/*
 * Copyright © 2013 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * \file brw_vec4_tes.cpp
 *
 * Tessellaton evaluation shader specific code derived from the vec4_visitor class.
 */

#include "brw_vec4_tes.h"
#include "brw_cfg.h"
#include "common/gen_debug.h"

namespace brw {

vec4_tes_visitor::vec4_tes_visitor(const struct brw_compiler *compiler,
                                  void *log_data,
                                  const struct brw_tes_prog_key *key,
                                  struct brw_tes_prog_data *prog_data,
                                  const nir_shader *shader,
                                  void *mem_ctx,
                                  int shader_time_index)
   : vec4_visitor(compiler, log_data, &key->tex, &prog_data->base,
                  shader, mem_ctx, false, shader_time_index)
{
}

void
vec4_tes_visitor::setup_payload()
{
   int reg = 0;

   /* The payload always contains important data in r0 and r1, which contains
    * the URB handles that are passed on to the URB write at the end
    * of the thread.
    */
   reg += 2;

   reg = setup_uniforms(reg);

   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
      for (int i = 0; i < 3; i++) {
         if (inst->src[i].file != ATTR)
            continue;

         bool is_64bit = type_sz(inst->src[i].type) == 8;

         unsigned slot = inst->src[i].nr + inst->src[i].offset / 16;
         struct brw_reg grf = brw_vec4_grf(reg + slot / 2, 4 * (slot % 2));
         grf = stride(grf, 0, is_64bit ? 2 : 4, 1);
         grf.swizzle = inst->src[i].swizzle;
         grf.type = inst->src[i].type;
         grf.abs = inst->src[i].abs;
         grf.negate = inst->src[i].negate;

         /* For 64-bit attributes we can end up with components XY in the
          * second half of a register and components ZW in the first half
          * of the next. Fix it up here.
          */
         if (is_64bit && grf.subnr > 0) {
            /* We can't do swizzles that mix XY and ZW channels in this case.
             * Such cases should have been handled by the scalarization pass.
             */
            assert((brw_mask_for_swizzle(grf.swizzle) & 0x3) ^
                   (brw_mask_for_swizzle(grf.swizzle) & 0xc));
            if (brw_mask_for_swizzle(grf.swizzle) & 0xc) {
               grf.subnr = 0;
               grf.nr++;
               grf.swizzle -= BRW_SWIZZLE_ZZZZ;
            }
         }

         inst->src[i] = grf;
      }
   }

   reg += 8 * prog_data->urb_read_length;

   this->first_non_payload_grf = reg;
}


void
vec4_tes_visitor::emit_prolog()
{
   input_read_header = src_reg(this, glsl_type::uvec4_type);
   emit(TES_OPCODE_CREATE_INPUT_READ_HEADER, dst_reg(input_read_header));

   this->current_annotation = NULL;
}


void
vec4_tes_visitor::emit_urb_write_header(int mrf)
{
   /* No need to do anything for DS; an implied write to this MRF will be
    * performed by VS_OPCODE_URB_WRITE.
    */
   (void) mrf;
}


vec4_instruction *
vec4_tes_visitor::emit_urb_write_opcode(bool complete)
{
   /* For DS, the URB writes end the thread. */
   if (complete) {
      if (INTEL_DEBUG & DEBUG_SHADER_TIME)
         emit_shader_time_end();
   }

   vec4_instruction *inst = emit(VS_OPCODE_URB_WRITE);
   inst->urb_write_flags = complete ?
      BRW_URB_WRITE_EOT_COMPLETE : BRW_URB_WRITE_NO_FLAGS;

   return inst;
}

void
vec4_tes_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
{
   const struct brw_tes_prog_data *tes_prog_data =
      (const struct brw_tes_prog_data *) prog_data;

   switch (instr->intrinsic) {
   case nir_intrinsic_load_tess_coord:
      /* gl_TessCoord is part of the payload in g1 channels 0-2 and 4-6. */
      emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
               src_reg(brw_vec8_grf(1, 0))));
      break;
   case nir_intrinsic_load_tess_level_outer:
      if (tes_prog_data->domain == BRW_TESS_DOMAIN_ISOLINE) {
         emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
                  swizzle(src_reg(ATTR, 1, glsl_type::vec4_type),
                          BRW_SWIZZLE_ZWZW)));
      } else {
         emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
                  swizzle(src_reg(ATTR, 1, glsl_type::vec4_type),
                          BRW_SWIZZLE_WZYX)));
      }
      break;
   case nir_intrinsic_load_tess_level_inner:
      if (tes_prog_data->domain == BRW_TESS_DOMAIN_QUAD) {
         emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
                  swizzle(src_reg(ATTR, 0, glsl_type::vec4_type),
                          BRW_SWIZZLE_WZYX)));
      } else {
         emit(MOV(get_nir_dest(instr->dest, BRW_REGISTER_TYPE_F),
                  src_reg(ATTR, 1, glsl_type::float_type)));
      }
      break;
   case nir_intrinsic_load_primitive_id:
      emit(TES_OPCODE_GET_PRIMITIVE_ID,
           get_nir_dest(instr->dest, BRW_REGISTER_TYPE_UD));
      break;

   case nir_intrinsic_load_input:
   case nir_intrinsic_load_per_vertex_input: {
      src_reg indirect_offset = get_indirect_offset(instr);
      unsigned imm_offset = instr->const_index[0];
      src_reg header = input_read_header;
      bool is_64bit = nir_dest_bit_size(instr->dest) == 64;
      unsigned first_component = nir_intrinsic_component(instr);
      if (is_64bit)
         first_component /= 2;

      if (indirect_offset.file != BAD_FILE) {
         header = src_reg(this, glsl_type::uvec4_type);
         emit(TES_OPCODE_ADD_INDIRECT_URB_OFFSET, dst_reg(header),
              input_read_header, indirect_offset);
      } else {
         /* Arbitrarily only push up to 24 vec4 slots worth of data,
          * which is 12 registers (since each holds 2 vec4 slots).
          */
         const unsigned max_push_slots = 24;
         if (imm_offset < max_push_slots) {
            const glsl_type *src_glsl_type =
               is_64bit ? glsl_type::dvec4_type : glsl_type::ivec4_type;
            src_reg src = src_reg(ATTR, imm_offset, src_glsl_type);
            src.swizzle = BRW_SWZ_COMP_INPUT(first_component);

            const brw_reg_type dst_reg_type =
               is_64bit ? BRW_REGISTER_TYPE_DF : BRW_REGISTER_TYPE_D;
            emit(MOV(get_nir_dest(instr->dest, dst_reg_type), src));

            prog_data->urb_read_length =
               MAX2(prog_data->urb_read_length,
                    DIV_ROUND_UP(imm_offset + (is_64bit ? 2 : 1), 2));
            break;
         }
      }

      if (!is_64bit) {
         dst_reg temp(this, glsl_type::ivec4_type);
         vec4_instruction *read =
            emit(VEC4_OPCODE_URB_READ, temp, src_reg(header));
         read->offset = imm_offset;
         read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;

         src_reg src = src_reg(temp);
         src.swizzle = BRW_SWZ_COMP_INPUT(first_component);

         /* Copy to target.  We might end up with some funky writemasks landing
          * in here, but we really don't want them in the above pseudo-ops.
          */
         dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_D);
         dst.writemask = brw_writemask_for_size(instr->num_components);
         emit(MOV(dst, src));
      } else {
         /* For 64-bit we need to load twice as many 32-bit components, and for
          * dvec3/4 we need to emit 2 URB Read messages
          */
         dst_reg temp(this, glsl_type::dvec4_type);
         dst_reg temp_d = retype(temp, BRW_REGISTER_TYPE_D);

         vec4_instruction *read =
            emit(VEC4_OPCODE_URB_READ, temp_d, src_reg(header));
         read->offset = imm_offset;
         read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;

         if (instr->num_components > 2) {
            read = emit(VEC4_OPCODE_URB_READ, byte_offset(temp_d, REG_SIZE),
                        src_reg(header));
            read->offset = imm_offset + 1;
            read->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
         }

         src_reg temp_as_src = src_reg(temp);
         temp_as_src.swizzle = BRW_SWZ_COMP_INPUT(first_component);

         dst_reg shuffled(this, glsl_type::dvec4_type);
         shuffle_64bit_data(shuffled, temp_as_src, false);

         dst_reg dst = get_nir_dest(instr->dest, BRW_REGISTER_TYPE_DF);
         dst.writemask = brw_writemask_for_size(instr->num_components);
         emit(MOV(dst, src_reg(shuffled)));
      }
      break;
   }
   default:
      vec4_visitor::nir_emit_intrinsic(instr);
   }
}


void
vec4_tes_visitor::emit_thread_end()
{
   /* For DS, we always end the thread by emitting a single vertex.
    * emit_urb_write_opcode() will take care of setting the eot flag on the
    * SEND instruction.
    */
   emit_vertex();
}

} /* namespace brw */