// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. /** * @fileoverview This file contains helper code used by jspb.utils to * handle 64-bit integer conversion to/from strings. * * @author cfallin@google.com (Chris Fallin) * * TODO(haberman): move this to javascript/closure/math? */ goog.provide('jspb.arith.Int64'); goog.provide('jspb.arith.UInt64'); /** * UInt64 implements some 64-bit arithmetic routines necessary for properly * handling 64-bit integer fields. It implements lossless integer arithmetic on * top of JavaScript's number type, which has only 53 bits of precision, by * representing 64-bit integers as two 32-bit halves. * * @param {number} lo The low 32 bits. * @param {number} hi The high 32 bits. * @constructor */ jspb.arith.UInt64 = function(lo, hi) { /** * The low 32 bits. * @public {number} */ this.lo = lo; /** * The high 32 bits. * @public {number} */ this.hi = hi; }; /** * Compare two 64-bit numbers. Returns -1 if the first is * less, +1 if the first is greater, or 0 if both are equal. * @param {!jspb.arith.UInt64} other * @return {number} */ jspb.arith.UInt64.prototype.cmp = function(other) { if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) { return -1; } else if (this.hi == other.hi && this.lo == other.lo) { return 0; } else { return 1; } }; /** * Right-shift this number by one bit. * @return {!jspb.arith.UInt64} */ jspb.arith.UInt64.prototype.rightShift = function() { var hi = this.hi >>> 1; var lo = (this.lo >>> 1) | ((this.hi & 1) << 31); return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); }; /** * Left-shift this number by one bit. * @return {!jspb.arith.UInt64} */ jspb.arith.UInt64.prototype.leftShift = function() { var lo = this.lo << 1; var hi = (this.hi << 1) | (this.lo >>> 31); return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); }; /** * Test the MSB. * @return {boolean} */ jspb.arith.UInt64.prototype.msb = function() { return !!(this.hi & 0x80000000); }; /** * Test the LSB. * @return {boolean} */ jspb.arith.UInt64.prototype.lsb = function() { return !!(this.lo & 1); }; /** * Test whether this number is zero. * @return {boolean} */ jspb.arith.UInt64.prototype.zero = function() { return this.lo == 0 && this.hi == 0; }; /** * Add two 64-bit numbers to produce a 64-bit number. * @param {!jspb.arith.UInt64} other * @return {!jspb.arith.UInt64} */ jspb.arith.UInt64.prototype.add = function(other) { var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; var hi = (((this.hi + other.hi) & 0xffffffff) >>> 0) + (((this.lo + other.lo) >= 0x100000000) ? 1 : 0); return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); }; /** * Subtract two 64-bit numbers to produce a 64-bit number. * @param {!jspb.arith.UInt64} other * @return {!jspb.arith.UInt64} */ jspb.arith.UInt64.prototype.sub = function(other) { var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; var hi = (((this.hi - other.hi) & 0xffffffff) >>> 0) - (((this.lo - other.lo) < 0) ? 1 : 0); return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); }; /** * Multiply two 32-bit numbers to produce a 64-bit number. * @param {number} a The first integer: must be in [0, 2^32-1). * @param {number} b The second integer: must be in [0, 2^32-1). * @return {!jspb.arith.UInt64} */ jspb.arith.UInt64.mul32x32 = function(a, b) { // Directly multiplying two 32-bit numbers may produce up to 64 bits of // precision, thus losing precision because of the 53-bit mantissa of // JavaScript numbers. So we multiply with 16-bit digits (radix 65536) // instead. var aLow = (a & 0xffff); var aHigh = (a >>> 16); var bLow = (b & 0xffff); var bHigh = (b >>> 16); var productLow = // 32-bit result, result bits 0-31, take all 32 bits (aLow * bLow) + // 32-bit result, result bits 16-47, take bottom 16 as our top 16 ((aLow * bHigh) & 0xffff) * 0x10000 + // 32-bit result, result bits 16-47, take bottom 16 as our top 16 ((aHigh * bLow) & 0xffff) * 0x10000; var productHigh = // 32-bit result, result bits 32-63, take all 32 bits (aHigh * bHigh) + // 32-bit result, result bits 16-47, take top 16 as our bottom 16 ((aLow * bHigh) >>> 16) + // 32-bit result, result bits 16-47, take top 16 as our bottom 16 ((aHigh * bLow) >>> 16); // Carry. Note that we actually have up to *two* carries due to addition of // three terms. while (productLow >= 0x100000000) { productLow -= 0x100000000; productHigh += 1; } return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0); }; /** * Multiply this number by a 32-bit number, producing a 96-bit number, then * truncate the top 32 bits. * @param {number} a The multiplier. * @return {!jspb.arith.UInt64} */ jspb.arith.UInt64.prototype.mul = function(a) { // Produce two parts: at bits 0-63, and 32-95. var lo = jspb.arith.UInt64.mul32x32(this.lo, a); var hi = jspb.arith.UInt64.mul32x32(this.hi, a); // Left-shift hi by 32 bits, truncating its top bits. The parts will then be // aligned for addition. hi.hi = hi.lo; hi.lo = 0; return lo.add(hi); }; /** * Divide a 64-bit number by a 32-bit number to produce a * 64-bit quotient and a 32-bit remainder. * @param {number} _divisor * @return {Array.<jspb.arith.UInt64>} array of [quotient, remainder], * unless divisor is 0, in which case an empty array is returned. */ jspb.arith.UInt64.prototype.div = function(_divisor) { if (_divisor == 0) { return []; } // We perform long division using a radix-2 algorithm, for simplicity (i.e., // one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care // to get the variable shifts right. var quotient = new jspb.arith.UInt64(0, 0); var remainder = new jspb.arith.UInt64(this.lo, this.hi); var divisor = new jspb.arith.UInt64(_divisor, 0); var unit = new jspb.arith.UInt64(1, 0); // Left-shift the divisor and unit until the high bit of divisor is set. while (!divisor.msb()) { divisor = divisor.leftShift(); unit = unit.leftShift(); } // Perform long division one bit at a time. while (!unit.zero()) { // If divisor < remainder, add unit to quotient and subtract divisor from // remainder. if (divisor.cmp(remainder) <= 0) { quotient = quotient.add(unit); remainder = remainder.sub(divisor); } // Right-shift the divisor and unit. divisor = divisor.rightShift(); unit = unit.rightShift(); } return [quotient, remainder]; }; /** * Convert a 64-bit number to a string. * @return {string} * @override */ jspb.arith.UInt64.prototype.toString = function() { var result = ''; var num = this; while (!num.zero()) { var divResult = num.div(10); var quotient = divResult[0], remainder = divResult[1]; result = remainder.lo + result; num = quotient; } if (result == '') { result = '0'; } return result; }; /** * Parse a string into a 64-bit number. Returns `null` on a parse error. * @param {string} s * @return {?jspb.arith.UInt64} */ jspb.arith.UInt64.fromString = function(s) { var result = new jspb.arith.UInt64(0, 0); // optimization: reuse this instance for each digit. var digit64 = new jspb.arith.UInt64(0, 0); for (var i = 0; i < s.length; i++) { if (s[i] < '0' || s[i] > '9') { return null; } var digit = parseInt(s[i], 10); digit64.lo = digit; result = result.mul(10).add(digit64); } return result; }; /** * Make a copy of the uint64. * @return {!jspb.arith.UInt64} */ jspb.arith.UInt64.prototype.clone = function() { return new jspb.arith.UInt64(this.lo, this.hi); }; /** * Int64 is like UInt64, but modifies string conversions to interpret the stored * 64-bit value as a twos-complement-signed integer. It does *not* support the * full range of operations that UInt64 does: only add, subtract, and string * conversions. * * N.B. that multiply and divide routines are *NOT* supported. They will throw * exceptions. (They are not necessary to implement string conversions, which * are the only operations we really need in jspb.) * * @param {number} lo The low 32 bits. * @param {number} hi The high 32 bits. * @constructor */ jspb.arith.Int64 = function(lo, hi) { /** * The low 32 bits. * @public {number} */ this.lo = lo; /** * The high 32 bits. * @public {number} */ this.hi = hi; }; /** * Add two 64-bit numbers to produce a 64-bit number. * @param {!jspb.arith.Int64} other * @return {!jspb.arith.Int64} */ jspb.arith.Int64.prototype.add = function(other) { var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; var hi = (((this.hi + other.hi) & 0xffffffff) >>> 0) + (((this.lo + other.lo) >= 0x100000000) ? 1 : 0); return new jspb.arith.Int64(lo >>> 0, hi >>> 0); }; /** * Subtract two 64-bit numbers to produce a 64-bit number. * @param {!jspb.arith.Int64} other * @return {!jspb.arith.Int64} */ jspb.arith.Int64.prototype.sub = function(other) { var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; var hi = (((this.hi - other.hi) & 0xffffffff) >>> 0) - (((this.lo - other.lo) < 0) ? 1 : 0); return new jspb.arith.Int64(lo >>> 0, hi >>> 0); }; /** * Make a copy of the int64. * @return {!jspb.arith.Int64} */ jspb.arith.Int64.prototype.clone = function() { return new jspb.arith.Int64(this.lo, this.hi); }; /** * Convert a 64-bit number to a string. * @return {string} * @override */ jspb.arith.Int64.prototype.toString = function() { // If the number is negative, find its twos-complement inverse. var sign = (this.hi & 0x80000000) != 0; var num = new jspb.arith.UInt64(this.lo, this.hi); if (sign) { num = new jspb.arith.UInt64(0, 0).sub(num); } return (sign ? '-' : '') + num.toString(); }; /** * Parse a string into a 64-bit number. Returns `null` on a parse error. * @param {string} s * @return {?jspb.arith.Int64} */ jspb.arith.Int64.fromString = function(s) { var hasNegative = (s.length > 0 && s[0] == '-'); if (hasNegative) { s = s.substring(1); } var num = jspb.arith.UInt64.fromString(s); if (num === null) { return null; } if (hasNegative) { num = new jspb.arith.UInt64(0, 0).sub(num); } return new jspb.arith.Int64(num.lo, num.hi); };