u cycles, " "%d:%d spills:fills, compacted %d to %d bytes.", stage_abbrev, before_size / 16, loop_count, cfg->cycle_count, spill_count, fill_count, before_size, after_size); } extern "C" const unsigned * brw_vec4_generate_assembly(const struct brw_compiler *compiler, void *log_data, void *mem_ctx, const nir_shader *nir, struct brw_vue_prog_data *prog_data, const struct cfg_t *cfg, unsigned *out_assembly_size) { struct brw_codegen *p = rzalloc(mem_ctx, struct brw_codegen); brw_init_codegen(compiler->devinfo, p, mem_ctx); brw_set_default_access_mode(p, BRW_ALIGN_16); generate_code(p, compiler, log_data, nir, prog_data, cfg); return brw_get_program(p, out_assembly_size); }