# -*- coding: utf-8 -*- # # Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests prime functions.""" import unittest from rsa._compat import range import rsa.prime import rsa.randnum class PrimeTest(unittest.TestCase): def test_is_prime(self): """Test some common primes.""" # Test some trivial numbers self.assertFalse(rsa.prime.is_prime(-1)) self.assertFalse(rsa.prime.is_prime(0)) self.assertFalse(rsa.prime.is_prime(1)) self.assertTrue(rsa.prime.is_prime(2)) self.assertFalse(rsa.prime.is_prime(42)) self.assertTrue(rsa.prime.is_prime(41)) # Test some slightly larger numbers self.assertEqual( [907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997], [x for x in range(901, 1000) if rsa.prime.is_prime(x)] ) # Test around the 50th millionth known prime. self.assertTrue(rsa.prime.is_prime(982451653)) self.assertFalse(rsa.prime.is_prime(982451653 * 961748941)) def test_miller_rabin_primality_testing(self): """Uses monkeypatching to ensure certain random numbers. This allows us to predict/control the code path. """ randints = [] def fake_randint(maxvalue): return randints.pop(0) orig_randint = rsa.randnum.randint rsa.randnum.randint = fake_randint try: # 'n is composite' randints.append(2630484832) # causes the 'n is composite' case with n=3784949785 self.assertEqual(False, rsa.prime.miller_rabin_primality_testing(2787998641, 7)) self.assertEqual([], randints) # 'Exit inner loop and continue with next witness' randints.extend([ 2119139098, # causes 'Exit inner loop and continue with next witness' # the next witnesses for the above case: 3051067716, 3603501763, 3230895847, 3687808133, 3760099987, 4026931495, 3022471882, ]) self.assertEqual(True, rsa.prime.miller_rabin_primality_testing(2211417913, len(randints))) self.assertEqual([], randints) finally: rsa.randnum.randint = orig_randint def test_mersenne_primes(self): """Tests first known Mersenne primes. Mersenne primes are prime numbers that can be written in the form `Mn = 2**n - 1` for some integer `n`. For the list of known Mersenne primes, see: https://en.wikipedia.org/wiki/Mersenne_prime#List_of_known_Mersenne_primes """ # List of known Mersenne exponents. known_mersenne_exponents = [ 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 4423, ] # Test Mersenne primes. for exp in known_mersenne_exponents: self.assertTrue(rsa.prime.is_prime(2**exp - 1)) def test_get_primality_testing_rounds(self): """Test round calculation for primality testing.""" self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 63), 10) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 127), 10) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 255), 10) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 511), 7) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 767), 7) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1023), 4) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1279), 4) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 1535), 3) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 2047), 3) self.assertEqual(rsa.prime.get_primality_testing_rounds(1 << 4095), 3)