/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" #include "Test.h" #include <array> #include <vector> #include "GrCaps.h" #include "GrContext.h" #include "GrContextPriv.h" #include "GrGeometryProcessor.h" #include "GrGpuCommandBuffer.h" #include "GrMemoryPool.h" #include "GrOpFlushState.h" #include "GrRenderTargetContext.h" #include "GrRenderTargetContextPriv.h" #include "GrResourceKey.h" #include "GrResourceProvider.h" #include "SkBitmap.h" #include "SkMakeUnique.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLVertexGeoBuilder.h" GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); static constexpr int kBoxSize = 2; static constexpr int kBoxCountY = 8; static constexpr int kBoxCountX = 8; static constexpr int kBoxCount = kBoxCountY * kBoxCountX; static constexpr int kImageWidth = kBoxCountY * kBoxSize; static constexpr int kImageHeight = kBoxCountX * kBoxSize; static constexpr int kIndexPatternRepeatCount = 3; constexpr uint16_t kIndexPattern[6] = {0, 1, 2, 1, 2, 3}; class DrawMeshHelper { public: DrawMeshHelper(GrOpFlushState* state) : fState(state) {} sk_sp<const GrBuffer> getIndexBuffer(); template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const SkTArray<T>& data) { return this->makeVertexBuffer(data.begin(), data.count()); } template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const std::vector<T>& data) { return this->makeVertexBuffer(data.data(), data.size()); } template<typename T> sk_sp<const GrBuffer> makeVertexBuffer(const T* data, int count); void drawMesh(const GrMesh& mesh); private: GrOpFlushState* fState; }; struct Box { float fX, fY; GrColor fColor; }; //////////////////////////////////////////////////////////////////////////////////////////////////// /** * This is a GPU-backend specific test. It tries to test all possible usecases of GrMesh. The test * works by drawing checkerboards of colored boxes, reading back the pixels, and comparing with * expected results. The boxes are drawn on integer boundaries and the (opaque) colors are chosen * from the set (r,g,b) = (0,255)^3, so the GPU renderings ought to produce exact matches. */ static void run_test(GrContext* context, const char* testName, skiatest::Reporter*, const sk_sp<GrRenderTargetContext>&, const SkBitmap& gold, std::function<void(DrawMeshHelper*)> testFn); DEF_GPUTEST_FOR_RENDERING_CONTEXTS(GrMeshTest, reporter, ctxInfo) { GrContext* context = ctxInfo.grContext(); const GrBackendFormat format = context->priv().caps()->getBackendFormatFromColorType(kRGBA_8888_SkColorType); sk_sp<GrRenderTargetContext> rtc(context->priv().makeDeferredRenderTargetContext( format, SkBackingFit::kExact, kImageWidth, kImageHeight, kRGBA_8888_GrPixelConfig, nullptr)); if (!rtc) { ERRORF(reporter, "could not create render target context."); return; } SkTArray<Box> boxes; SkTArray<std::array<Box, 4>> vertexData; SkBitmap gold; // ---- setup ---------- SkPaint paint; paint.setBlendMode(SkBlendMode::kSrc); gold.allocN32Pixels(kImageWidth, kImageHeight); SkCanvas goldCanvas(gold); for (int y = 0; y < kBoxCountY; ++y) { for (int x = 0; x < kBoxCountX; ++x) { int c = y + x; int rgb[3] = {-(c & 1) & 0xff, -((c >> 1) & 1) & 0xff, -((c >> 2) & 1) & 0xff}; const Box box = boxes.push_back() = { float(x * kBoxSize), float(y * kBoxSize), GrColorPackRGBA(rgb[0], rgb[1], rgb[2], 255) }; std::array<Box, 4>& boxVertices = vertexData.push_back(); for (int i = 0; i < 4; ++i) { boxVertices[i] = { box.fX + (i / 2) * kBoxSize, box.fY + (i % 2) * kBoxSize, box.fColor }; } paint.setARGB(255, rgb[0], rgb[1], rgb[2]); goldCanvas.drawRect(SkRect::MakeXYWH(box.fX, box.fY, kBoxSize, kBoxSize), paint); } } // ---- tests ---------- #define VALIDATE(buff) \ do { \ if (!buff) { \ ERRORF(reporter, #buff " is null."); \ return; \ } \ } while (0) run_test(context, "setNonIndexedNonInstanced", reporter, rtc, gold, [&](DrawMeshHelper* helper) { SkTArray<Box> expandedVertexData; for (int i = 0; i < kBoxCount; ++i) { for (int j = 0; j < 6; ++j) { expandedVertexData.push_back(vertexData[i][kIndexPattern[j]]); } } // Draw boxes one line at a time to exercise base vertex. auto vbuff = helper->makeVertexBuffer(expandedVertexData); VALIDATE(vbuff); for (int y = 0; y < kBoxCountY; ++y) { GrMesh mesh(GrPrimitiveType::kTriangles); mesh.setNonIndexedNonInstanced(kBoxCountX * 6); mesh.setVertexData(vbuff, y * kBoxCountX * 6); helper->drawMesh(mesh); } }); run_test(context, "setIndexed", reporter, rtc, gold, [&](DrawMeshHelper* helper) { auto ibuff = helper->getIndexBuffer(); VALIDATE(ibuff); auto vbuff = helper->makeVertexBuffer(vertexData); VALIDATE(vbuff); int baseRepetition = 0; int i = 0; // Start at various repetitions within the patterned index buffer to exercise base index. while (i < kBoxCount) { GR_STATIC_ASSERT(kIndexPatternRepeatCount >= 3); int repetitionCount = SkTMin(3 - baseRepetition, kBoxCount - i); GrMesh mesh(GrPrimitiveType::kTriangles); mesh.setIndexed(ibuff, repetitionCount * 6, baseRepetition * 6, baseRepetition * 4, (baseRepetition + repetitionCount) * 4 - 1, GrPrimitiveRestart::kNo); mesh.setVertexData(vbuff, (i - baseRepetition) * 4); helper->drawMesh(mesh); baseRepetition = (baseRepetition + 1) % 3; i += repetitionCount; } }); run_test(context, "setIndexedPatterned", reporter, rtc, gold, [&](DrawMeshHelper* helper) { auto ibuff = helper->getIndexBuffer(); VALIDATE(ibuff); auto vbuff = helper->makeVertexBuffer(vertexData); VALIDATE(vbuff); // Draw boxes one line at a time to exercise base vertex. setIndexedPatterned does not // support a base index. for (int y = 0; y < kBoxCountY; ++y) { GrMesh mesh(GrPrimitiveType::kTriangles); mesh.setIndexedPatterned(ibuff, 6, 4, kBoxCountX, kIndexPatternRepeatCount); mesh.setVertexData(vbuff, y * kBoxCountX * 4); helper->drawMesh(mesh); } }); for (bool indexed : {false, true}) { if (!context->priv().caps()->instanceAttribSupport()) { break; } run_test(context, indexed ? "setIndexedInstanced" : "setInstanced", reporter, rtc, gold, [&](DrawMeshHelper* helper) { auto idxbuff = indexed ? helper->getIndexBuffer() : nullptr; auto instbuff = helper->makeVertexBuffer(boxes); VALIDATE(instbuff); auto vbuff = helper->makeVertexBuffer(std::vector<float>{0,0, 0,1, 1,0, 1,1}); VALIDATE(vbuff); auto vbuff2 = helper->makeVertexBuffer( // for testing base vertex. std::vector<float>{-1,-1, -1,-1, 0,0, 0,1, 1,0, 1,1}); VALIDATE(vbuff2); // Draw boxes one line at a time to exercise base instance, base vertex, and null vertex // buffer. setIndexedInstanced intentionally does not support a base index. for (int y = 0; y < kBoxCountY; ++y) { GrMesh mesh(indexed ? GrPrimitiveType::kTriangles : GrPrimitiveType::kTriangleStrip); if (indexed) { VALIDATE(idxbuff); mesh.setIndexedInstanced(idxbuff, 6, instbuff, kBoxCountX, y * kBoxCountX, GrPrimitiveRestart::kNo); } else { mesh.setInstanced(instbuff, kBoxCountX, y * kBoxCountX, 4); } switch (y % 3) { case 0: if (context->priv().caps()->shaderCaps()->vertexIDSupport()) { if (y % 2) { // We don't need this call because it's the initial state of GrMesh. mesh.setVertexData(nullptr); } break; } // Fallthru. case 1: mesh.setVertexData(vbuff); break; case 2: mesh.setVertexData(vbuff2, 2); break; } helper->drawMesh(mesh); } }); } } //////////////////////////////////////////////////////////////////////////////////////////////////// class GrMeshTestOp : public GrDrawOp { public: DEFINE_OP_CLASS_ID static std::unique_ptr<GrDrawOp> Make(GrContext* context, std::function<void(DrawMeshHelper*)> testFn) { GrOpMemoryPool* pool = context->priv().opMemoryPool(); return pool->allocate<GrMeshTestOp>(testFn); } private: friend class GrOpMemoryPool; // for ctor GrMeshTestOp(std::function<void(DrawMeshHelper*)> testFn) : INHERITED(ClassID()) , fTestFn(testFn) { this->setBounds(SkRect::MakeIWH(kImageWidth, kImageHeight), HasAABloat::kNo, IsZeroArea::kNo); } const char* name() const override { return "GrMeshTestOp"; } FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; } GrProcessorSet::Analysis finalize( const GrCaps&, const GrAppliedClip*, GrFSAAType, GrClampType) override { return GrProcessorSet::EmptySetAnalysis(); } void onPrepare(GrOpFlushState*) override {} void onExecute(GrOpFlushState* state, const SkRect& chainBounds) override { DrawMeshHelper helper(state); fTestFn(&helper); } std::function<void(DrawMeshHelper*)> fTestFn; typedef GrDrawOp INHERITED; }; class GrMeshTestProcessor : public GrGeometryProcessor { public: GrMeshTestProcessor(bool instanced, bool hasVertexBuffer) : INHERITED(kGrMeshTestProcessor_ClassID) { if (instanced) { fInstanceLocation = {"location", kFloat2_GrVertexAttribType, kHalf2_GrSLType}; fInstanceColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType}; this->setInstanceAttributes(&fInstanceLocation, 2); if (hasVertexBuffer) { fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType}; this->setVertexAttributes(&fVertexPosition, 1); } } else { fVertexPosition = {"vertex", kFloat2_GrVertexAttribType, kHalf2_GrSLType}; fVertexColor = {"color", kUByte4_norm_GrVertexAttribType, kHalf4_GrSLType}; this->setVertexAttributes(&fVertexPosition, 2); } } const char* name() const override { return "GrMeshTest Processor"; } const Attribute& inColor() const { return fVertexColor.isInitialized() ? fVertexColor : fInstanceColor; } void getGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const final { b->add32(fInstanceLocation.isInitialized()); b->add32(fVertexPosition.isInitialized()); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const final; private: Attribute fVertexPosition; Attribute fVertexColor; Attribute fInstanceLocation; Attribute fInstanceColor; friend class GLSLMeshTestProcessor; typedef GrGeometryProcessor INHERITED; }; class GLSLMeshTestProcessor : public GrGLSLGeometryProcessor { void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor&, FPCoordTransformIter&& transformIter) final {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) final { const GrMeshTestProcessor& mp = args.fGP.cast<GrMeshTestProcessor>(); GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; varyingHandler->emitAttributes(mp); varyingHandler->addPassThroughAttribute(mp.inColor(), args.fOutputColor); GrGLSLVertexBuilder* v = args.fVertBuilder; if (!mp.fInstanceLocation.isInitialized()) { v->codeAppendf("float2 vertex = %s;", mp.fVertexPosition.name()); } else { if (mp.fVertexPosition.isInitialized()) { v->codeAppendf("float2 offset = %s;", mp.fVertexPosition.name()); } else { v->codeAppend ("float2 offset = float2(sk_VertexID / 2, sk_VertexID % 2);"); } v->codeAppendf("float2 vertex = %s + offset * %i;", mp.fInstanceLocation.name(), kBoxSize); } gpArgs->fPositionVar.set(kFloat2_GrSLType, "vertex"); GrGLSLFPFragmentBuilder* f = args.fFragBuilder; f->codeAppendf("%s = half4(1);", args.fOutputCoverage); } }; GrGLSLPrimitiveProcessor* GrMeshTestProcessor::createGLSLInstance(const GrShaderCaps&) const { return new GLSLMeshTestProcessor; } //////////////////////////////////////////////////////////////////////////////////////////////////// template<typename T> sk_sp<const GrBuffer> DrawMeshHelper::makeVertexBuffer(const T* data, int count) { return sk_sp<const GrBuffer>(fState->resourceProvider()->createBuffer( count * sizeof(T), GrGpuBufferType::kVertex, kDynamic_GrAccessPattern, data)); } sk_sp<const GrBuffer> DrawMeshHelper::getIndexBuffer() { GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); return fState->resourceProvider()->findOrCreatePatternedIndexBuffer( kIndexPattern, 6, kIndexPatternRepeatCount, 4, gIndexBufferKey); } void DrawMeshHelper::drawMesh(const GrMesh& mesh) { GrPipeline pipeline(GrScissorTest::kDisabled, SkBlendMode::kSrc); GrMeshTestProcessor mtp(mesh.isInstanced(), mesh.hasVertexData()); fState->rtCommandBuffer()->draw(mtp, pipeline, nullptr, nullptr, &mesh, 1, SkRect::MakeIWH(kImageWidth, kImageHeight)); } static void run_test(GrContext* context, const char* testName, skiatest::Reporter* reporter, const sk_sp<GrRenderTargetContext>& rtc, const SkBitmap& gold, std::function<void(DrawMeshHelper*)> testFn) { const int w = gold.width(), h = gold.height(), rowBytes = gold.rowBytes(); const uint32_t* goldPx = reinterpret_cast<const uint32_t*>(gold.getPixels()); if (h != rtc->height() || w != rtc->width()) { ERRORF(reporter, "[%s] expectation and rtc not compatible (?).", testName); return; } if (sizeof(uint32_t) * kImageWidth != gold.rowBytes()) { ERRORF(reporter, "unexpected row bytes in gold image.", testName); return; } SkAutoSTMalloc<kImageHeight * kImageWidth, uint32_t> resultPx(h * rowBytes); rtc->clear(nullptr, SkPMColor4f::FromBytes_RGBA(0xbaaaaaad), GrRenderTargetContext::CanClearFullscreen::kYes); rtc->priv().testingOnly_addDrawOp(GrMeshTestOp::Make(context, testFn)); rtc->readPixels(gold.info(), resultPx, rowBytes, 0, 0, 0); for (int y = 0; y < h; ++y) { for (int x = 0; x < w; ++x) { uint32_t expected = goldPx[y * kImageWidth + x]; uint32_t actual = resultPx[y * kImageWidth + x]; if (expected != actual) { ERRORF(reporter, "[%s] pixel (%i,%i): got 0x%x expected 0x%x", testName, x, y, actual, expected); return; } } } }