/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkTDArray_DEFINED #define SkTDArray_DEFINED #include "SkMalloc.h" #include "SkTo.h" #include "SkTypes.h" #include <initializer_list> #include <utility> template <typename T> class SkTDArray { public: SkTDArray() : fArray(nullptr), fReserve(0), fCount(0) {} SkTDArray(const T src[], int count) { SkASSERT(src || count == 0); fReserve = fCount = 0; fArray = nullptr; if (count) { fArray = (T*)sk_malloc_throw(count * sizeof(T)); memcpy(fArray, src, sizeof(T) * count); fReserve = fCount = count; } } SkTDArray(const std::initializer_list<T>& list) : SkTDArray(list.begin(), list.size()) {} SkTDArray(const SkTDArray<T>& src) : fArray(nullptr), fReserve(0), fCount(0) { SkTDArray<T> tmp(src.fArray, src.fCount); this->swap(tmp); } SkTDArray(SkTDArray<T>&& src) : fArray(nullptr), fReserve(0), fCount(0) { this->swap(src); } ~SkTDArray() { sk_free(fArray); } SkTDArray<T>& operator=(const SkTDArray<T>& src) { if (this != &src) { if (src.fCount > fReserve) { SkTDArray<T> tmp(src.fArray, src.fCount); this->swap(tmp); } else { sk_careful_memcpy(fArray, src.fArray, sizeof(T) * src.fCount); fCount = src.fCount; } } return *this; } SkTDArray<T>& operator=(SkTDArray<T>&& src) { if (this != &src) { this->swap(src); src.reset(); } return *this; } friend bool operator==(const SkTDArray<T>& a, const SkTDArray<T>& b) { return a.fCount == b.fCount && (a.fCount == 0 || !memcmp(a.fArray, b.fArray, a.fCount * sizeof(T))); } friend bool operator!=(const SkTDArray<T>& a, const SkTDArray<T>& b) { return !(a == b); } void swap(SkTDArray<T>& that) { using std::swap; swap(fArray, that.fArray); swap(fReserve, that.fReserve); swap(fCount, that.fCount); } bool isEmpty() const { return fCount == 0; } bool empty() const { return this->isEmpty(); } /** * Return the number of elements in the array */ int count() const { return fCount; } size_t size() const { return fCount; } /** * Return the total number of elements allocated. * reserved() - count() gives you the number of elements you can add * without causing an allocation. */ int reserved() const { return fReserve; } /** * return the number of bytes in the array: count * sizeof(T) */ size_t bytes() const { return fCount * sizeof(T); } T* begin() { return fArray; } const T* begin() const { return fArray; } T* end() { return fArray ? fArray + fCount : nullptr; } const T* end() const { return fArray ? fArray + fCount : nullptr; } T& operator[](int index) { SkASSERT(index < fCount); return fArray[index]; } const T& operator[](int index) const { SkASSERT(index < fCount); return fArray[index]; } T& getAt(int index) { return (*this)[index]; } void reset() { if (fArray) { sk_free(fArray); fArray = nullptr; fReserve = fCount = 0; } else { SkASSERT(fReserve == 0 && fCount == 0); } } void rewind() { // same as setCount(0) fCount = 0; } /** * Sets the number of elements in the array. * If the array does not have space for count elements, it will increase * the storage allocated to some amount greater than that required. * It will never shrink the storage. */ void setCount(int count) { SkASSERT(count >= 0); if (count > fReserve) { this->resizeStorageToAtLeast(count); } fCount = count; } void setReserve(int reserve) { SkASSERT(reserve >= 0); if (reserve > fReserve) { this->resizeStorageToAtLeast(reserve); } } void reserve(size_t n) { SkASSERT_RELEASE(SkTFitsIn<int>(n)); this->setReserve(SkToInt(n)); } T* prepend() { this->adjustCount(1); memmove(fArray + 1, fArray, (fCount - 1) * sizeof(T)); return fArray; } T* append() { return this->append(1, nullptr); } T* append(int count, const T* src = nullptr) { int oldCount = fCount; if (count) { SkASSERT(src == nullptr || fArray == nullptr || src + count <= fArray || fArray + oldCount <= src); this->adjustCount(count); if (src) { memcpy(fArray + oldCount, src, sizeof(T) * count); } } return fArray + oldCount; } T* insert(int index) { return this->insert(index, 1, nullptr); } T* insert(int index, int count, const T* src = nullptr) { SkASSERT(count); SkASSERT(index <= fCount); size_t oldCount = fCount; this->adjustCount(count); T* dst = fArray + index; memmove(dst + count, dst, sizeof(T) * (oldCount - index)); if (src) { memcpy(dst, src, sizeof(T) * count); } return dst; } void remove(int index, int count = 1) { SkASSERT(index + count <= fCount); fCount = fCount - count; memmove(fArray + index, fArray + index + count, sizeof(T) * (fCount - index)); } void removeShuffle(int index) { SkASSERT(index < fCount); int newCount = fCount - 1; fCount = newCount; if (index != newCount) { memcpy(fArray + index, fArray + newCount, sizeof(T)); } } int find(const T& elem) const { const T* iter = fArray; const T* stop = fArray + fCount; for (; iter < stop; iter++) { if (*iter == elem) { return SkToInt(iter - fArray); } } return -1; } int rfind(const T& elem) const { const T* iter = fArray + fCount; const T* stop = fArray; while (iter > stop) { if (*--iter == elem) { return SkToInt(iter - stop); } } return -1; } /** * Returns true iff the array contains this element. */ bool contains(const T& elem) const { return (this->find(elem) >= 0); } /** * Copies up to max elements into dst. The number of items copied is * capped by count - index. The actual number copied is returned. */ int copyRange(T* dst, int index, int max) const { SkASSERT(max >= 0); SkASSERT(!max || dst); if (index >= fCount) { return 0; } int count = SkMin32(max, fCount - index); memcpy(dst, fArray + index, sizeof(T) * count); return count; } void copy(T* dst) const { this->copyRange(dst, 0, fCount); } // routines to treat the array like a stack void push_back(const T& v) { *this->append() = v; } T* push() { return this->append(); } const T& top() const { return (*this)[fCount - 1]; } T& top() { return (*this)[fCount - 1]; } void pop(T* elem) { SkASSERT(fCount > 0); if (elem) *elem = (*this)[fCount - 1]; --fCount; } void pop() { SkASSERT(fCount > 0); --fCount; } void deleteAll() { T* iter = fArray; T* stop = fArray + fCount; while (iter < stop) { delete *iter; iter += 1; } this->reset(); } void freeAll() { T* iter = fArray; T* stop = fArray + fCount; while (iter < stop) { sk_free(*iter); iter += 1; } this->reset(); } void unrefAll() { T* iter = fArray; T* stop = fArray + fCount; while (iter < stop) { (*iter)->unref(); iter += 1; } this->reset(); } void safeUnrefAll() { T* iter = fArray; T* stop = fArray + fCount; while (iter < stop) { SkSafeUnref(*iter); iter += 1; } this->reset(); } #ifdef SK_DEBUG void validate() const { SkASSERT((fReserve == 0 && fArray == nullptr) || (fReserve > 0 && fArray != nullptr)); SkASSERT(fCount <= fReserve); } #endif void shrinkToFit() { fReserve = fCount; fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T)); } private: T* fArray; int fReserve; int fCount; /** * Adjusts the number of elements in the array. * This is the same as calling setCount(count() + delta). */ void adjustCount(int delta) { SkASSERT(delta > 0); // We take care to avoid overflow here. // The sum of fCount and delta is at most 4294967294, which fits fine in uint32_t. uint32_t count = (uint32_t)fCount + (uint32_t)delta; SkASSERT_RELEASE( SkTFitsIn<int>(count) ); this->setCount(SkTo<int>(count)); } /** * Increase the storage allocation such that it can hold (fCount + extra) * elements. * It never shrinks the allocation, and it may increase the allocation by * more than is strictly required, based on a private growth heuristic. * * note: does NOT modify fCount */ void resizeStorageToAtLeast(int count) { SkASSERT(count > fReserve); // We take care to avoid overflow here. // The maximum value we can get for reserve here is 2684354563, which fits in uint32_t. uint32_t reserve = (uint32_t)count + 4; reserve += reserve / 4; SkASSERT_RELEASE( SkTFitsIn<int>(reserve) ); fReserve = SkTo<int>(reserve); fArray = (T*)sk_realloc_throw(fArray, fReserve * sizeof(T)); } }; template <typename T> static inline void swap(SkTDArray<T>& a, SkTDArray<T>& b) { a.swap(b); } #endif