// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. /** * @fileoverview This file contains utilities for decoding primitive values * (signed and unsigned integers, varints, booleans, enums, hashes, strings, * and raw bytes) embedded in Uint8Arrays into their corresponding Javascript * types. * * Major caveat - Javascript is unable to accurately represent integers larger * than 2^53 due to its use of a double-precision floating point format or all * numbers. If you need to guarantee that 64-bit values survive with all bits * intact, you _must_ read them using one of the Hash64 methods, which return * an 8-character string. * * @author aappleby@google.com (Austin Appleby) */ goog.provide('jspb.BinaryDecoder'); goog.provide('jspb.BinaryIterator'); goog.require('goog.asserts'); goog.require('jspb.utils'); /** * Simple helper class for traversing the contents of repeated scalar fields. * that may or may not have been packed into a wire-format blob. * @param {?jspb.BinaryDecoder=} opt_decoder * @param {?function(this:jspb.BinaryDecoder):(number|boolean|string)=} * opt_next The decoder method to use for next(). * @param {?Array.<number|boolean|string>=} opt_elements * @constructor * @struct */ jspb.BinaryIterator = function(opt_decoder, opt_next, opt_elements) { /** @private {jspb.BinaryDecoder} */ this.decoder_ = null; /** * The BinaryDecoder member function used when iterating over packed data. * @private {?function(this:jspb.BinaryDecoder):(number|boolean|string)} */ this.nextMethod_ = null; /** @private {Array.<number>} */ this.elements_ = null; /** @private {number} */ this.cursor_ = 0; /** @private {number|boolean|string|null} */ this.nextValue_ = null; /** @private {boolean} */ this.atEnd_ = true; this.init_(opt_decoder, opt_next, opt_elements); }; /** * @param {?jspb.BinaryDecoder=} opt_decoder * @param {?function(this:jspb.BinaryDecoder):(number|boolean|string)=} * opt_next The decoder method to use for next(). * @param {?Array.<number|boolean|string>=} opt_elements * @private */ jspb.BinaryIterator.prototype.init_ = function(opt_decoder, opt_next, opt_elements) { if (opt_decoder && opt_next) { this.decoder_ = opt_decoder; this.nextMethod_ = opt_next; } this.elements_ = opt_elements ? opt_elements : null; this.cursor_ = 0; this.nextValue_ = null; this.atEnd_ = !this.decoder_ && !this.elements_; this.next(); }; /** * Global pool of BinaryIterator instances. * @private {!Array.<!jspb.BinaryIterator>} */ jspb.BinaryIterator.instanceCache_ = []; /** * Allocates a BinaryIterator from the cache, creating a new one if the cache * is empty. * @param {?jspb.BinaryDecoder=} opt_decoder * @param {?function(this:jspb.BinaryDecoder):(number|boolean|string)=} * opt_next The decoder method to use for next(). * @param {?Array.<number|boolean|string>=} opt_elements * @return {!jspb.BinaryIterator} */ jspb.BinaryIterator.alloc = function(opt_decoder, opt_next, opt_elements) { if (jspb.BinaryIterator.instanceCache_.length) { var iterator = jspb.BinaryIterator.instanceCache_.pop(); iterator.init_(opt_decoder, opt_next, opt_elements); return iterator; } else { return new jspb.BinaryIterator(opt_decoder, opt_next, opt_elements); } }; /** * Puts this instance back in the instance cache. */ jspb.BinaryIterator.prototype.free = function() { this.clear(); if (jspb.BinaryIterator.instanceCache_.length < 100) { jspb.BinaryIterator.instanceCache_.push(this); } }; /** * Clears the iterator. */ jspb.BinaryIterator.prototype.clear = function() { if (this.decoder_) { this.decoder_.free(); } this.decoder_ = null; this.nextMethod_ = null; this.elements_ = null; this.cursor_ = 0; this.nextValue_ = null; this.atEnd_ = true; }; /** * Returns the element at the iterator, or null if the iterator is invalid or * past the end of the decoder/array. * @return {number|boolean|string|null} */ jspb.BinaryIterator.prototype.get = function() { return this.nextValue_; }; /** * Returns true if the iterator is at the end of the decoder/array. * @return {boolean} */ jspb.BinaryIterator.prototype.atEnd = function() { return this.atEnd_; }; /** * Returns the element at the iterator and steps to the next element, * equivalent to '*pointer++' in C. * @return {number|boolean|string|null} */ jspb.BinaryIterator.prototype.next = function() { var lastValue = this.nextValue_; if (this.decoder_) { if (this.decoder_.atEnd()) { this.nextValue_ = null; this.atEnd_ = true; } else { this.nextValue_ = this.nextMethod_.call(this.decoder_); } } else if (this.elements_) { if (this.cursor_ == this.elements_.length) { this.nextValue_ = null; this.atEnd_ = true; } else { this.nextValue_ = this.elements_[this.cursor_++]; } } return lastValue; }; /** * BinaryDecoder implements the decoders for all the wire types specified in * https://developers.google.com/protocol-buffers/docs/encoding. * * @param {jspb.ByteSource=} opt_bytes The bytes we're reading from. * @param {number=} opt_start The optional offset to start reading at. * @param {number=} opt_length The optional length of the block to read - * we'll throw an assertion if we go off the end of the block. * @constructor * @struct */ jspb.BinaryDecoder = function(opt_bytes, opt_start, opt_length) { /** * Typed byte-wise view of the source buffer. * @private {?Uint8Array} */ this.bytes_ = null; /** * Start point of the block to read. * @private {number} */ this.start_ = 0; /** * End point of the block to read. * @private {number} */ this.end_ = 0; /** * Current read location in bytes_. * @private {number} */ this.cursor_ = 0; /** * Temporary storage for the low 32 bits of 64-bit data types that we're * decoding. * @private {number} */ this.tempLow_ = 0; /** * Temporary storage for the high 32 bits of 64-bit data types that we're * decoding. * @private {number} */ this.tempHigh_ = 0; /** * Set to true if this decoder encountered an error due to corrupt data. * @private {boolean} */ this.error_ = false; if (opt_bytes) { this.setBlock(opt_bytes, opt_start, opt_length); } }; /** * Global pool of BinaryDecoder instances. * @private {!Array.<!jspb.BinaryDecoder>} */ jspb.BinaryDecoder.instanceCache_ = []; /** * Pops an instance off the instance cache, or creates one if the cache is * empty. * @param {jspb.ByteSource=} opt_bytes The bytes we're reading from. * @param {number=} opt_start The optional offset to start reading at. * @param {number=} opt_length The optional length of the block to read - * we'll throw an assertion if we go off the end of the block. * @return {!jspb.BinaryDecoder} */ jspb.BinaryDecoder.alloc = function(opt_bytes, opt_start, opt_length) { if (jspb.BinaryDecoder.instanceCache_.length) { var newDecoder = jspb.BinaryDecoder.instanceCache_.pop(); if (opt_bytes) { newDecoder.setBlock(opt_bytes, opt_start, opt_length); } return newDecoder; } else { return new jspb.BinaryDecoder(opt_bytes, opt_start, opt_length); } }; /** * Puts this instance back in the instance cache. */ jspb.BinaryDecoder.prototype.free = function() { this.clear(); if (jspb.BinaryDecoder.instanceCache_.length < 100) { jspb.BinaryDecoder.instanceCache_.push(this); } }; /** * Makes a copy of this decoder. * @return {!jspb.BinaryDecoder} */ jspb.BinaryDecoder.prototype.clone = function() { return jspb.BinaryDecoder.alloc(this.bytes_, this.start_, this.end_ - this.start_); }; /** * Clears the decoder. */ jspb.BinaryDecoder.prototype.clear = function() { this.bytes_ = null; this.start_ = 0; this.end_ = 0; this.cursor_ = 0; this.error_ = false; }; /** * Returns the raw buffer. * @return {?Uint8Array} The raw buffer. */ jspb.BinaryDecoder.prototype.getBuffer = function() { return this.bytes_; }; /** * Changes the block of bytes we're decoding. * @param {!jspb.ByteSource} data The bytes we're reading from. * @param {number=} opt_start The optional offset to start reading at. * @param {number=} opt_length The optional length of the block to read - * we'll throw an assertion if we go off the end of the block. */ jspb.BinaryDecoder.prototype.setBlock = function(data, opt_start, opt_length) { this.bytes_ = jspb.utils.byteSourceToUint8Array(data); this.start_ = goog.isDef(opt_start) ? opt_start : 0; this.end_ = goog.isDef(opt_length) ? this.start_ + opt_length : this.bytes_.length; this.cursor_ = this.start_; }; /** * @return {number} */ jspb.BinaryDecoder.prototype.getEnd = function() { return this.end_; }; /** * @param {number} end */ jspb.BinaryDecoder.prototype.setEnd = function(end) { this.end_ = end; }; /** * Moves the read cursor back to the start of the block. */ jspb.BinaryDecoder.prototype.reset = function() { this.cursor_ = this.start_; }; /** * Returns the internal read cursor. * @return {number} The internal read cursor. */ jspb.BinaryDecoder.prototype.getCursor = function() { return this.cursor_; }; /** * Returns the internal read cursor. * @param {number} cursor The new cursor. */ jspb.BinaryDecoder.prototype.setCursor = function(cursor) { this.cursor_ = cursor; }; /** * Advances the stream cursor by the given number of bytes. * @param {number} count The number of bytes to advance by. */ jspb.BinaryDecoder.prototype.advance = function(count) { this.cursor_ += count; goog.asserts.assert(this.cursor_ <= this.end_); }; /** * Returns true if this decoder is at the end of the block. * @return {boolean} */ jspb.BinaryDecoder.prototype.atEnd = function() { return this.cursor_ == this.end_; }; /** * Returns true if this decoder is at the end of the block. * @return {boolean} */ jspb.BinaryDecoder.prototype.pastEnd = function() { return this.cursor_ > this.end_; }; /** * Returns true if this decoder encountered an error due to corrupt data. * @return {boolean} */ jspb.BinaryDecoder.prototype.getError = function() { return this.error_ || (this.cursor_ < 0) || (this.cursor_ > this.end_); }; /** * Reads an unsigned varint from the binary stream and stores it as a split * 64-bit integer. Since this does not convert the value to a number, no * precision is lost. * * It's possible for an unsigned varint to be incorrectly encoded - more than * 64 bits' worth of data could be present. If this happens, this method will * throw an error. * * Decoding varints requires doing some funny base-128 math - for more * details on the format, see * https://developers.google.com/protocol-buffers/docs/encoding * * @private */ jspb.BinaryDecoder.prototype.readSplitVarint64_ = function() { var temp; var lowBits = 0; var highBits = 0; // Read the first four bytes of the varint, stopping at the terminator if we // see it. for (var i = 0; i < 4; i++) { temp = this.bytes_[this.cursor_++]; lowBits |= (temp & 0x7F) << (i * 7); if (temp < 128) { this.tempLow_ = lowBits >>> 0; this.tempHigh_ = 0; return; } } // Read the fifth byte, which straddles the low and high dwords. temp = this.bytes_[this.cursor_++]; lowBits |= (temp & 0x7F) << 28; highBits |= (temp & 0x7F) >> 4; if (temp < 128) { this.tempLow_ = lowBits >>> 0; this.tempHigh_ = highBits >>> 0; return; } // Read the sixth through tenth byte. for (var i = 0; i < 5; i++) { temp = this.bytes_[this.cursor_++]; highBits |= (temp & 0x7F) << (i * 7 + 3); if (temp < 128) { this.tempLow_ = lowBits >>> 0; this.tempHigh_ = highBits >>> 0; return; } } // If we did not see the terminator, the encoding was invalid. goog.asserts.fail('Failed to read varint, encoding is invalid.'); this.error_ = true; }; /** * Skips over a varint in the block without decoding it. */ jspb.BinaryDecoder.prototype.skipVarint = function() { while (this.bytes_[this.cursor_] & 0x80) { this.cursor_++; } this.cursor_++; }; /** * Skips backwards over a varint in the block - to do this correctly, we have * to know the value we're skipping backwards over or things are ambiguous. * @param {number} value The varint value to unskip. */ jspb.BinaryDecoder.prototype.unskipVarint = function(value) { while (value > 128) { this.cursor_--; value = value >>> 7; } this.cursor_--; }; /** * Reads a 32-bit varint from the binary stream. Due to a quirk of the encoding * format and Javascript's handling of bitwise math, this actually works * correctly for both signed and unsigned 32-bit varints. * * This function is called vastly more frequently than any other in * BinaryDecoder, so it has been unrolled and tweaked for performance. * * If there are more than 32 bits of data in the varint, it _must_ be due to * sign-extension. If we're in debug mode and the high 32 bits don't match the * expected sign extension, this method will throw an error. * * Decoding varints requires doing some funny base-128 math - for more * details on the format, see * https://developers.google.com/protocol-buffers/docs/encoding * * @return {number} The decoded unsigned 32-bit varint. */ jspb.BinaryDecoder.prototype.readUnsignedVarint32 = function() { var temp; var bytes = this.bytes_; temp = bytes[this.cursor_ + 0]; var x = (temp & 0x7F); if (temp < 128) { this.cursor_ += 1; goog.asserts.assert(this.cursor_ <= this.end_); return x; } temp = bytes[this.cursor_ + 1]; x |= (temp & 0x7F) << 7; if (temp < 128) { this.cursor_ += 2; goog.asserts.assert(this.cursor_ <= this.end_); return x; } temp = bytes[this.cursor_ + 2]; x |= (temp & 0x7F) << 14; if (temp < 128) { this.cursor_ += 3; goog.asserts.assert(this.cursor_ <= this.end_); return x; } temp = bytes[this.cursor_ + 3]; x |= (temp & 0x7F) << 21; if (temp < 128) { this.cursor_ += 4; goog.asserts.assert(this.cursor_ <= this.end_); return x; } temp = bytes[this.cursor_ + 4]; x |= (temp & 0x0F) << 28; if (temp < 128) { // We're reading the high bits of an unsigned varint. The byte we just read // also contains bits 33 through 35, which we're going to discard. Those // bits _must_ be zero, or the encoding is invalid. goog.asserts.assert((temp & 0xF0) == 0); this.cursor_ += 5; goog.asserts.assert(this.cursor_ <= this.end_); return x >>> 0; } // If we get here, we're reading the sign extension of a negative 32-bit int. // We can skip these bytes, as we know in advance that they have to be all // 1's if the varint is correctly encoded. Since we also know the value is // negative, we don't have to coerce it to unsigned before we return it. goog.asserts.assert((temp & 0xF0) == 0xF0); goog.asserts.assert(bytes[this.cursor_ + 5] == 0xFF); goog.asserts.assert(bytes[this.cursor_ + 6] == 0xFF); goog.asserts.assert(bytes[this.cursor_ + 7] == 0xFF); goog.asserts.assert(bytes[this.cursor_ + 8] == 0xFF); goog.asserts.assert(bytes[this.cursor_ + 9] == 0x01); this.cursor_ += 10; goog.asserts.assert(this.cursor_ <= this.end_); return x; }; /** * The readUnsignedVarint32 above deals with signed 32-bit varints correctly, * so this is just an alias. * * @return {number} The decoded signed 32-bit varint. */ jspb.BinaryDecoder.prototype.readSignedVarint32 = jspb.BinaryDecoder.prototype.readUnsignedVarint32; /** * Reads a 32-bit unsigned variant and returns its value as a string. * * @return {string} The decoded unsigned 32-bit varint as a string. */ jspb.BinaryDecoder.prototype.readUnsignedVarint32String = function() { // 32-bit integers fit in JavaScript numbers without loss of precision, so // string variants of 32-bit varint readers can simply delegate then convert // to string. var value = this.readUnsignedVarint32(); return value.toString(); }; /** * Reads a 32-bit signed variant and returns its value as a string. * * @return {string} The decoded signed 32-bit varint as a string. */ jspb.BinaryDecoder.prototype.readSignedVarint32String = function() { // 32-bit integers fit in JavaScript numbers without loss of precision, so // string variants of 32-bit varint readers can simply delegate then convert // to string. var value = this.readSignedVarint32(); return value.toString(); }; /** * Reads a signed, zigzag-encoded 32-bit varint from the binary stream. * * Zigzag encoding is a modification of varint encoding that reduces the * storage overhead for small negative integers - for more details on the * format, see https://developers.google.com/protocol-buffers/docs/encoding * * @return {number} The decoded signed, zigzag-encoded 32-bit varint. */ jspb.BinaryDecoder.prototype.readZigzagVarint32 = function() { var result = this.readUnsignedVarint32(); return (result >>> 1) ^ - (result & 1); }; /** * Reads an unsigned 64-bit varint from the binary stream. Note that since * Javascript represents all numbers as double-precision floats, there will be * precision lost if the absolute value of the varint is larger than 2^53. * * @return {number} The decoded unsigned varint. Precision will be lost if the * integer exceeds 2^53. */ jspb.BinaryDecoder.prototype.readUnsignedVarint64 = function() { this.readSplitVarint64_(); return jspb.utils.joinUint64(this.tempLow_, this.tempHigh_); }; /** * Reads an unsigned 64-bit varint from the binary stream and returns the value * as a decimal string. * * @return {string} The decoded unsigned varint as a decimal string. */ jspb.BinaryDecoder.prototype.readUnsignedVarint64String = function() { this.readSplitVarint64_(); return jspb.utils.joinUnsignedDecimalString(this.tempLow_, this.tempHigh_); }; /** * Reads a signed 64-bit varint from the binary stream. Note that since * Javascript represents all numbers as double-precision floats, there will be * precision lost if the absolute value of the varint is larger than 2^53. * * @return {number} The decoded signed varint. Precision will be lost if the * integer exceeds 2^53. */ jspb.BinaryDecoder.prototype.readSignedVarint64 = function() { this.readSplitVarint64_(); return jspb.utils.joinInt64(this.tempLow_, this.tempHigh_); }; /** * Reads an signed 64-bit varint from the binary stream and returns the value * as a decimal string. * * @return {string} The decoded signed varint as a decimal string. */ jspb.BinaryDecoder.prototype.readSignedVarint64String = function() { this.readSplitVarint64_(); return jspb.utils.joinSignedDecimalString(this.tempLow_, this.tempHigh_); }; /** * Reads a signed, zigzag-encoded 64-bit varint from the binary stream. Note * that since Javascript represents all numbers as double-precision floats, * there will be precision lost if the absolute value of the varint is larger * than 2^53. * * Zigzag encoding is a modification of varint encoding that reduces the * storage overhead for small negative integers - for more details on the * format, see https://developers.google.com/protocol-buffers/docs/encoding * * @return {number} The decoded zigzag varint. Precision will be lost if the * integer exceeds 2^53. */ jspb.BinaryDecoder.prototype.readZigzagVarint64 = function() { this.readSplitVarint64_(); return jspb.utils.joinZigzag64(this.tempLow_, this.tempHigh_); }; /** * Reads a raw unsigned 8-bit integer from the binary stream. * * @return {number} The unsigned 8-bit integer read from the binary stream. */ jspb.BinaryDecoder.prototype.readUint8 = function() { var a = this.bytes_[this.cursor_ + 0]; this.cursor_ += 1; goog.asserts.assert(this.cursor_ <= this.end_); return a; }; /** * Reads a raw unsigned 16-bit integer from the binary stream. * * @return {number} The unsigned 16-bit integer read from the binary stream. */ jspb.BinaryDecoder.prototype.readUint16 = function() { var a = this.bytes_[this.cursor_ + 0]; var b = this.bytes_[this.cursor_ + 1]; this.cursor_ += 2; goog.asserts.assert(this.cursor_ <= this.end_); return (a << 0) | (b << 8); }; /** * Reads a raw unsigned 32-bit integer from the binary stream. * * @return {number} The unsigned 32-bit integer read from the binary stream. */ jspb.BinaryDecoder.prototype.readUint32 = function() { var a = this.bytes_[this.cursor_ + 0]; var b = this.bytes_[this.cursor_ + 1]; var c = this.bytes_[this.cursor_ + 2]; var d = this.bytes_[this.cursor_ + 3]; this.cursor_ += 4; goog.asserts.assert(this.cursor_ <= this.end_); return ((a << 0) | (b << 8) | (c << 16) | (d << 24)) >>> 0; }; /** * Reads a raw unsigned 64-bit integer from the binary stream. Note that since * Javascript represents all numbers as double-precision floats, there will be * precision lost if the absolute value of the integer is larger than 2^53. * * @return {number} The unsigned 64-bit integer read from the binary stream. * Precision will be lost if the integer exceeds 2^53. */ jspb.BinaryDecoder.prototype.readUint64 = function() { var bitsLow = this.readUint32(); var bitsHigh = this.readUint32(); return jspb.utils.joinUint64(bitsLow, bitsHigh); }; /** * Reads a raw signed 8-bit integer from the binary stream. * * @return {number} The signed 8-bit integer read from the binary stream. */ jspb.BinaryDecoder.prototype.readInt8 = function() { var a = this.bytes_[this.cursor_ + 0]; this.cursor_ += 1; goog.asserts.assert(this.cursor_ <= this.end_); return (a << 24) >> 24; }; /** * Reads a raw signed 16-bit integer from the binary stream. * * @return {number} The signed 16-bit integer read from the binary stream. */ jspb.BinaryDecoder.prototype.readInt16 = function() { var a = this.bytes_[this.cursor_ + 0]; var b = this.bytes_[this.cursor_ + 1]; this.cursor_ += 2; goog.asserts.assert(this.cursor_ <= this.end_); return (((a << 0) | (b << 8)) << 16) >> 16; }; /** * Reads a raw signed 32-bit integer from the binary stream. * * @return {number} The signed 32-bit integer read from the binary stream. */ jspb.BinaryDecoder.prototype.readInt32 = function() { var a = this.bytes_[this.cursor_ + 0]; var b = this.bytes_[this.cursor_ + 1]; var c = this.bytes_[this.cursor_ + 2]; var d = this.bytes_[this.cursor_ + 3]; this.cursor_ += 4; goog.asserts.assert(this.cursor_ <= this.end_); return (a << 0) | (b << 8) | (c << 16) | (d << 24); }; /** * Reads a raw signed 64-bit integer from the binary stream. Note that since * Javascript represents all numbers as double-precision floats, there will be * precision lost if the absolute vlaue of the integer is larger than 2^53. * * @return {number} The signed 64-bit integer read from the binary stream. * Precision will be lost if the integer exceeds 2^53. */ jspb.BinaryDecoder.prototype.readInt64 = function() { var bitsLow = this.readUint32(); var bitsHigh = this.readUint32(); return jspb.utils.joinInt64(bitsLow, bitsHigh); }; /** * Reads a 32-bit floating-point number from the binary stream, using the * temporary buffer to realign the data. * * @return {number} The float read from the binary stream. */ jspb.BinaryDecoder.prototype.readFloat = function() { var bitsLow = this.readUint32(); var bitsHigh = 0; return jspb.utils.joinFloat32(bitsLow, bitsHigh); }; /** * Reads a 64-bit floating-point number from the binary stream, using the * temporary buffer to realign the data. * * @return {number} The double read from the binary stream. */ jspb.BinaryDecoder.prototype.readDouble = function() { var bitsLow = this.readUint32(); var bitsHigh = this.readUint32(); return jspb.utils.joinFloat64(bitsLow, bitsHigh); }; /** * Reads a boolean value from the binary stream. * @return {boolean} The boolean read from the binary stream. */ jspb.BinaryDecoder.prototype.readBool = function() { return !!this.bytes_[this.cursor_++]; }; /** * Reads an enum value from the binary stream, which are always encoded as * signed varints. * @return {number} The enum value read from the binary stream. */ jspb.BinaryDecoder.prototype.readEnum = function() { return this.readSignedVarint32(); }; /** * Reads and parses a UTF-8 encoded unicode string from the stream. * The code is inspired by maps.vectortown.parse.StreamedDataViewReader, with * the exception that the implementation here does not get confused if it * encounters characters longer than three bytes. These characters are ignored * though, as they are extremely rare: three UTF-8 bytes cover virtually all * characters in common use (http://en.wikipedia.org/wiki/UTF-8). * @param {number} length The length of the string to read. * @return {string} The decoded string. */ jspb.BinaryDecoder.prototype.readString = function(length) { var bytes = this.bytes_; var cursor = this.cursor_; var end = cursor + length; var chars = []; while (cursor < end) { var c = bytes[cursor++]; if (c < 128) { // Regular 7-bit ASCII. chars.push(c); } else if (c < 192) { // UTF-8 continuation mark. We are out of sync. This // might happen if we attempted to read a character // with more than three bytes. continue; } else if (c < 224) { // UTF-8 with two bytes. var c2 = bytes[cursor++]; chars.push(((c & 31) << 6) | (c2 & 63)); } else if (c < 240) { // UTF-8 with three bytes. var c2 = bytes[cursor++]; var c3 = bytes[cursor++]; chars.push(((c & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63)); } } // String.fromCharCode.apply is faster than manually appending characters on // Chrome 25+, and generates no additional cons string garbage. var result = String.fromCharCode.apply(null, chars); this.cursor_ = cursor; return result; }; /** * Reads and parses a UTF-8 encoded unicode string (with length prefix) from * the stream. * @return {string} The decoded string. */ jspb.BinaryDecoder.prototype.readStringWithLength = function() { var length = this.readUnsignedVarint32(); return this.readString(length); }; /** * Reads a block of raw bytes from the binary stream. * * @param {number} length The number of bytes to read. * @return {!Uint8Array} The decoded block of bytes, or an empty block if the * length was invalid. */ jspb.BinaryDecoder.prototype.readBytes = function(length) { if (length < 0 || this.cursor_ + length > this.bytes_.length) { this.error_ = true; goog.asserts.fail('Invalid byte length!'); return new Uint8Array(0); } var result = this.bytes_.subarray(this.cursor_, this.cursor_ + length); this.cursor_ += length; goog.asserts.assert(this.cursor_ <= this.end_); return result; }; /** * Reads a 64-bit varint from the stream and returns it as an 8-character * Unicode string for use as a hash table key. * * @return {string} The hash value. */ jspb.BinaryDecoder.prototype.readVarintHash64 = function() { this.readSplitVarint64_(); return jspb.utils.joinHash64(this.tempLow_, this.tempHigh_); }; /** * Reads a 64-bit fixed-width value from the stream and returns it as an * 8-character Unicode string for use as a hash table key. * * @return {string} The hash value. */ jspb.BinaryDecoder.prototype.readFixedHash64 = function() { var bytes = this.bytes_; var cursor = this.cursor_; var a = bytes[cursor + 0]; var b = bytes[cursor + 1]; var c = bytes[cursor + 2]; var d = bytes[cursor + 3]; var e = bytes[cursor + 4]; var f = bytes[cursor + 5]; var g = bytes[cursor + 6]; var h = bytes[cursor + 7]; this.cursor_ += 8; return String.fromCharCode(a, b, c, d, e, f, g, h); };