// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_H_ #define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_H_ #include <stddef.h> #include <limits> #include <ostream> #include <type_traits> #include "third_party/base/numerics/safe_conversions_impl.h" namespace pdfium { namespace base { // The following are helper constexpr template functions and classes for safely // performing a range of conversions, assignments, and tests: // // checked_cast<> - Analogous to static_cast<> for numeric types, except // that it CHECKs that the specified numeric conversion will not overflow // or underflow. NaN source will always trigger a CHECK. // The default CHECK triggers a crash, but the handler can be overriden. // saturated_cast<> - Analogous to static_cast<> for numeric types, except // that it returns a saturated result when the specified numeric conversion // would otherwise overflow or underflow. An NaN source returns 0 by // default, but can be overridden to return a different result. // strict_cast<> - Analogous to static_cast<> for numeric types, except that // it will cause a compile failure if the destination type is not large // enough to contain any value in the source type. It performs no runtime // checking and thus introduces no runtime overhead. // IsValueInRangeForNumericType<>() - A convenience function that returns true // if the type supplied to the template parameter can represent the value // passed as an argument to the function. // IsValueNegative<>() - A convenience function that will accept any arithmetic // type as an argument and will return whether the value is less than zero. // Unsigned types always return false. // SafeUnsignedAbs() - Returns the absolute value of the supplied integer // parameter as an unsigned result (thus avoiding an overflow if the value // is the signed, two's complement minimum). // StrictNumeric<> - A wrapper type that performs assignments and copies via // the strict_cast<> template, and can perform valid arithmetic comparisons // across any range of arithmetic types. StrictNumeric is the return type // for values extracted from a CheckedNumeric class instance. The raw // arithmetic value is extracted via static_cast to the underlying type. // MakeStrictNum() - Creates a new StrictNumeric from the underlying type of // the supplied arithmetic or StrictNumeric type. // Convenience function that returns true if the supplied value is in range // for the destination type. template <typename Dst, typename Src> constexpr bool IsValueInRangeForNumericType(Src value) { return internal::DstRangeRelationToSrcRange<Dst>(value).IsValid(); } // Forces a crash, like a CHECK(false). Used for numeric boundary errors. struct CheckOnFailure { template <typename T> static T HandleFailure() { #if defined(__GNUC__) || defined(__clang__) __builtin_trap(); #else ((void)(*(volatile char*)0 = 0)); #endif return T(); } }; // checked_cast<> is analogous to static_cast<> for numeric types, // except that it CHECKs that the specified numeric conversion will not // overflow or underflow. NaN source will always trigger a CHECK. template <typename Dst, class CheckHandler = CheckOnFailure, typename Src> constexpr Dst checked_cast(Src value) { // This throws a compile-time error on evaluating the constexpr if it can be // determined at compile-time as failing, otherwise it will CHECK at runtime. using SrcType = typename internal::UnderlyingType<Src>::type; return IsValueInRangeForNumericType<Dst, SrcType>(value) ? static_cast<Dst>(static_cast<SrcType>(value)) : CheckHandler::template HandleFailure<Dst>(); } // Default boundaries for integral/float: max/infinity, lowest/-infinity, 0/NaN. template <typename T> struct SaturationDefaultHandler { static constexpr T NaN() { return std::numeric_limits<T>::has_quiet_NaN ? std::numeric_limits<T>::quiet_NaN() : T(); } static constexpr T max() { return std::numeric_limits<T>::max(); } static constexpr T Overflow() { return std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() : std::numeric_limits<T>::max(); } static constexpr T lowest() { return std::numeric_limits<T>::lowest(); } static constexpr T Underflow() { return std::numeric_limits<T>::has_infinity ? std::numeric_limits<T>::infinity() * -1 : std::numeric_limits<T>::lowest(); } }; namespace internal { template <typename Dst, template <typename> class S, typename Src> constexpr Dst saturated_cast_impl(Src value, RangeCheck constraint) { // For some reason clang generates much better code when the branch is // structured exactly this way, rather than a sequence of checks. return !constraint.IsOverflowFlagSet() ? (!constraint.IsUnderflowFlagSet() ? static_cast<Dst>(value) : S<Dst>::Underflow()) // Skip this check for integral Src, which cannot be NaN. : (std::is_integral<Src>::value || !constraint.IsUnderflowFlagSet() ? S<Dst>::Overflow() : S<Dst>::NaN()); } // saturated_cast<> is analogous to static_cast<> for numeric types, except // that the specified numeric conversion will saturate by default rather than // overflow or underflow, and NaN assignment to an integral will return 0. // All boundary condition behaviors can be overriden with a custom handler. template <typename Dst, template <typename> class SaturationHandler = SaturationDefaultHandler, typename Src> constexpr Dst saturated_cast(Src value) { using SrcType = typename UnderlyingType<Src>::type; return saturated_cast_impl<Dst, SaturationHandler, SrcType>( value, DstRangeRelationToSrcRange<Dst, SaturationHandler, SrcType>(value)); } // strict_cast<> is analogous to static_cast<> for numeric types, except that // it will cause a compile failure if the destination type is not large enough // to contain any value in the source type. It performs no runtime checking. template <typename Dst, typename Src> constexpr Dst strict_cast(Src value) { using SrcType = typename UnderlyingType<Src>::type; static_assert(UnderlyingType<Src>::is_numeric, "Argument must be numeric."); static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric."); // If you got here from a compiler error, it's because you tried to assign // from a source type to a destination type that has insufficient range. // The solution may be to change the destination type you're assigning to, // and use one large enough to represent the source. // Alternatively, you may be better served with the checked_cast<> or // saturated_cast<> template functions for your particular use case. static_assert(StaticDstRangeRelationToSrcRange<Dst, SrcType>::value == NUMERIC_RANGE_CONTAINED, "The source type is out of range for the destination type. " "Please see strict_cast<> comments for more information."); return static_cast<Dst>(static_cast<SrcType>(value)); } // Some wrappers to statically check that a type is in range. template <typename Dst, typename Src, class Enable = void> struct IsNumericRangeContained { static const bool value = false; }; template <typename Dst, typename Src> struct IsNumericRangeContained< Dst, Src, typename std::enable_if<ArithmeticOrUnderlyingEnum<Dst>::value && ArithmeticOrUnderlyingEnum<Src>::value>::type> { static const bool value = StaticDstRangeRelationToSrcRange<Dst, Src>::value == NUMERIC_RANGE_CONTAINED; }; // StrictNumeric implements compile time range checking between numeric types by // wrapping assignment operations in a strict_cast. This class is intended to be // used for function arguments and return types, to ensure the destination type // can always contain the source type. This is essentially the same as enforcing // -Wconversion in gcc and C4302 warnings on MSVC, but it can be applied // incrementally at API boundaries, making it easier to convert code so that it // compiles cleanly with truncation warnings enabled. // This template should introduce no runtime overhead, but it also provides no // runtime checking of any of the associated mathematical operations. Use // CheckedNumeric for runtime range checks of the actual value being assigned. template <typename T> class StrictNumeric { public: using type = T; constexpr StrictNumeric() : value_(0) {} // Copy constructor. template <typename Src> constexpr StrictNumeric(const StrictNumeric<Src>& rhs) : value_(strict_cast<T>(rhs.value_)) {} // This is not an explicit constructor because we implicitly upgrade regular // numerics to StrictNumerics to make them easier to use. template <typename Src> constexpr StrictNumeric(Src value) // NOLINT(runtime/explicit) : value_(strict_cast<T>(value)) {} // If you got here from a compiler error, it's because you tried to assign // from a source type to a destination type that has insufficient range. // The solution may be to change the destination type you're assigning to, // and use one large enough to represent the source. // If you're assigning from a CheckedNumeric<> class, you may be able to use // the AssignIfValid() member function, specify a narrower destination type to // the member value functions (e.g. val.template ValueOrDie<Dst>()), use one // of the value helper functions (e.g. ValueOrDieForType<Dst>(val)). // If you've encountered an _ambiguous overload_ you can use a static_cast<> // to explicitly cast the result to the destination type. // If none of that works, you may be better served with the checked_cast<> or // saturated_cast<> template functions for your particular use case. template <typename Dst, typename std::enable_if< IsNumericRangeContained<Dst, T>::value>::type* = nullptr> constexpr operator Dst() const { return static_cast<typename ArithmeticOrUnderlyingEnum<Dst>::type>(value_); } private: const T value_; }; // Convience wrapper returns a StrictNumeric from the provided arithmetic type. template <typename T> constexpr StrictNumeric<typename UnderlyingType<T>::type> MakeStrictNum( const T value) { return value; } // Overload the ostream output operator to make logging work nicely. template <typename T> std::ostream& operator<<(std::ostream& os, const StrictNumeric<T>& value) { os << static_cast<T>(value); return os; } #define STRICT_COMPARISON_OP(NAME, OP) \ template <typename L, typename R, \ typename std::enable_if< \ internal::IsStrictOp<L, R>::value>::type* = nullptr> \ constexpr bool operator OP(const L lhs, const R rhs) { \ return SafeCompare<NAME, typename UnderlyingType<L>::type, \ typename UnderlyingType<R>::type>(lhs, rhs); \ } STRICT_COMPARISON_OP(IsLess, <); STRICT_COMPARISON_OP(IsLessOrEqual, <=); STRICT_COMPARISON_OP(IsGreater, >); STRICT_COMPARISON_OP(IsGreaterOrEqual, >=); STRICT_COMPARISON_OP(IsEqual, ==); STRICT_COMPARISON_OP(IsNotEqual, !=); #undef STRICT_COMPARISON_OP }; using internal::strict_cast; using internal::saturated_cast; using internal::SafeUnsignedAbs; using internal::StrictNumeric; using internal::MakeStrictNum; using internal::IsValueNegative; // Explicitly make a shorter size_t alias for convenience. using SizeT = StrictNumeric<size_t>; } // namespace base } // namespace pdfium #endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_H_