/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_ #define SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_ #include <array> #include <deque> #include <map> #include <string> #include <unordered_map> #include <utility> #include <vector> #include "perfetto/base/hash.h" #include "perfetto/base/logging.h" #include "perfetto/base/optional.h" #include "perfetto/base/string_view.h" #include "perfetto/base/time.h" #include "perfetto/base/utils.h" #include "src/trace_processor/ftrace_utils.h" #include "src/trace_processor/stats.h" #include "src/trace_processor/string_pool.h" namespace perfetto { namespace trace_processor { // UniquePid is an offset into |unique_processes_|. This is necessary because // Unix pids are reused and thus not guaranteed to be unique over a long // period of time. using UniquePid = uint32_t; // UniqueTid is an offset into |unique_threads_|. Necessary because tids can // be reused. using UniqueTid = uint32_t; // StringId is an offset into |string_pool_|. using StringId = StringPool::Id; // Identifiers for all the tables in the database. enum TableId : uint8_t { // Intentionally don't have TableId == 0 so that RowId == 0 can refer to an // invalid row id. kCounterValues = 1, kRawEvents = 2, kInstants = 3, kSched = 4, }; // The top 8 bits are set to the TableId and the bottom 32 to the row of the // table. using RowId = int64_t; static const RowId kInvalidRowId = 0; using ArgSetId = uint32_t; static const ArgSetId kInvalidArgSetId = 0; enum RefType { kRefNoRef = 0, kRefUtid = 1, kRefCpuId = 2, kRefIrq = 3, kRefSoftIrq = 4, kRefUpid = 5, kRefMax }; const std::vector<const char*>& GetRefTypeStringMap(); // Stores a data inside a trace file in a columnar form. This makes it efficient // to read or search across a single field of the trace (e.g. all the thread // names for a given CPU). class TraceStorage { public: TraceStorage(); virtual ~TraceStorage(); // Information about a unique process seen in a trace. struct Process { explicit Process(uint32_t p) : pid(p) {} int64_t start_ns = 0; StringId name_id = 0; uint32_t pid = 0; base::Optional<UniquePid> pupid; }; // Information about a unique thread seen in a trace. struct Thread { explicit Thread(uint32_t t) : tid(t) {} int64_t start_ns = 0; StringId name_id = 0; base::Optional<UniquePid> upid; uint32_t tid = 0; }; // Generic key value storage which can be referenced by other tables. class Args { public: // Variadic type representing the possible values for the args table. struct Variadic { enum Type { kInt, kString, kReal }; static Variadic Integer(int64_t int_value) { Variadic variadic; variadic.type = Type::kInt; variadic.int_value = int_value; return variadic; } static Variadic String(StringId string_id) { Variadic variadic; variadic.type = Type::kString; variadic.string_value = string_id; return variadic; } static Variadic Real(double real_value) { Variadic variadic; variadic.type = Type::kReal; variadic.real_value = real_value; return variadic; } Type type; union { int64_t int_value; StringId string_value; double real_value; }; }; struct Arg { StringId flat_key = 0; StringId key = 0; Variadic value = Variadic::Integer(0); // This is only used by the arg tracker and so is not part of the hash. RowId row_id = 0; }; struct ArgHasher { uint64_t operator()(const Arg& arg) const noexcept { base::Hash hash; hash.Update(arg.key); // We don't hash arg.flat_key because it's a subsequence of arg.key. switch (arg.value.type) { case Variadic::Type::kInt: hash.Update(arg.value.int_value); break; case Variadic::Type::kString: hash.Update(arg.value.string_value); break; case Variadic::Type::kReal: hash.Update(arg.value.real_value); break; } return hash.digest(); } }; const std::deque<ArgSetId>& set_ids() const { return set_ids_; } const std::deque<StringId>& flat_keys() const { return flat_keys_; } const std::deque<StringId>& keys() const { return keys_; } const std::deque<Variadic>& arg_values() const { return arg_values_; } uint32_t args_count() const { return static_cast<uint32_t>(set_ids_.size()); } ArgSetId AddArgSet(const std::vector<Arg>& args, uint32_t begin, uint32_t end) { base::Hash hash; for (uint32_t i = begin; i < end; i++) { hash.Update(ArgHasher()(args[i])); } ArgSetHash digest = hash.digest(); auto it = arg_row_for_hash_.find(digest); if (it != arg_row_for_hash_.end()) { return set_ids_[it->second]; } // The +1 ensures that nothing has an id == kInvalidArgSetId == 0. ArgSetId id = static_cast<uint32_t>(arg_row_for_hash_.size()) + 1; arg_row_for_hash_.emplace(digest, args_count()); for (uint32_t i = begin; i < end; i++) { const auto& arg = args[i]; set_ids_.emplace_back(id); flat_keys_.emplace_back(arg.flat_key); keys_.emplace_back(arg.key); arg_values_.emplace_back(arg.value); } return id; } private: using ArgSetHash = uint64_t; std::deque<ArgSetId> set_ids_; std::deque<StringId> flat_keys_; std::deque<StringId> keys_; std::deque<Variadic> arg_values_; std::unordered_map<ArgSetHash, uint32_t> arg_row_for_hash_; }; class Slices { public: inline size_t AddSlice(uint32_t cpu, int64_t start_ns, int64_t duration_ns, UniqueTid utid, ftrace_utils::TaskState end_state, int32_t priority) { cpus_.emplace_back(cpu); start_ns_.emplace_back(start_ns); durations_.emplace_back(duration_ns); utids_.emplace_back(utid); end_states_.emplace_back(end_state); priorities_.emplace_back(priority); if (utid >= rows_for_utids_.size()) rows_for_utids_.resize(utid + 1); rows_for_utids_[utid].emplace_back(slice_count() - 1); return slice_count() - 1; } void set_duration(size_t index, int64_t duration_ns) { durations_[index] = duration_ns; } void set_end_state(size_t index, ftrace_utils::TaskState end_state) { end_states_[index] = end_state; } size_t slice_count() const { return start_ns_.size(); } const std::deque<uint32_t>& cpus() const { return cpus_; } const std::deque<int64_t>& start_ns() const { return start_ns_; } const std::deque<int64_t>& durations() const { return durations_; } const std::deque<UniqueTid>& utids() const { return utids_; } const std::deque<ftrace_utils::TaskState>& end_state() const { return end_states_; } const std::deque<int32_t>& priorities() const { return priorities_; } const std::deque<std::vector<uint32_t>>& rows_for_utids() const { return rows_for_utids_; } private: // Each deque below has the same number of entries (the number of slices // in the trace for the CPU). std::deque<uint32_t> cpus_; std::deque<int64_t> start_ns_; std::deque<int64_t> durations_; std::deque<UniqueTid> utids_; std::deque<ftrace_utils::TaskState> end_states_; std::deque<int32_t> priorities_; // One row per utid. std::deque<std::vector<uint32_t>> rows_for_utids_; }; class NestableSlices { public: inline size_t AddSlice(int64_t start_ns, int64_t duration_ns, int64_t ref, RefType type, StringId cat, StringId name, uint8_t depth, int64_t stack_id, int64_t parent_stack_id) { start_ns_.emplace_back(start_ns); durations_.emplace_back(duration_ns); refs_.emplace_back(ref); types_.emplace_back(type); cats_.emplace_back(cat); names_.emplace_back(name); depths_.emplace_back(depth); stack_ids_.emplace_back(stack_id); parent_stack_ids_.emplace_back(parent_stack_id); return slice_count() - 1; } void set_duration(size_t index, int64_t duration_ns) { durations_[index] = duration_ns; } void set_stack_id(size_t index, int64_t stack_id) { stack_ids_[index] = stack_id; } size_t slice_count() const { return start_ns_.size(); } const std::deque<int64_t>& start_ns() const { return start_ns_; } const std::deque<int64_t>& durations() const { return durations_; } const std::deque<int64_t>& refs() const { return refs_; } const std::deque<RefType>& types() const { return types_; } const std::deque<StringId>& cats() const { return cats_; } const std::deque<StringId>& names() const { return names_; } const std::deque<uint8_t>& depths() const { return depths_; } const std::deque<int64_t>& stack_ids() const { return stack_ids_; } const std::deque<int64_t>& parent_stack_ids() const { return parent_stack_ids_; } private: std::deque<int64_t> start_ns_; std::deque<int64_t> durations_; std::deque<int64_t> refs_; std::deque<RefType> types_; std::deque<StringId> cats_; std::deque<StringId> names_; std::deque<uint8_t> depths_; std::deque<int64_t> stack_ids_; std::deque<int64_t> parent_stack_ids_; }; class CounterDefinitions { public: using Id = uint32_t; static constexpr Id kInvalidId = std::numeric_limits<Id>::max(); inline Id AddCounterDefinition(StringId name_id, int64_t ref, RefType type) { base::Hash hash; hash.Update(name_id); hash.Update(ref); hash.Update(type); // TODO(lalitm): this is a perf bottleneck and likely we can do something // quite a bit better here. uint64_t digest = hash.digest(); auto it = hash_to_row_idx_.find(digest); if (it != hash_to_row_idx_.end()) return it->second; name_ids_.emplace_back(name_id); refs_.emplace_back(ref); types_.emplace_back(type); hash_to_row_idx_.emplace(digest, size() - 1); return size() - 1; } uint32_t size() const { return static_cast<uint32_t>(name_ids_.size()); } const std::deque<StringId>& name_ids() const { return name_ids_; } const std::deque<int64_t>& refs() const { return refs_; } const std::deque<RefType>& types() const { return types_; } private: std::deque<StringId> name_ids_; std::deque<int64_t> refs_; std::deque<RefType> types_; std::unordered_map<uint64_t, uint32_t> hash_to_row_idx_; }; class CounterValues { public: inline uint32_t AddCounterValue(CounterDefinitions::Id counter_id, int64_t timestamp, double value) { counter_ids_.emplace_back(counter_id); timestamps_.emplace_back(timestamp); values_.emplace_back(value); arg_set_ids_.emplace_back(kInvalidArgSetId); if (counter_id != CounterDefinitions::kInvalidId) { if (counter_id >= rows_for_counter_id_.size()) { rows_for_counter_id_.resize(counter_id + 1); } rows_for_counter_id_[counter_id].emplace_back(size() - 1); } return size() - 1; } void set_counter_id(uint32_t index, CounterDefinitions::Id counter_id) { PERFETTO_DCHECK(counter_ids_[index] == CounterDefinitions::kInvalidId); counter_ids_[index] = counter_id; if (counter_id >= rows_for_counter_id_.size()) { rows_for_counter_id_.resize(counter_id + 1); } auto* new_rows = &rows_for_counter_id_[counter_id]; new_rows->insert( std::upper_bound(new_rows->begin(), new_rows->end(), index), index); } void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; } uint32_t size() const { return static_cast<uint32_t>(counter_ids_.size()); } const std::deque<CounterDefinitions::Id>& counter_ids() const { return counter_ids_; } const std::deque<int64_t>& timestamps() const { return timestamps_; } const std::deque<double>& values() const { return values_; } const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; } const std::deque<std::vector<uint32_t>>& rows_for_counter_id() const { return rows_for_counter_id_; } private: std::deque<CounterDefinitions::Id> counter_ids_; std::deque<int64_t> timestamps_; std::deque<double> values_; std::deque<ArgSetId> arg_set_ids_; // Indexed by counter_id value and contains the row numbers corresponding to // it. std::deque<std::vector<uint32_t>> rows_for_counter_id_; }; class SqlStats { public: static constexpr size_t kMaxLogEntries = 100; uint32_t RecordQueryBegin(const std::string& query, int64_t time_queued, int64_t time_started); void RecordQueryFirstNext(uint32_t row, int64_t time_first_next); void RecordQueryEnd(uint32_t row, int64_t time_end); size_t size() const { return queries_.size(); } const std::deque<std::string>& queries() const { return queries_; } const std::deque<int64_t>& times_queued() const { return times_queued_; } const std::deque<int64_t>& times_started() const { return times_started_; } const std::deque<int64_t>& times_first_next() const { return times_first_next_; } const std::deque<int64_t>& times_ended() const { return times_ended_; } private: uint32_t popped_queries_ = 0; std::deque<std::string> queries_; std::deque<int64_t> times_queued_; std::deque<int64_t> times_started_; std::deque<int64_t> times_first_next_; std::deque<int64_t> times_ended_; }; class Instants { public: inline uint32_t AddInstantEvent(int64_t timestamp, StringId name_id, double value, int64_t ref, RefType type) { timestamps_.emplace_back(timestamp); name_ids_.emplace_back(name_id); values_.emplace_back(value); refs_.emplace_back(ref); types_.emplace_back(type); arg_set_ids_.emplace_back(kInvalidArgSetId); return static_cast<uint32_t>(instant_count() - 1); } void set_ref(uint32_t row, int64_t ref) { refs_[row] = ref; } void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; } size_t instant_count() const { return timestamps_.size(); } const std::deque<int64_t>& timestamps() const { return timestamps_; } const std::deque<StringId>& name_ids() const { return name_ids_; } const std::deque<double>& values() const { return values_; } const std::deque<int64_t>& refs() const { return refs_; } const std::deque<RefType>& types() const { return types_; } const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; } private: std::deque<int64_t> timestamps_; std::deque<StringId> name_ids_; std::deque<double> values_; std::deque<int64_t> refs_; std::deque<RefType> types_; std::deque<ArgSetId> arg_set_ids_; }; class RawEvents { public: inline RowId AddRawEvent(int64_t timestamp, StringId name_id, uint32_t cpu, UniqueTid utid) { timestamps_.emplace_back(timestamp); name_ids_.emplace_back(name_id); cpus_.emplace_back(cpu); utids_.emplace_back(utid); arg_set_ids_.emplace_back(kInvalidArgSetId); return CreateRowId(TableId::kRawEvents, static_cast<uint32_t>(raw_event_count() - 1)); } void set_arg_set_id(uint32_t row, ArgSetId id) { arg_set_ids_[row] = id; } size_t raw_event_count() const { return timestamps_.size(); } const std::deque<int64_t>& timestamps() const { return timestamps_; } const std::deque<StringId>& name_ids() const { return name_ids_; } const std::deque<uint32_t>& cpus() const { return cpus_; } const std::deque<UniqueTid>& utids() const { return utids_; } const std::deque<ArgSetId>& arg_set_ids() const { return arg_set_ids_; } private: std::deque<int64_t> timestamps_; std::deque<StringId> name_ids_; std::deque<uint32_t> cpus_; std::deque<UniqueTid> utids_; std::deque<ArgSetId> arg_set_ids_; }; class AndroidLogs { public: inline size_t AddLogEvent(int64_t timestamp, UniqueTid utid, uint8_t prio, StringId tag_id, StringId msg_id) { timestamps_.emplace_back(timestamp); utids_.emplace_back(utid); prios_.emplace_back(prio); tag_ids_.emplace_back(tag_id); msg_ids_.emplace_back(msg_id); return size() - 1; } size_t size() const { return timestamps_.size(); } const std::deque<int64_t>& timestamps() const { return timestamps_; } const std::deque<UniqueTid>& utids() const { return utids_; } const std::deque<uint8_t>& prios() const { return prios_; } const std::deque<StringId>& tag_ids() const { return tag_ids_; } const std::deque<StringId>& msg_ids() const { return msg_ids_; } private: std::deque<int64_t> timestamps_; std::deque<UniqueTid> utids_; std::deque<uint8_t> prios_; std::deque<StringId> tag_ids_; std::deque<StringId> msg_ids_; }; struct Stats { using IndexMap = std::map<int, int64_t>; int64_t value = 0; IndexMap indexed_values; }; using StatsMap = std::array<Stats, stats::kNumKeys>; class HeapProfileFrames { public: struct Row { StringId name_id; int64_t mapping_row; int64_t rel_pc; bool operator==(const Row& other) const { return std::tie(name_id, mapping_row, rel_pc) == std::tie(other.name_id, other.mapping_row, other.rel_pc); } }; int64_t Insert(const Row& row) { names_.emplace_back(row.name_id); mappings_.emplace_back(row.mapping_row); rel_pcs_.emplace_back(row.rel_pc); return static_cast<int64_t>(names_.size()) - 1; } const std::deque<StringId>& names() const { return names_; } const std::deque<int64_t>& mappings() const { return mappings_; } const std::deque<int64_t>& rel_pcs() const { return rel_pcs_; } private: std::deque<StringId> names_; std::deque<int64_t> mappings_; std::deque<int64_t> rel_pcs_; }; class HeapProfileCallsites { public: struct Row { int64_t depth; int64_t parent_id; int64_t frame_row; bool operator==(const Row& other) const { return std::tie(depth, parent_id, frame_row) == std::tie(other.depth, other.parent_id, other.frame_row); } }; int64_t Insert(const Row& row) { frame_depths_.emplace_back(row.depth); parent_callsite_ids_.emplace_back(row.parent_id); frame_ids_.emplace_back(row.frame_row); return static_cast<int64_t>(frame_depths_.size()) - 1; } const std::deque<int64_t>& frame_depths() const { return frame_depths_; } const std::deque<int64_t>& parent_callsite_ids() const { return parent_callsite_ids_; } const std::deque<int64_t>& frame_ids() const { return frame_ids_; } private: std::deque<int64_t> frame_depths_; std::deque<int64_t> parent_callsite_ids_; std::deque<int64_t> frame_ids_; }; class HeapProfileMappings { public: struct Row { StringId build_id; int64_t offset; int64_t start; int64_t end; int64_t load_bias; StringId name_id; bool operator==(const Row& other) const { return std::tie(build_id, offset, start, end, load_bias, name_id) == std::tie(other.build_id, other.offset, other.start, other.end, other.load_bias, other.name_id); } }; int64_t Insert(const Row& row) { build_ids_.emplace_back(row.build_id); offsets_.emplace_back(row.offset); starts_.emplace_back(row.start); ends_.emplace_back(row.end); load_biases_.emplace_back(row.load_bias); names_.emplace_back(row.name_id); return static_cast<int64_t>(build_ids_.size()) - 1; } const std::deque<StringId>& build_ids() const { return build_ids_; } const std::deque<int64_t>& offsets() const { return offsets_; } const std::deque<int64_t>& starts() const { return starts_; } const std::deque<int64_t>& ends() const { return ends_; } const std::deque<int64_t>& load_biases() const { return load_biases_; } const std::deque<StringId>& names() const { return names_; } private: std::deque<StringId> build_ids_; std::deque<int64_t> offsets_; std::deque<int64_t> starts_; std::deque<int64_t> ends_; std::deque<int64_t> load_biases_; std::deque<StringId> names_; }; class HeapProfileAllocations { public: struct Row { int64_t timestamp; int64_t pid; int64_t callsite_id; int64_t count; int64_t size; }; void Insert(const Row& row) { timestamps_.emplace_back(row.timestamp); pids_.emplace_back(row.pid); callsite_ids_.emplace_back(row.callsite_id); counts_.emplace_back(row.count); sizes_.emplace_back(row.size); } const std::deque<int64_t>& timestamps() const { return timestamps_; } const std::deque<int64_t>& pids() const { return pids_; } const std::deque<int64_t>& callsite_ids() const { return callsite_ids_; } const std::deque<int64_t>& counts() const { return counts_; } const std::deque<int64_t>& sizes() const { return sizes_; } private: std::deque<int64_t> timestamps_; std::deque<int64_t> pids_; std::deque<int64_t> callsite_ids_; std::deque<int64_t> counts_; std::deque<int64_t> sizes_; }; void ResetStorage(); UniqueTid AddEmptyThread(uint32_t tid) { unique_threads_.emplace_back(tid); return static_cast<UniqueTid>(unique_threads_.size() - 1); } UniquePid AddEmptyProcess(uint32_t pid) { unique_processes_.emplace_back(pid); return static_cast<UniquePid>(unique_processes_.size() - 1); } // Return an unqiue identifier for the contents of each string. // The string is copied internally and can be destroyed after this called. // Virtual for testing. virtual StringId InternString(base::StringView str) { return string_pool_.InternString(str); } Process* GetMutableProcess(UniquePid upid) { PERFETTO_DCHECK(upid < unique_processes_.size()); return &unique_processes_[upid]; } Thread* GetMutableThread(UniqueTid utid) { PERFETTO_DCHECK(utid < unique_threads_.size()); return &unique_threads_[utid]; } // Example usage: SetStats(stats::android_log_num_failed, 42); void SetStats(size_t key, int64_t value) { PERFETTO_DCHECK(key < stats::kNumKeys); PERFETTO_DCHECK(stats::kTypes[key] == stats::kSingle); stats_[key].value = value; } // Example usage: IncrementStats(stats::android_log_num_failed, -1); void IncrementStats(size_t key, int64_t increment = 1) { PERFETTO_DCHECK(key < stats::kNumKeys); PERFETTO_DCHECK(stats::kTypes[key] == stats::kSingle); stats_[key].value += increment; } // Example usage: IncrementIndexedStats(stats::cpu_failure, 1); void IncrementIndexedStats(size_t key, int index, int64_t increment = 1) { PERFETTO_DCHECK(key < stats::kNumKeys); PERFETTO_DCHECK(stats::kTypes[key] == stats::kIndexed); stats_[key].indexed_values[index] += increment; } // Example usage: SetIndexedStats(stats::cpu_failure, 1, 42); void SetIndexedStats(size_t key, int index, int64_t value) { PERFETTO_DCHECK(key < stats::kNumKeys); PERFETTO_DCHECK(stats::kTypes[key] == stats::kIndexed); stats_[key].indexed_values[index] = value; } class ScopedStatsTracer { public: ScopedStatsTracer(TraceStorage* storage, size_t key) : storage_(storage), key_(key), start_ns_(base::GetWallTimeNs()) {} ~ScopedStatsTracer() { if (!storage_) return; auto delta_ns = base::GetWallTimeNs() - start_ns_; storage_->IncrementStats(key_, delta_ns.count()); } ScopedStatsTracer(ScopedStatsTracer&& other) noexcept { MoveImpl(&other); } ScopedStatsTracer& operator=(ScopedStatsTracer&& other) { MoveImpl(&other); return *this; } private: ScopedStatsTracer(const ScopedStatsTracer&) = delete; ScopedStatsTracer& operator=(const ScopedStatsTracer&) = delete; void MoveImpl(ScopedStatsTracer* other) { storage_ = other->storage_; key_ = other->key_; start_ns_ = other->start_ns_; other->storage_ = nullptr; } TraceStorage* storage_; size_t key_; base::TimeNanos start_ns_; }; ScopedStatsTracer TraceExecutionTimeIntoStats(size_t key) { return ScopedStatsTracer(this, key); } // Reading methods. NullTermStringView GetString(StringId id) const { return string_pool_.Get(id); } const Process& GetProcess(UniquePid upid) const { PERFETTO_DCHECK(upid < unique_processes_.size()); return unique_processes_[upid]; } const Thread& GetThread(UniqueTid utid) const { // Allow utid == 0 for idle thread retrieval. PERFETTO_DCHECK(utid < unique_threads_.size()); return unique_threads_[utid]; } static RowId CreateRowId(TableId table, uint32_t row) { return (static_cast<RowId>(table) << kRowIdTableShift) | row; } static std::pair<int8_t /*table*/, uint32_t /*row*/> ParseRowId(RowId rowid) { auto id = static_cast<uint64_t>(rowid); auto table_id = static_cast<uint8_t>(id >> kRowIdTableShift); auto row = static_cast<uint32_t>(id & ((1ull << kRowIdTableShift) - 1)); return std::make_pair(table_id, row); } const Slices& slices() const { return slices_; } Slices* mutable_slices() { return &slices_; } const NestableSlices& nestable_slices() const { return nestable_slices_; } NestableSlices* mutable_nestable_slices() { return &nestable_slices_; } const CounterDefinitions& counter_definitions() const { return counter_definitions_; } CounterDefinitions* mutable_counter_definitions() { return &counter_definitions_; } const CounterValues& counter_values() const { return counter_values_; } CounterValues* mutable_counter_values() { return &counter_values_; } const SqlStats& sql_stats() const { return sql_stats_; } SqlStats* mutable_sql_stats() { return &sql_stats_; } const Instants& instants() const { return instants_; } Instants* mutable_instants() { return &instants_; } const AndroidLogs& android_logs() const { return android_log_; } AndroidLogs* mutable_android_log() { return &android_log_; } const StatsMap& stats() const { return stats_; } const Args& args() const { return args_; } Args* mutable_args() { return &args_; } const RawEvents& raw_events() const { return raw_events_; } RawEvents* mutable_raw_events() { return &raw_events_; } const HeapProfileMappings& heap_profile_mappings() const { return heap_profile_mappings_; } HeapProfileMappings* mutable_heap_profile_mappings() { return &heap_profile_mappings_; } const HeapProfileFrames& heap_profile_frames() const { return heap_profile_frames_; } HeapProfileFrames* mutable_heap_profile_frames() { return &heap_profile_frames_; } const HeapProfileCallsites& heap_profile_callsites() const { return heap_profile_callsites_; } HeapProfileCallsites* mutable_heap_profile_callsites() { return &heap_profile_callsites_; } const HeapProfileAllocations& heap_profile_allocations() const { return heap_profile_allocations_; } HeapProfileAllocations* mutable_heap_profile_allocations() { return &heap_profile_allocations_; } const StringPool& string_pool() const { return string_pool_; } // |unique_processes_| always contains at least 1 element becuase the 0th ID // is reserved to indicate an invalid process. size_t process_count() const { return unique_processes_.size(); } // |unique_threads_| always contains at least 1 element becuase the 0th ID // is reserved to indicate an invalid thread. size_t thread_count() const { return unique_threads_.size(); } // Number of interned strings in the pool. Includes the empty string w/ ID=0. size_t string_count() const { return string_pool_.size(); } // Start / end ts (in nanoseconds) across the parsed trace events. // Returns (0, 0) if the trace is empty. std::pair<int64_t, int64_t> GetTraceTimestampBoundsNs() const; private: static constexpr uint8_t kRowIdTableShift = 32; using StringHash = uint64_t; TraceStorage(const TraceStorage&) = delete; TraceStorage& operator=(const TraceStorage&) = delete; TraceStorage(TraceStorage&&) = default; TraceStorage& operator=(TraceStorage&&) = default; // Stats about parsing the trace. StatsMap stats_{}; // One entry for each CPU in the trace. Slices slices_; // Args for all other tables. Args args_; // One entry for each unique string in the trace. StringPool string_pool_; // One entry for each UniquePid, with UniquePid as the index. // Never hold on to pointers to Process, as vector resize will // invalidate them. std::vector<Process> unique_processes_; // One entry for each UniqueTid, with UniqueTid as the index. std::deque<Thread> unique_threads_; // Slices coming from userspace events (e.g. Chromium TRACE_EVENT macros). NestableSlices nestable_slices_; // The type of counters in the trace. Can be thought of the the "metadata". CounterDefinitions counter_definitions_; // The values from the Counter events from the trace. This includes CPU // frequency events as well systrace trace_marker counter events. CounterValues counter_values_; SqlStats sql_stats_; // These are instantaneous events in the trace. They have no duration // and do not have a value that make sense to track over time. // e.g. signal events Instants instants_; // Raw events are every ftrace event in the trace. The raw event includes // the timestamp and the pid. The args for the raw event will be in the // args table. This table can be used to generate a text version of the // trace. RawEvents raw_events_; AndroidLogs android_log_; HeapProfileMappings heap_profile_mappings_; HeapProfileFrames heap_profile_frames_; HeapProfileCallsites heap_profile_callsites_; HeapProfileAllocations heap_profile_allocations_; }; } // namespace trace_processor } // namespace perfetto namespace std { template <> struct hash<::perfetto::trace_processor::TraceStorage::HeapProfileFrames::Row> { using argument_type = ::perfetto::trace_processor::TraceStorage::HeapProfileFrames::Row; using result_type = size_t; result_type operator()(const argument_type& r) const { return std::hash<::perfetto::trace_processor::StringId>{}(r.name_id) ^ std::hash<int64_t>{}(r.mapping_row) ^ std::hash<int64_t>{}(r.rel_pc); } }; template <> struct hash< ::perfetto::trace_processor::TraceStorage::HeapProfileCallsites::Row> { using argument_type = ::perfetto::trace_processor::TraceStorage::HeapProfileCallsites::Row; using result_type = size_t; result_type operator()(const argument_type& r) const { return std::hash<int64_t>{}(r.depth) ^ std::hash<int64_t>{}(r.parent_id) ^ std::hash<int64_t>{}(r.frame_row); } }; template <> struct hash< ::perfetto::trace_processor::TraceStorage::HeapProfileMappings::Row> { using argument_type = ::perfetto::trace_processor::TraceStorage::HeapProfileMappings::Row; using result_type = size_t; result_type operator()(const argument_type& r) const { return std::hash<::perfetto::trace_processor::StringId>{}(r.build_id) ^ std::hash<int64_t>{}(r.offset) ^ std::hash<int64_t>{}(r.start) ^ std::hash<int64_t>{}(r.end) ^ std::hash<int64_t>{}(r.load_bias) ^ std::hash<::perfetto::trace_processor::StringId>{}(r.name_id); } }; } // namespace std #endif // SRC_TRACE_PROCESSOR_TRACE_STORAGE_H_