// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "Blitter.hpp" #include "Pipeline/ShaderCore.hpp" #include "Reactor/Reactor.hpp" #include "System/Memory.hpp" #include "Vulkan/VkDebug.hpp" namespace sw { Blitter::Blitter() { blitCache = new RoutineCache<State>(1024); } Blitter::~Blitter() { delete blitCache; } void Blitter::clear(void *pixel, VkFormat format, Surface *dest, const SliceRect &dRect, unsigned int rgbaMask) { if(fastClear(pixel, format, dest, dRect, rgbaMask)) { return; } sw::Surface *color = sw::Surface::create(1, 1, 1, format, pixel, sw::Surface::bytes(format), sw::Surface::bytes(format)); SliceRectF sRect(0.5f, 0.5f, 0.5f, 0.5f, 0); // Sample from the middle. blit(color, sRect, dest, dRect, {rgbaMask}); delete color; } bool Blitter::fastClear(void *pixel, VkFormat format, Surface *dest, const SliceRect &dRect, unsigned int rgbaMask) { if(format != VK_FORMAT_R32G32B32A32_SFLOAT) { return false; } float *color = (float*)pixel; float r = color[0]; float g = color[1]; float b = color[2]; float a = color[3]; uint32_t packed; switch(dest->getFormat()) { case VK_FORMAT_R5G6B5_UNORM_PACK16: if((rgbaMask & 0x7) != 0x7) return false; packed = ((uint16_t)(31 * b + 0.5f) << 0) | ((uint16_t)(63 * g + 0.5f) << 5) | ((uint16_t)(31 * r + 0.5f) << 11); break; case VK_FORMAT_B5G6R5_UNORM_PACK16: if((rgbaMask & 0x7) != 0x7) return false; packed = ((uint16_t)(31 * r + 0.5f) << 0) | ((uint16_t)(63 * g + 0.5f) << 5) | ((uint16_t)(31 * b + 0.5f) << 11); break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: if((rgbaMask & 0xF) != 0xF) return false; packed = ((uint32_t)(255 * a + 0.5f) << 24) | ((uint32_t)(255 * b + 0.5f) << 16) | ((uint32_t)(255 * g + 0.5f) << 8) | ((uint32_t)(255 * r + 0.5f) << 0); break; case VK_FORMAT_B8G8R8A8_UNORM: if((rgbaMask & 0xF) != 0xF) return false; packed = ((uint32_t)(255 * a + 0.5f) << 24) | ((uint32_t)(255 * r + 0.5f) << 16) | ((uint32_t)(255 * g + 0.5f) << 8) | ((uint32_t)(255 * b + 0.5f) << 0); break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: if((rgbaMask & 0x7) != 0x7) return false; packed = R11G11B10F(color); break; case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: if((rgbaMask & 0x7) != 0x7) return false; packed = RGB9E5(color); break; default: return false; } bool useDestInternal = !dest->isExternalDirty(); uint8_t *slice = (uint8_t*)dest->lock(dRect.x0, dRect.y0, dRect.slice, sw::LOCK_WRITEONLY, sw::PUBLIC, useDestInternal); for(int j = 0; j < dest->getSamples(); j++) { uint8_t *d = slice; switch(Surface::bytes(dest->getFormat())) { case 2: for(int i = dRect.y0; i < dRect.y1; i++) { sw::clear((uint16_t*)d, packed, dRect.x1 - dRect.x0); d += dest->getPitchB(useDestInternal); } break; case 4: for(int i = dRect.y0; i < dRect.y1; i++) { sw::clear((uint32_t*)d, packed, dRect.x1 - dRect.x0); d += dest->getPitchB(useDestInternal); } break; default: assert(false); } slice += dest->getSliceB(useDestInternal); } dest->unlock(useDestInternal); return true; } void Blitter::blit(Surface *source, const SliceRectF &sourceRect, Surface *dest, const SliceRect &destRect, const Blitter::Options& options) { if(dest->getInternalFormat() == VK_FORMAT_UNDEFINED) { return; } if(blitReactor(source, sourceRect, dest, destRect, options)) { return; } SliceRectF sRect = sourceRect; SliceRect dRect = destRect; bool flipX = destRect.x0 > destRect.x1; bool flipY = destRect.y0 > destRect.y1; if(flipX) { swap(dRect.x0, dRect.x1); swap(sRect.x0, sRect.x1); } if(flipY) { swap(dRect.y0, dRect.y1); swap(sRect.y0, sRect.y1); } source->lockInternal(0, 0, sRect.slice, sw::LOCK_READONLY, sw::PUBLIC); dest->lockInternal(0, 0, dRect.slice, sw::LOCK_WRITEONLY, sw::PUBLIC); float w = sRect.width() / dRect.width(); float h = sRect.height() / dRect.height(); float xStart = sRect.x0 + (0.5f - dRect.x0) * w; float yStart = sRect.y0 + (0.5f - dRect.y0) * h; for(int j = dRect.y0; j < dRect.y1; j++) { float y = yStart + j * h; for(int i = dRect.x0; i < dRect.x1; i++) { float x = xStart + i * w; // FIXME: Support RGBA mask dest->copyInternal(source, i, j, x, y, options.filter); } } source->unlockInternal(); dest->unlockInternal(); } void Blitter::blit3D(Surface *source, Surface *dest) { source->lockInternal(0, 0, 0, sw::LOCK_READONLY, sw::PUBLIC); dest->lockInternal(0, 0, 0, sw::LOCK_WRITEONLY, sw::PUBLIC); float w = static_cast<float>(source->getWidth()) / static_cast<float>(dest->getWidth()); float h = static_cast<float>(source->getHeight()) / static_cast<float>(dest->getHeight()); float d = static_cast<float>(source->getDepth()) / static_cast<float>(dest->getDepth()); for(int k = 0; k < dest->getDepth(); k++) { float z = (k + 0.5f) * d; for(int j = 0; j < dest->getHeight(); j++) { float y = (j + 0.5f) * h; for(int i = 0; i < dest->getWidth(); i++) { float x = (i + 0.5f) * w; dest->copyInternal(source, i, j, k, x, y, z, true); } } } source->unlockInternal(); dest->unlockInternal(); } bool Blitter::read(Float4 &c, Pointer<Byte> element, const State &state) { c = Float4(0.0f, 0.0f, 0.0f, 1.0f); switch(state.sourceFormat) { case VK_FORMAT_B4G4R4A4_UNORM_PACK16: c.w = Float(Int(*Pointer<Byte>(element)) & Int(0xF)); c.x = Float((Int(*Pointer<Byte>(element)) >> 4) & Int(0xF)); c.y = Float(Int(*Pointer<Byte>(element + 1)) & Int(0xF)); c.z = Float((Int(*Pointer<Byte>(element + 1)) >> 4) & Int(0xF)); break; case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_SNORM: c.x = Float(Int(*Pointer<SByte>(element))); c.w = float(0x7F); break; case VK_FORMAT_R8_UNORM: case VK_FORMAT_R8_UINT: c.x = Float(Int(*Pointer<Byte>(element))); c.w = float(0xFF); break; case VK_FORMAT_R16_SINT: c.x = Float(Int(*Pointer<Short>(element))); c.w = float(0x7FFF); break; case VK_FORMAT_R16_UINT: c.x = Float(Int(*Pointer<UShort>(element))); c.w = float(0xFFFF); break; case VK_FORMAT_R32_SINT: c.x = Float(*Pointer<Int>(element)); c.w = float(0x7FFFFFFF); break; case VK_FORMAT_R32_UINT: c.x = Float(*Pointer<UInt>(element)); c.w = float(0xFFFFFFFF); break; case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_B8G8R8A8_UNORM: c = Float4(*Pointer<Byte4>(element)).zyxw; break; case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: case VK_FORMAT_R8G8B8A8_SNORM: c = Float4(*Pointer<SByte4>(element)); break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: case VK_FORMAT_R8G8B8A8_SRGB: c = Float4(*Pointer<Byte4>(element)); break; case VK_FORMAT_R16G16B16A16_SINT: c = Float4(*Pointer<Short4>(element)); break; case VK_FORMAT_R16G16B16A16_UNORM: case VK_FORMAT_R16G16B16A16_UINT: c = Float4(*Pointer<UShort4>(element)); break; case VK_FORMAT_R32G32B32A32_SINT: c = Float4(*Pointer<Int4>(element)); break; case VK_FORMAT_R32G32B32A32_UINT: c = Float4(*Pointer<UInt4>(element)); break; case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_SNORM: c.x = Float(Int(*Pointer<SByte>(element + 0))); c.y = Float(Int(*Pointer<SByte>(element + 1))); c.w = float(0x7F); break; case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_R8G8_UINT: c.x = Float(Int(*Pointer<Byte>(element + 0))); c.y = Float(Int(*Pointer<Byte>(element + 1))); c.w = float(0xFF); break; case VK_FORMAT_R16G16_SINT: c.x = Float(Int(*Pointer<Short>(element + 0))); c.y = Float(Int(*Pointer<Short>(element + 2))); c.w = float(0x7FFF); break; case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_UINT: c.x = Float(Int(*Pointer<UShort>(element + 0))); c.y = Float(Int(*Pointer<UShort>(element + 2))); c.w = float(0xFFFF); break; case VK_FORMAT_R32G32_SINT: c.x = Float(*Pointer<Int>(element + 0)); c.y = Float(*Pointer<Int>(element + 4)); c.w = float(0x7FFFFFFF); break; case VK_FORMAT_R32G32_UINT: c.x = Float(*Pointer<UInt>(element + 0)); c.y = Float(*Pointer<UInt>(element + 4)); c.w = float(0xFFFFFFFF); break; case VK_FORMAT_R32G32B32A32_SFLOAT: c = *Pointer<Float4>(element); break; case VK_FORMAT_R32G32_SFLOAT: c.x = *Pointer<Float>(element + 0); c.y = *Pointer<Float>(element + 4); break; case VK_FORMAT_R32_SFLOAT: c.x = *Pointer<Float>(element); break; case VK_FORMAT_R16G16B16A16_SFLOAT: c.w = Float(*Pointer<Half>(element + 6)); case VK_FORMAT_R16G16B16_SFLOAT: c.z = Float(*Pointer<Half>(element + 4)); case VK_FORMAT_R16G16_SFLOAT: c.y = Float(*Pointer<Half>(element + 2)); case VK_FORMAT_R16_SFLOAT: c.x = Float(*Pointer<Half>(element)); break; case VK_FORMAT_B10G11R11_UFLOAT_PACK32: // 10 (or 11) bit float formats are unsigned formats with a 5 bit exponent and a 5 (or 6) bit mantissa. // Since the Half float format also has a 5 bit exponent, we can convert these formats to half by // copy/pasting the bits so the the exponent bits and top mantissa bits are aligned to the half format. // In this case, we have: // B B B B B B B B B B G G G G G G G G G G G R R R R R R R R R R R // 1st Short: |xxxxxxxxxx---------------------| // 2nd Short: |xxxx---------------------xxxxxx| // 3rd Short: |--------------------xxxxxxxxxxxx| // These memory reads overlap, but each of them contains an entire channel, so we can read this without // any int -> short conversion. c.x = Float(As<Half>((*Pointer<UShort>(element + 0) & UShort(0x07FF)) << UShort(4))); c.y = Float(As<Half>((*Pointer<UShort>(element + 1) & UShort(0x3FF8)) << UShort(1))); c.z = Float(As<Half>((*Pointer<UShort>(element + 2) & UShort(0xFFC0)) >> UShort(1))); break; case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: // This type contains a common 5 bit exponent (E) and a 9 bit the mantissa for R, G and B. c.x = Float(*Pointer<UInt>(element) & UInt(0x000001FF)); // R's mantissa (bits 0-8) c.y = Float((*Pointer<UInt>(element) & UInt(0x0003FE00)) >> 9); // G's mantissa (bits 9-17) c.z = Float((*Pointer<UInt>(element) & UInt(0x07FC0000)) >> 18); // B's mantissa (bits 18-26) c *= Float4( // 2^E, using the exponent (bits 27-31) and treating it as an unsigned integer value Float(UInt(1) << ((*Pointer<UInt>(element) & UInt(0xF8000000)) >> 27)) * // Since the 9 bit mantissa values currently stored in RGB were converted straight // from int to float (in the [0, 1<<9] range instead of the [0, 1] range), they // are (1 << 9) times too high. // Also, the exponent has 5 bits and we compute the exponent bias of floating point // formats using "2^(k-1) - 1", so, in this case, the exponent bias is 2^(5-1)-1 = 15 // Exponent bias (15) + number of mantissa bits per component (9) = 24 Float(1.0f / (1 << 24))); c.w = 1.0f; break; case VK_FORMAT_R5G6B5_UNORM_PACK16: c.x = Float(Int((*Pointer<UShort>(element) & UShort(0xF800)) >> UShort(11))); c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x07E0)) >> UShort(5))); c.z = Float(Int(*Pointer<UShort>(element) & UShort(0x001F))); break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: c.w = Float(Int((*Pointer<UShort>(element) & UShort(0x8000)) >> UShort(15))); c.x = Float(Int((*Pointer<UShort>(element) & UShort(0x7C00)) >> UShort(10))); c.y = Float(Int((*Pointer<UShort>(element) & UShort(0x03E0)) >> UShort(5))); c.z = Float(Int(*Pointer<UShort>(element) & UShort(0x001F))); break; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_A2B10G10R10_UINT_PACK32: c.x = Float(Int((*Pointer<UInt>(element) & UInt(0x000003FF)))); c.y = Float(Int((*Pointer<UInt>(element) & UInt(0x000FFC00)) >> 10)); c.z = Float(Int((*Pointer<UInt>(element) & UInt(0x3FF00000)) >> 20)); c.w = Float(Int((*Pointer<UInt>(element) & UInt(0xC0000000)) >> 30)); break; case VK_FORMAT_D16_UNORM: c.x = Float(Int((*Pointer<UShort>(element)))); break; case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_X8_D24_UNORM_PACK32: c.x = Float(Int((*Pointer<UInt>(element) & UInt(0xFFFFFF00)) >> 8)); break; case VK_FORMAT_D32_SFLOAT: case VK_FORMAT_D32_SFLOAT_S8_UINT: c.x = *Pointer<Float>(element); break; case VK_FORMAT_S8_UINT: c.x = Float(Int(*Pointer<Byte>(element))); break; default: return false; } return true; } bool Blitter::write(Float4 &c, Pointer<Byte> element, const State &state) { bool writeR = state.writeRed; bool writeG = state.writeGreen; bool writeB = state.writeBlue; bool writeA = state.writeAlpha; bool writeRGBA = writeR && writeG && writeB && writeA; switch(state.destFormat) { case VK_FORMAT_R4G4_UNORM_PACK8: if(writeR | writeG) { if(!writeR) { *Pointer<Byte>(element) = (Byte(RoundInt(Float(c.y))) & Byte(0xF)) | (*Pointer<Byte>(element) & Byte(0xF0)); } else if(!writeG) { *Pointer<Byte>(element) = (*Pointer<Byte>(element) & Byte(0xF)) | (Byte(RoundInt(Float(c.x))) << Byte(4)); } else { *Pointer<Byte>(element) = (Byte(RoundInt(Float(c.y))) & Byte(0xF)) | (Byte(RoundInt(Float(c.x))) << Byte(4)); } } break; case VK_FORMAT_R4G4B4A4_UNORM_PACK16: if(writeR || writeG || writeB || writeA) { *Pointer<UShort>(element) = (writeR ? ((UShort(RoundInt(Float(c.x))) & UShort(0xF)) << UShort(12)) : (*Pointer<UShort>(element) & UShort(0x000F))) | (writeG ? ((UShort(RoundInt(Float(c.y))) & UShort(0xF)) << UShort(8)) : (*Pointer<UShort>(element) & UShort(0x00F0))) | (writeB ? ((UShort(RoundInt(Float(c.z))) & UShort(0xF)) << UShort(4)) : (*Pointer<UShort>(element) & UShort(0x0F00))) | (writeA ? (UShort(RoundInt(Float(c.w))) & UShort(0xF)) : (*Pointer<UShort>(element) & UShort(0xF000))); } break; case VK_FORMAT_B4G4R4A4_UNORM_PACK16: if(writeRGBA) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.w)) & Int(0xF)) | UShort((RoundInt(Float(c.x)) & Int(0xF)) << 4) | UShort((RoundInt(Float(c.y)) & Int(0xF)) << 8) | UShort((RoundInt(Float(c.z)) & Int(0xF)) << 12); } else { unsigned short mask = (writeA ? 0x000F : 0x0000) | (writeR ? 0x00F0 : 0x0000) | (writeG ? 0x0F00 : 0x0000) | (writeB ? 0xF000 : 0x0000); unsigned short unmask = ~mask; *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | ((UShort(RoundInt(Float(c.w)) & Int(0xF)) | UShort((RoundInt(Float(c.x)) & Int(0xF)) << 4) | UShort((RoundInt(Float(c.y)) & Int(0xF)) << 8) | UShort((RoundInt(Float(c.z)) & Int(0xF)) << 12)) & UShort(mask)); } break; case VK_FORMAT_B8G8R8A8_SRGB: case VK_FORMAT_B8G8R8A8_UNORM: if(writeRGBA) { Short4 c0 = RoundShort4(c.zyxw); *Pointer<Byte4>(element) = Byte4(PackUnsigned(c0, c0)); } else { if(writeB) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.z))); } if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); } if(writeR) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.x))); } if(writeA) { *Pointer<Byte>(element + 3) = Byte(RoundInt(Float(c.w))); } } break; case VK_FORMAT_B8G8R8_SNORM: if(writeB) { *Pointer<SByte>(element + 0) = SByte(RoundInt(Float(c.z))); } if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); } if(writeR) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.x))); } break; case VK_FORMAT_B8G8R8_UNORM: case VK_FORMAT_B8G8R8_SRGB: if(writeB) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.z))); } if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); } if(writeR) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.x))); } break; case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_R8G8B8A8_USCALED: case VK_FORMAT_A8B8G8R8_USCALED_PACK32: if(writeRGBA) { Short4 c0 = RoundShort4(c); *Pointer<Byte4>(element) = Byte4(PackUnsigned(c0, c0)); } else { if(writeR) { *Pointer<Byte>(element + 0) = Byte(RoundInt(Float(c.x))); } if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); } if(writeB) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.z))); } if(writeA) { *Pointer<Byte>(element + 3) = Byte(RoundInt(Float(c.w))); } } break; case VK_FORMAT_R32G32B32A32_SFLOAT: if(writeRGBA) { *Pointer<Float4>(element) = c; } else { if(writeR) { *Pointer<Float>(element) = c.x; } if(writeG) { *Pointer<Float>(element + 4) = c.y; } if(writeB) { *Pointer<Float>(element + 8) = c.z; } if(writeA) { *Pointer<Float>(element + 12) = c.w; } } break; case VK_FORMAT_R32G32B32_SFLOAT: if(writeR) { *Pointer<Float>(element) = c.x; } if(writeG) { *Pointer<Float>(element + 4) = c.y; } if(writeB) { *Pointer<Float>(element + 8) = c.z; } break; case VK_FORMAT_R32G32_SFLOAT: if(writeR && writeG) { *Pointer<Float2>(element) = Float2(c); } else { if(writeR) { *Pointer<Float>(element) = c.x; } if(writeG) { *Pointer<Float>(element + 4) = c.y; } } break; case VK_FORMAT_R32_SFLOAT: if(writeR) { *Pointer<Float>(element) = c.x; } break; case VK_FORMAT_R16G16B16A16_SFLOAT: if(writeA) { *Pointer<Half>(element + 6) = Half(c.w); } case VK_FORMAT_R16G16B16_SFLOAT: if(writeB) { *Pointer<Half>(element + 4) = Half(c.z); } case VK_FORMAT_R16G16_SFLOAT: if(writeG) { *Pointer<Half>(element + 2) = Half(c.y); } case VK_FORMAT_R16_SFLOAT: if(writeR) { *Pointer<Half>(element) = Half(c.x); } break; case VK_FORMAT_B8G8R8A8_SNORM: if(writeB) { *Pointer<SByte>(element) = SByte(RoundInt(Float(c.z))); } if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); } if(writeR) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.x))); } if(writeA) { *Pointer<SByte>(element + 3) = SByte(RoundInt(Float(c.w))); } break; case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: case VK_FORMAT_R8G8B8A8_SNORM: case VK_FORMAT_R8G8B8A8_SSCALED: case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: if(writeA) { *Pointer<SByte>(element + 3) = SByte(RoundInt(Float(c.w))); } case VK_FORMAT_R8G8B8_SINT: case VK_FORMAT_R8G8B8_SNORM: case VK_FORMAT_R8G8B8_SSCALED: case VK_FORMAT_R8G8B8_SRGB: if(writeB) { *Pointer<SByte>(element + 2) = SByte(RoundInt(Float(c.z))); } case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_SNORM: case VK_FORMAT_R8G8_SSCALED: case VK_FORMAT_R8G8_SRGB: if(writeG) { *Pointer<SByte>(element + 1) = SByte(RoundInt(Float(c.y))); } case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_SNORM: case VK_FORMAT_R8_SSCALED: case VK_FORMAT_R8_SRGB: if(writeR) { *Pointer<SByte>(element) = SByte(RoundInt(Float(c.x))); } break; case VK_FORMAT_R8G8B8_UINT: case VK_FORMAT_R8G8B8_UNORM: case VK_FORMAT_R8G8B8_USCALED: if(writeB) { *Pointer<Byte>(element + 2) = Byte(RoundInt(Float(c.z))); } case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_R8G8_USCALED: if(writeG) { *Pointer<Byte>(element + 1) = Byte(RoundInt(Float(c.y))); } case VK_FORMAT_R8_UINT: case VK_FORMAT_R8_UNORM: case VK_FORMAT_R8_USCALED: if(writeR) { *Pointer<Byte>(element) = Byte(RoundInt(Float(c.x))); } break; case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_SNORM: case VK_FORMAT_R16G16B16A16_SSCALED: if(writeRGBA) { *Pointer<Short4>(element) = Short4(RoundInt(c)); } else { if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); } if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); } if(writeB) { *Pointer<Short>(element + 4) = Short(RoundInt(Float(c.z))); } if(writeA) { *Pointer<Short>(element + 6) = Short(RoundInt(Float(c.w))); } } break; case VK_FORMAT_R16G16B16_SINT: case VK_FORMAT_R16G16B16_SNORM: case VK_FORMAT_R16G16B16_SSCALED: if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); } if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); } if(writeB) { *Pointer<Short>(element + 4) = Short(RoundInt(Float(c.z))); } break; case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_SNORM: case VK_FORMAT_R16G16_SSCALED: if(writeR && writeG) { *Pointer<Short2>(element) = Short2(Short4(RoundInt(c))); } else { if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); } if(writeG) { *Pointer<Short>(element + 2) = Short(RoundInt(Float(c.y))); } } break; case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_SNORM: case VK_FORMAT_R16_SSCALED: if(writeR) { *Pointer<Short>(element) = Short(RoundInt(Float(c.x))); } break; case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R16G16B16A16_UNORM: case VK_FORMAT_R16G16B16A16_USCALED: if(writeRGBA) { *Pointer<UShort4>(element) = UShort4(RoundInt(c)); } else { if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); } if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); } if(writeB) { *Pointer<UShort>(element + 4) = UShort(RoundInt(Float(c.z))); } if(writeA) { *Pointer<UShort>(element + 6) = UShort(RoundInt(Float(c.w))); } } break; case VK_FORMAT_R16G16B16_UINT: case VK_FORMAT_R16G16B16_UNORM: case VK_FORMAT_R16G16B16_USCALED: if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); } if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); } if(writeB) { *Pointer<UShort>(element + 4) = UShort(RoundInt(Float(c.z))); } break; case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16_USCALED: if(writeR && writeG) { *Pointer<UShort2>(element) = UShort2(UShort4(RoundInt(c))); } else { if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); } if(writeG) { *Pointer<UShort>(element + 2) = UShort(RoundInt(Float(c.y))); } } break; case VK_FORMAT_R16_UINT: case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16_USCALED: if(writeR) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); } break; case VK_FORMAT_R32G32B32A32_SINT: if(writeRGBA) { *Pointer<Int4>(element) = RoundInt(c); } else { if(writeR) { *Pointer<Int>(element) = RoundInt(Float(c.x)); } if(writeG) { *Pointer<Int>(element + 4) = RoundInt(Float(c.y)); } if(writeB) { *Pointer<Int>(element + 8) = RoundInt(Float(c.z)); } if(writeA) { *Pointer<Int>(element + 12) = RoundInt(Float(c.w)); } } break; case VK_FORMAT_R32G32B32_SINT: if(writeB) { *Pointer<Int>(element + 8) = RoundInt(Float(c.z)); } case VK_FORMAT_R32G32_SINT: if(writeG) { *Pointer<Int>(element + 4) = RoundInt(Float(c.y)); } case VK_FORMAT_R32_SINT: if(writeR) { *Pointer<Int>(element) = RoundInt(Float(c.x)); } break; case VK_FORMAT_R32G32B32A32_UINT: if(writeRGBA) { *Pointer<UInt4>(element) = UInt4(RoundInt(c)); } else { if(writeR) { *Pointer<UInt>(element) = As<UInt>(RoundInt(Float(c.x))); } if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(RoundInt(Float(c.y))); } if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(RoundInt(Float(c.z))); } if(writeA) { *Pointer<UInt>(element + 12) = As<UInt>(RoundInt(Float(c.w))); } } break; case VK_FORMAT_R32G32B32_UINT: if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(RoundInt(Float(c.z))); } case VK_FORMAT_R32G32_UINT: if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(RoundInt(Float(c.y))); } case VK_FORMAT_R32_UINT: if(writeR) { *Pointer<UInt>(element) = As<UInt>(RoundInt(Float(c.x))); } break; case VK_FORMAT_R5G6B5_UNORM_PACK16: if(writeR && writeG && writeB) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.z)) | (RoundInt(Float(c.y)) << Int(5)) | (RoundInt(Float(c.x)) << Int(11))); } else { unsigned short mask = (writeB ? 0x001F : 0x0000) | (writeG ? 0x07E0 : 0x0000) | (writeR ? 0xF800 : 0x0000); unsigned short unmask = ~mask; *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | (UShort(RoundInt(Float(c.z)) | (RoundInt(Float(c.y)) << Int(5)) | (RoundInt(Float(c.x)) << Int(11))) & UShort(mask)); } break; case VK_FORMAT_R5G5B5A1_UNORM_PACK16: if(writeRGBA) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.w)) | (RoundInt(Float(c.z)) << Int(1)) | (RoundInt(Float(c.y)) << Int(6)) | (RoundInt(Float(c.x)) << Int(11))); } else { unsigned short mask = (writeA ? 0x8000 : 0x0000) | (writeR ? 0x7C00 : 0x0000) | (writeG ? 0x03E0 : 0x0000) | (writeB ? 0x001F : 0x0000); unsigned short unmask = ~mask; *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | (UShort(RoundInt(Float(c.w)) | (RoundInt(Float(c.z)) << Int(1)) | (RoundInt(Float(c.y)) << Int(6)) | (RoundInt(Float(c.x)) << Int(11))) & UShort(mask)); } break; case VK_FORMAT_B5G5R5A1_UNORM_PACK16: if(writeRGBA) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.w)) | (RoundInt(Float(c.x)) << Int(1)) | (RoundInt(Float(c.y)) << Int(6)) | (RoundInt(Float(c.z)) << Int(11))); } else { unsigned short mask = (writeA ? 0x8000 : 0x0000) | (writeR ? 0x7C00 : 0x0000) | (writeG ? 0x03E0 : 0x0000) | (writeB ? 0x001F : 0x0000); unsigned short unmask = ~mask; *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | (UShort(RoundInt(Float(c.w)) | (RoundInt(Float(c.x)) << Int(1)) | (RoundInt(Float(c.y)) << Int(6)) | (RoundInt(Float(c.z)) << Int(11))) & UShort(mask)); } break; case VK_FORMAT_A1R5G5B5_UNORM_PACK16: if(writeRGBA) { *Pointer<UShort>(element) = UShort(RoundInt(Float(c.z)) | (RoundInt(Float(c.y)) << Int(5)) | (RoundInt(Float(c.x)) << Int(10)) | (RoundInt(Float(c.w)) << Int(15))); } else { unsigned short mask = (writeA ? 0x8000 : 0x0000) | (writeR ? 0x7C00 : 0x0000) | (writeG ? 0x03E0 : 0x0000) | (writeB ? 0x001F : 0x0000); unsigned short unmask = ~mask; *Pointer<UShort>(element) = (*Pointer<UShort>(element) & UShort(unmask)) | (UShort(RoundInt(Float(c.z)) | (RoundInt(Float(c.y)) << Int(5)) | (RoundInt(Float(c.x)) << Int(10)) | (RoundInt(Float(c.w)) << Int(15))) & UShort(mask)); } break; case VK_FORMAT_A2B10G10R10_UNORM_PACK32: case VK_FORMAT_A2B10G10R10_UINT_PACK32: case VK_FORMAT_A2B10G10R10_SNORM_PACK32: if(writeRGBA) { *Pointer<UInt>(element) = UInt(RoundInt(Float(c.x)) | (RoundInt(Float(c.y)) << 10) | (RoundInt(Float(c.z)) << 20) | (RoundInt(Float(c.w)) << 30)); } else { unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | (writeB ? 0x3FF00000 : 0x0000) | (writeG ? 0x000FFC00 : 0x0000) | (writeR ? 0x000003FF : 0x0000); unsigned int unmask = ~mask; *Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) | (UInt(RoundInt(Float(c.x)) | (RoundInt(Float(c.y)) << 10) | (RoundInt(Float(c.z)) << 20) | (RoundInt(Float(c.w)) << 30)) & UInt(mask)); } break; case VK_FORMAT_A2R10G10B10_UNORM_PACK32: case VK_FORMAT_A2R10G10B10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_SNORM_PACK32: if(writeRGBA) { *Pointer<UInt>(element) = UInt(RoundInt(Float(c.z)) | (RoundInt(Float(c.y)) << 10) | (RoundInt(Float(c.x)) << 20) | (RoundInt(Float(c.w)) << 30)); } else { unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | (writeR ? 0x3FF00000 : 0x0000) | (writeG ? 0x000FFC00 : 0x0000) | (writeB ? 0x000003FF : 0x0000); unsigned int unmask = ~mask; *Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) | (UInt(RoundInt(Float(c.z)) | (RoundInt(Float(c.y)) << 10) | (RoundInt(Float(c.x)) << 20) | (RoundInt(Float(c.w)) << 30)) & UInt(mask)); } break; case VK_FORMAT_D16_UNORM: *Pointer<UShort>(element) = UShort(RoundInt(Float(c.x))); break; case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_X8_D24_UNORM_PACK32: *Pointer<UInt>(element) = UInt(RoundInt(Float(c.x)) << 8); break; case VK_FORMAT_D32_SFLOAT: case VK_FORMAT_D32_SFLOAT_S8_UINT: *Pointer<Float>(element) = c.x; break; case VK_FORMAT_S8_UINT: *Pointer<Byte>(element) = Byte(RoundInt(Float(c.x))); break; default: return false; } return true; } bool Blitter::read(Int4 &c, Pointer<Byte> element, const State &state) { c = Int4(0, 0, 0, 1); switch(state.sourceFormat) { case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: c = Insert(c, Int(*Pointer<SByte>(element + 3)), 3); c = Insert(c, Int(*Pointer<SByte>(element + 2)), 2); case VK_FORMAT_R8G8_SINT: c = Insert(c, Int(*Pointer<SByte>(element + 1)), 1); case VK_FORMAT_R8_SINT: c = Insert(c, Int(*Pointer<SByte>(element)), 0); break; case VK_FORMAT_A2B10G10R10_UINT_PACK32: c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x000003FF))), 0); c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x000FFC00)) >> 10), 1); c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0x3FF00000)) >> 20), 2); c = Insert(c, Int((*Pointer<UInt>(element) & UInt(0xC0000000)) >> 30), 3); break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_R8G8B8A8_UINT: c = Insert(c, Int(*Pointer<Byte>(element + 3)), 3); c = Insert(c, Int(*Pointer<Byte>(element + 2)), 2); case VK_FORMAT_R8G8_UINT: c = Insert(c, Int(*Pointer<Byte>(element + 1)), 1); case VK_FORMAT_R8_UINT: c = Insert(c, Int(*Pointer<Byte>(element)), 0); break; case VK_FORMAT_R16G16B16A16_SINT: c = Insert(c, Int(*Pointer<Short>(element + 6)), 3); c = Insert(c, Int(*Pointer<Short>(element + 4)), 2); case VK_FORMAT_R16G16_SINT: c = Insert(c, Int(*Pointer<Short>(element + 2)), 1); case VK_FORMAT_R16_SINT: c = Insert(c, Int(*Pointer<Short>(element)), 0); break; case VK_FORMAT_R16G16B16A16_UINT: c = Insert(c, Int(*Pointer<UShort>(element + 6)), 3); c = Insert(c, Int(*Pointer<UShort>(element + 4)), 2); case VK_FORMAT_R16G16_UINT: c = Insert(c, Int(*Pointer<UShort>(element + 2)), 1); case VK_FORMAT_R16_UINT: c = Insert(c, Int(*Pointer<UShort>(element)), 0); break; case VK_FORMAT_R32G32B32A32_SINT: case VK_FORMAT_R32G32B32A32_UINT: c = *Pointer<Int4>(element); break; case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32_UINT: c = Insert(c, *Pointer<Int>(element + 4), 1); case VK_FORMAT_R32_SINT: case VK_FORMAT_R32_UINT: c = Insert(c, *Pointer<Int>(element), 0); break; default: return false; } return true; } bool Blitter::write(Int4 &c, Pointer<Byte> element, const State &state) { bool writeR = state.writeRed; bool writeG = state.writeGreen; bool writeB = state.writeBlue; bool writeA = state.writeAlpha; bool writeRGBA = writeR && writeG && writeB && writeA; switch(state.destFormat) { case VK_FORMAT_A2B10G10R10_UINT_PACK32: c = Min(As<UInt4>(c), UInt4(0x03FF, 0x03FF, 0x03FF, 0x0003)); break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_R8G8B8_UINT: case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8_UINT: case VK_FORMAT_R8G8B8A8_USCALED: case VK_FORMAT_R8G8B8_USCALED: case VK_FORMAT_R8G8_USCALED: case VK_FORMAT_R8_USCALED: c = Min(As<UInt4>(c), UInt4(0xFF)); break; case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R16G16B16_UINT: case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16_UINT: case VK_FORMAT_R16G16B16A16_USCALED: case VK_FORMAT_R16G16B16_USCALED: case VK_FORMAT_R16G16_USCALED: case VK_FORMAT_R16_USCALED: c = Min(As<UInt4>(c), UInt4(0xFFFF)); break; case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8_SINT: case VK_FORMAT_R8G8B8A8_SSCALED: case VK_FORMAT_R8G8B8_SSCALED: case VK_FORMAT_R8G8_SSCALED: case VK_FORMAT_R8_SSCALED: c = Min(Max(c, Int4(-0x80)), Int4(0x7F)); break; case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16_SINT: case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16_SINT: case VK_FORMAT_R16G16B16A16_SSCALED: case VK_FORMAT_R16G16B16_SSCALED: case VK_FORMAT_R16G16_SSCALED: case VK_FORMAT_R16_SSCALED: c = Min(Max(c, Int4(-0x8000)), Int4(0x7FFF)); break; default: break; } switch(state.destFormat) { case VK_FORMAT_B8G8R8A8_SINT: case VK_FORMAT_B8G8R8A8_SSCALED: if(writeA) { *Pointer<SByte>(element + 3) = SByte(Extract(c, 3)); } case VK_FORMAT_B8G8R8_SINT: case VK_FORMAT_B8G8R8_SRGB: case VK_FORMAT_B8G8R8_SSCALED: if(writeB) { *Pointer<SByte>(element) = SByte(Extract(c, 2)); } if(writeG) { *Pointer<SByte>(element + 1) = SByte(Extract(c, 1)); } if(writeR) { *Pointer<SByte>(element + 2) = SByte(Extract(c, 0)); } break; case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_R8G8B8A8_SSCALED: case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: if(writeA) { *Pointer<SByte>(element + 3) = SByte(Extract(c, 3)); } case VK_FORMAT_R8G8B8_SINT: case VK_FORMAT_R8G8B8_SSCALED: if(writeB) { *Pointer<SByte>(element + 2) = SByte(Extract(c, 2)); } case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_SSCALED: if(writeG) { *Pointer<SByte>(element + 1) = SByte(Extract(c, 1)); } case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_SSCALED: if(writeR) { *Pointer<SByte>(element) = SByte(Extract(c, 0)); } break; case VK_FORMAT_A2B10G10R10_UINT_PACK32: case VK_FORMAT_A2B10G10R10_SINT_PACK32: case VK_FORMAT_A2B10G10R10_USCALED_PACK32: case VK_FORMAT_A2B10G10R10_SSCALED_PACK32: if(writeRGBA) { *Pointer<UInt>(element) = UInt((Extract(c, 0)) | (Extract(c, 1) << 10) | (Extract(c, 2) << 20) | (Extract(c, 3) << 30)); } else { unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | (writeB ? 0x3FF00000 : 0x0000) | (writeG ? 0x000FFC00 : 0x0000) | (writeR ? 0x000003FF : 0x0000); unsigned int unmask = ~mask; *Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) | (UInt(Extract(c, 0) | (Extract(c, 1) << 10) | (Extract(c, 2) << 20) | (Extract(c, 3) << 30)) & UInt(mask)); } break; case VK_FORMAT_A2R10G10B10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_SINT_PACK32: case VK_FORMAT_A2R10G10B10_USCALED_PACK32: case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: if(writeRGBA) { *Pointer<UInt>(element) = UInt((Extract(c, 2)) | (Extract(c, 1) << 10) | (Extract(c, 0) << 20) | (Extract(c, 3) << 30)); } else { unsigned int mask = (writeA ? 0xC0000000 : 0x0000) | (writeR ? 0x3FF00000 : 0x0000) | (writeG ? 0x000FFC00 : 0x0000) | (writeB ? 0x000003FF : 0x0000); unsigned int unmask = ~mask; *Pointer<UInt>(element) = (*Pointer<UInt>(element) & UInt(unmask)) | (UInt(Extract(c, 2) | (Extract(c, 1) << 10) | (Extract(c, 0) << 20) | (Extract(c, 3) << 30)) & UInt(mask)); } break; case VK_FORMAT_B8G8R8A8_UINT: case VK_FORMAT_B8G8R8A8_USCALED: if(writeA) { *Pointer<Byte>(element + 3) = Byte(Extract(c, 3)); } case VK_FORMAT_B8G8R8_UINT: case VK_FORMAT_B8G8R8_USCALED: if(writeB) { *Pointer<Byte>(element) = Byte(Extract(c, 2)); } if(writeG) { *Pointer<Byte>(element + 1) = Byte(Extract(c, 1)); } if(writeR) { *Pointer<Byte>(element + 2) = Byte(Extract(c, 0)); } break; case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_R8G8B8A8_USCALED: case VK_FORMAT_A8B8G8R8_USCALED_PACK32: if(writeA) { *Pointer<Byte>(element + 3) = Byte(Extract(c, 3)); } case VK_FORMAT_R8G8B8_UINT: case VK_FORMAT_R8G8B8_USCALED: if(writeB) { *Pointer<Byte>(element + 2) = Byte(Extract(c, 2)); } case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8_USCALED: if(writeG) { *Pointer<Byte>(element + 1) = Byte(Extract(c, 1)); } case VK_FORMAT_R8_UINT: case VK_FORMAT_R8_USCALED: if(writeR) { *Pointer<Byte>(element) = Byte(Extract(c, 0)); } break; case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_SSCALED: if(writeA) { *Pointer<Short>(element + 6) = Short(Extract(c, 3)); } case VK_FORMAT_R16G16B16_SINT: case VK_FORMAT_R16G16B16_SSCALED: if(writeB) { *Pointer<Short>(element + 4) = Short(Extract(c, 2)); } case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_SSCALED: if(writeG) { *Pointer<Short>(element + 2) = Short(Extract(c, 1)); } case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_SSCALED: if(writeR) { *Pointer<Short>(element) = Short(Extract(c, 0)); } break; case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R16G16B16A16_USCALED: if(writeA) { *Pointer<UShort>(element + 6) = UShort(Extract(c, 3)); } case VK_FORMAT_R16G16B16_UINT: case VK_FORMAT_R16G16B16_USCALED: if(writeB) { *Pointer<UShort>(element + 4) = UShort(Extract(c, 2)); } case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16G16_USCALED: if(writeG) { *Pointer<UShort>(element + 2) = UShort(Extract(c, 1)); } case VK_FORMAT_R16_UINT: case VK_FORMAT_R16_USCALED: if(writeR) { *Pointer<UShort>(element) = UShort(Extract(c, 0)); } break; case VK_FORMAT_R32G32B32A32_SINT: if(writeRGBA) { *Pointer<Int4>(element) = c; } else { if(writeR) { *Pointer<Int>(element) = Extract(c, 0); } if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); } if(writeB) { *Pointer<Int>(element + 8) = Extract(c, 2); } if(writeA) { *Pointer<Int>(element + 12) = Extract(c, 3); } } break; case VK_FORMAT_R32G32B32_SINT: if(writeR) { *Pointer<Int>(element) = Extract(c, 0); } if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); } if(writeB) { *Pointer<Int>(element + 8) = Extract(c, 2); } break; case VK_FORMAT_R32G32_SINT: if(writeR) { *Pointer<Int>(element) = Extract(c, 0); } if(writeG) { *Pointer<Int>(element + 4) = Extract(c, 1); } break; case VK_FORMAT_R32_SINT: if(writeR) { *Pointer<Int>(element) = Extract(c, 0); } break; case VK_FORMAT_R32G32B32A32_UINT: if(writeRGBA) { *Pointer<UInt4>(element) = As<UInt4>(c); } else { if(writeR) { *Pointer<UInt>(element) = As<UInt>(Extract(c, 0)); } if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(Extract(c, 1)); } if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(Extract(c, 2)); } if(writeA) { *Pointer<UInt>(element + 12) = As<UInt>(Extract(c, 3)); } } break; case VK_FORMAT_R32G32B32_UINT: if(writeB) { *Pointer<UInt>(element + 8) = As<UInt>(Extract(c, 2)); } case VK_FORMAT_R32G32_UINT: if(writeG) { *Pointer<UInt>(element + 4) = As<UInt>(Extract(c, 1)); } case VK_FORMAT_R32_UINT: if(writeR) { *Pointer<UInt>(element) = As<UInt>(Extract(c, 0)); } break; default: return false; } return true; } bool Blitter::GetScale(float4 &scale, VkFormat format) { switch(format) { case VK_FORMAT_R4G4_UNORM_PACK8: case VK_FORMAT_R4G4B4A4_UNORM_PACK16: case VK_FORMAT_B4G4R4A4_UNORM_PACK16: scale = vector(0xF, 0xF, 0xF, 0xF); break; case VK_FORMAT_R8_UNORM: case VK_FORMAT_R8G8_UNORM: case VK_FORMAT_R8G8B8_UNORM: case VK_FORMAT_B8G8R8_UNORM: case VK_FORMAT_A8B8G8R8_UNORM_PACK32: case VK_FORMAT_R8G8B8A8_UNORM: case VK_FORMAT_B8G8R8A8_UNORM: case VK_FORMAT_R8_SRGB: case VK_FORMAT_R8G8_SRGB: case VK_FORMAT_R8G8B8_SRGB: case VK_FORMAT_B8G8R8_SRGB: case VK_FORMAT_A8B8G8R8_SRGB_PACK32: case VK_FORMAT_R8G8B8A8_SRGB: case VK_FORMAT_B8G8R8A8_SRGB: scale = vector(0xFF, 0xFF, 0xFF, 0xFF); break; case VK_FORMAT_R8_SNORM: case VK_FORMAT_R8G8_SNORM: case VK_FORMAT_R8G8B8_SNORM: case VK_FORMAT_B8G8R8_SNORM: case VK_FORMAT_A8B8G8R8_SNORM_PACK32: case VK_FORMAT_R8G8B8A8_SNORM: case VK_FORMAT_B8G8R8A8_SNORM: scale = vector(0x7F, 0x7F, 0x7F, 0x7F); break; case VK_FORMAT_R16_UNORM: case VK_FORMAT_R16G16_UNORM: case VK_FORMAT_R16G16B16_UNORM: case VK_FORMAT_R16G16B16A16_UNORM: scale = vector(0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF); break; case VK_FORMAT_R16_SNORM: case VK_FORMAT_R16G16_SNORM: case VK_FORMAT_R16G16B16_SNORM: case VK_FORMAT_R16G16B16A16_SNORM: scale = vector(0x7FFF, 0x7FFF, 0x7FFF, 0x7FFF); break; case VK_FORMAT_R8_SINT: case VK_FORMAT_R8_UINT: case VK_FORMAT_R8G8_SINT: case VK_FORMAT_R8G8_UINT: case VK_FORMAT_R8G8B8_SINT: case VK_FORMAT_R8G8B8_UINT: case VK_FORMAT_B8G8R8_SINT: case VK_FORMAT_B8G8R8_UINT: case VK_FORMAT_R8G8B8A8_SINT: case VK_FORMAT_R8G8B8A8_UINT: case VK_FORMAT_A8B8G8R8_SINT_PACK32: case VK_FORMAT_A8B8G8R8_UINT_PACK32: case VK_FORMAT_B8G8R8A8_SINT: case VK_FORMAT_B8G8R8A8_UINT: case VK_FORMAT_R8_USCALED: case VK_FORMAT_R8G8_USCALED: case VK_FORMAT_R8G8B8_USCALED: case VK_FORMAT_B8G8R8_USCALED: case VK_FORMAT_R8G8B8A8_USCALED: case VK_FORMAT_B8G8R8A8_USCALED: case VK_FORMAT_A8B8G8R8_USCALED_PACK32: case VK_FORMAT_R8_SSCALED: case VK_FORMAT_R8G8_SSCALED: case VK_FORMAT_R8G8B8_SSCALED: case VK_FORMAT_B8G8R8_SSCALED: case VK_FORMAT_R8G8B8A8_SSCALED: case VK_FORMAT_B8G8R8A8_SSCALED: case VK_FORMAT_A8B8G8R8_SSCALED_PACK32: case VK_FORMAT_R16_SINT: case VK_FORMAT_R16_UINT: case VK_FORMAT_R16G16_SINT: case VK_FORMAT_R16G16_UINT: case VK_FORMAT_R16G16B16A16_SINT: case VK_FORMAT_R16G16B16A16_UINT: case VK_FORMAT_R16_SSCALED: case VK_FORMAT_R16G16_SSCALED: case VK_FORMAT_R16G16B16_SSCALED: case VK_FORMAT_R16G16B16A16_SSCALED: case VK_FORMAT_R16_USCALED: case VK_FORMAT_R16G16_USCALED: case VK_FORMAT_R16G16B16_USCALED: case VK_FORMAT_R16G16B16A16_USCALED: case VK_FORMAT_R32_SINT: case VK_FORMAT_R32_UINT: case VK_FORMAT_R32G32_SINT: case VK_FORMAT_R32G32_UINT: case VK_FORMAT_R32G32B32_SINT: case VK_FORMAT_R32G32B32_UINT: case VK_FORMAT_R32G32B32A32_SINT: case VK_FORMAT_R32G32B32A32_UINT: case VK_FORMAT_R32G32B32A32_SFLOAT: case VK_FORMAT_R32G32B32_SFLOAT: case VK_FORMAT_R32G32_SFLOAT: case VK_FORMAT_R32_SFLOAT: case VK_FORMAT_R16G16B16A16_SFLOAT: case VK_FORMAT_R16G16B16_SFLOAT: case VK_FORMAT_R16G16_SFLOAT: case VK_FORMAT_R16_SFLOAT: case VK_FORMAT_B10G11R11_UFLOAT_PACK32: case VK_FORMAT_E5B9G9R9_UFLOAT_PACK32: case VK_FORMAT_A2R10G10B10_USCALED_PACK32: case VK_FORMAT_A2R10G10B10_SSCALED_PACK32: case VK_FORMAT_A2R10G10B10_UINT_PACK32: case VK_FORMAT_A2R10G10B10_SINT_PACK32: case VK_FORMAT_A2B10G10R10_USCALED_PACK32: case VK_FORMAT_A2B10G10R10_SSCALED_PACK32: case VK_FORMAT_A2B10G10R10_UINT_PACK32: case VK_FORMAT_A2B10G10R10_SINT_PACK32: scale = vector(1.0f, 1.0f, 1.0f, 1.0f); break; case VK_FORMAT_R5G5B5A1_UNORM_PACK16: case VK_FORMAT_B5G5R5A1_UNORM_PACK16: case VK_FORMAT_A1R5G5B5_UNORM_PACK16: scale = vector(0x1F, 0x1F, 0x1F, 0x01); break; case VK_FORMAT_R5G6B5_UNORM_PACK16: case VK_FORMAT_B5G6R5_UNORM_PACK16: scale = vector(0x1F, 0x3F, 0x1F, 1.0f); break; case VK_FORMAT_A2R10G10B10_UNORM_PACK32: case VK_FORMAT_A2B10G10R10_UNORM_PACK32: scale = vector(0x3FF, 0x3FF, 0x3FF, 0x03); break; case VK_FORMAT_A2R10G10B10_SNORM_PACK32: case VK_FORMAT_A2B10G10R10_SNORM_PACK32: scale = vector(0x1FF, 0x1FF, 0x1FF, 0x01); break; case VK_FORMAT_D16_UNORM: scale = vector(0xFFFF, 0.0f, 0.0f, 0.0f); break; case VK_FORMAT_D24_UNORM_S8_UINT: case VK_FORMAT_X8_D24_UNORM_PACK32: scale = vector(0xFFFFFF, 0.0f, 0.0f, 0.0f); break; case VK_FORMAT_D32_SFLOAT: case VK_FORMAT_D32_SFLOAT_S8_UINT: case VK_FORMAT_S8_UINT: scale = vector(1.0f, 1.0f, 1.0f, 1.0f); break; default: return false; } return true; } bool Blitter::ApplyScaleAndClamp(Float4 &value, const State &state, bool preScaled) { float4 scale, unscale; if(state.clearOperation && Surface::isNonNormalizedInteger(state.sourceFormat) && !Surface::isNonNormalizedInteger(state.destFormat)) { // If we're clearing a buffer from an int or uint color into a normalized color, // then the whole range of the int or uint color must be scaled between 0 and 1. switch(state.sourceFormat) { case VK_FORMAT_R32G32B32A32_SINT: unscale = replicate(static_cast<float>(0x7FFFFFFF)); break; case VK_FORMAT_R32G32B32A32_UINT: unscale = replicate(static_cast<float>(0xFFFFFFFF)); break; default: return false; } } else if(!GetScale(unscale, state.sourceFormat)) { return false; } if(!GetScale(scale, state.destFormat)) { return false; } bool srcSRGB = Surface::isSRGBformat(state.sourceFormat); bool dstSRGB = Surface::isSRGBformat(state.destFormat); if(state.convertSRGB && ((srcSRGB && !preScaled) || dstSRGB)) // One of the formats is sRGB encoded. { value *= preScaled ? Float4(1.0f / scale.x, 1.0f / scale.y, 1.0f / scale.z, 1.0f / scale.w) : // Unapply scale Float4(1.0f / unscale.x, 1.0f / unscale.y, 1.0f / unscale.z, 1.0f / unscale.w); // Apply unscale value = (srcSRGB && !preScaled) ? sRGBtoLinear(value) : LinearToSRGB(value); value *= Float4(scale.x, scale.y, scale.z, scale.w); // Apply scale } else if(unscale != scale) { value *= Float4(scale.x / unscale.x, scale.y / unscale.y, scale.z / unscale.z, scale.w / unscale.w); } if(Surface::isFloatFormat(state.sourceFormat) && !Surface::isFloatFormat(state.destFormat)) { value = Min(value, Float4(scale.x, scale.y, scale.z, scale.w)); value = Max(value, Float4(Surface::isUnsignedComponent(state.destFormat, 0) ? 0.0f : -scale.x, Surface::isUnsignedComponent(state.destFormat, 1) ? 0.0f : -scale.y, Surface::isUnsignedComponent(state.destFormat, 2) ? 0.0f : -scale.z, Surface::isUnsignedComponent(state.destFormat, 3) ? 0.0f : -scale.w)); } return true; } Int Blitter::ComputeOffset(Int &x, Int &y, Int &pitchB, int bytes, bool quadLayout) { if(!quadLayout) { return y * pitchB + x * bytes; } else { // (x & ~1) * 2 + (x & 1) == (x - (x & 1)) * 2 + (x & 1) == x * 2 - (x & 1) * 2 + (x & 1) == x * 2 - (x & 1) return (y & Int(~1)) * pitchB + ((y & Int(1)) * 2 + x * 2 - (x & Int(1))) * bytes; } } Float4 Blitter::LinearToSRGB(Float4 &c) { Float4 lc = Min(c, Float4(0.0031308f)) * Float4(12.92f); Float4 ec = Float4(1.055f) * power(c, Float4(1.0f / 2.4f)) - Float4(0.055f); Float4 s = c; s.xyz = Max(lc, ec); return s; } Float4 Blitter::sRGBtoLinear(Float4 &c) { Float4 lc = c * Float4(1.0f / 12.92f); Float4 ec = power((c + Float4(0.055f)) * Float4(1.0f / 1.055f), Float4(2.4f)); Int4 linear = CmpLT(c, Float4(0.04045f)); Float4 s = c; s.xyz = As<Float4>((linear & As<Int4>(lc)) | (~linear & As<Int4>(ec))); // FIXME: IfThenElse() return s; } Routine *Blitter::generate(const State &state) { Function<Void(Pointer<Byte>)> function; { Pointer<Byte> blit(function.Arg<0>()); Pointer<Byte> source = *Pointer<Pointer<Byte>>(blit + OFFSET(BlitData,source)); Pointer<Byte> dest = *Pointer<Pointer<Byte>>(blit + OFFSET(BlitData,dest)); Int sPitchB = *Pointer<Int>(blit + OFFSET(BlitData,sPitchB)); Int dPitchB = *Pointer<Int>(blit + OFFSET(BlitData,dPitchB)); Float x0 = *Pointer<Float>(blit + OFFSET(BlitData,x0)); Float y0 = *Pointer<Float>(blit + OFFSET(BlitData,y0)); Float w = *Pointer<Float>(blit + OFFSET(BlitData,w)); Float h = *Pointer<Float>(blit + OFFSET(BlitData,h)); Int x0d = *Pointer<Int>(blit + OFFSET(BlitData,x0d)); Int x1d = *Pointer<Int>(blit + OFFSET(BlitData,x1d)); Int y0d = *Pointer<Int>(blit + OFFSET(BlitData,y0d)); Int y1d = *Pointer<Int>(blit + OFFSET(BlitData,y1d)); Int sWidth = *Pointer<Int>(blit + OFFSET(BlitData,sWidth)); Int sHeight = *Pointer<Int>(blit + OFFSET(BlitData,sHeight)); bool intSrc = Surface::isNonNormalizedInteger(state.sourceFormat); bool intDst = Surface::isNonNormalizedInteger(state.destFormat); bool intBoth = intSrc && intDst; bool srcQuadLayout = Surface::hasQuadLayout(state.sourceFormat); bool dstQuadLayout = Surface::hasQuadLayout(state.destFormat); int srcBytes = Surface::bytes(state.sourceFormat); int dstBytes = Surface::bytes(state.destFormat); bool hasConstantColorI = false; Int4 constantColorI; bool hasConstantColorF = false; Float4 constantColorF; if(state.clearOperation) { if(intBoth) // Integer types { if(!read(constantColorI, source, state)) { return nullptr; } hasConstantColorI = true; } else { if(!read(constantColorF, source, state)) { return nullptr; } hasConstantColorF = true; if(!ApplyScaleAndClamp(constantColorF, state)) { return nullptr; } } } For(Int j = y0d, j < y1d, j++) { Float y = state.clearOperation ? RValue<Float>(y0) : y0 + Float(j) * h; Pointer<Byte> destLine = dest + (dstQuadLayout ? j & Int(~1) : RValue<Int>(j)) * dPitchB; For(Int i = x0d, i < x1d, i++) { Float x = state.clearOperation ? RValue<Float>(x0) : x0 + Float(i) * w; Pointer<Byte> d = destLine + (dstQuadLayout ? (((j & Int(1)) << 1) + (i * 2) - (i & Int(1))) : RValue<Int>(i)) * dstBytes; if(hasConstantColorI) { if(!write(constantColorI, d, state)) { return nullptr; } } else if(hasConstantColorF) { for(int s = 0; s < state.destSamples; s++) { if(!write(constantColorF, d, state)) { return nullptr; } d += *Pointer<Int>(blit + OFFSET(BlitData, dSliceB)); } } else if(intBoth) // Integer types do not support filtering { Int4 color; // When both formats are true integer types, we don't go to float to avoid losing precision Int X = Int(x); Int Y = Int(y); if(state.clampToEdge) { X = Clamp(X, 0, sWidth - 1); Y = Clamp(Y, 0, sHeight - 1); } Pointer<Byte> s = source + ComputeOffset(X, Y, sPitchB, srcBytes, srcQuadLayout); if(!read(color, s, state)) { return nullptr; } if(!write(color, d, state)) { return nullptr; } } else { Float4 color; bool preScaled = false; if(!state.filter || intSrc) { Int X = Int(x); Int Y = Int(y); if(state.clampToEdge) { X = Clamp(X, 0, sWidth - 1); Y = Clamp(Y, 0, sHeight - 1); } Pointer<Byte> s = source + ComputeOffset(X, Y, sPitchB, srcBytes, srcQuadLayout); if(!read(color, s, state)) { return nullptr; } } else // Bilinear filtering { Float X = x; Float Y = y; if(state.clampToEdge) { X = Min(Max(x, 0.5f), Float(sWidth) - 0.5f); Y = Min(Max(y, 0.5f), Float(sHeight) - 0.5f); } Float x0 = X - 0.5f; Float y0 = Y - 0.5f; Int X0 = Max(Int(x0), 0); Int Y0 = Max(Int(y0), 0); Int X1 = X0 + 1; Int Y1 = Y0 + 1; X1 = IfThenElse(X1 >= sWidth, X0, X1); Y1 = IfThenElse(Y1 >= sHeight, Y0, Y1); Pointer<Byte> s00 = source + ComputeOffset(X0, Y0, sPitchB, srcBytes, srcQuadLayout); Pointer<Byte> s01 = source + ComputeOffset(X1, Y0, sPitchB, srcBytes, srcQuadLayout); Pointer<Byte> s10 = source + ComputeOffset(X0, Y1, sPitchB, srcBytes, srcQuadLayout); Pointer<Byte> s11 = source + ComputeOffset(X1, Y1, sPitchB, srcBytes, srcQuadLayout); Float4 c00; if(!read(c00, s00, state)) return nullptr; Float4 c01; if(!read(c01, s01, state)) return nullptr; Float4 c10; if(!read(c10, s10, state)) return nullptr; Float4 c11; if(!read(c11, s11, state)) return nullptr; if(state.convertSRGB && Surface::isSRGBformat(state.sourceFormat)) // sRGB -> RGB { if(!ApplyScaleAndClamp(c00, state)) return nullptr; if(!ApplyScaleAndClamp(c01, state)) return nullptr; if(!ApplyScaleAndClamp(c10, state)) return nullptr; if(!ApplyScaleAndClamp(c11, state)) return nullptr; preScaled = true; } Float4 fx = Float4(x0 - Float(X0)); Float4 fy = Float4(y0 - Float(Y0)); Float4 ix = Float4(1.0f) - fx; Float4 iy = Float4(1.0f) - fy; color = (c00 * ix + c01 * fx) * iy + (c10 * ix + c11 * fx) * fy; } if(!ApplyScaleAndClamp(color, state, preScaled)) { return nullptr; } for(int s = 0; s < state.destSamples; s++) { if(!write(color, d, state)) { return nullptr; } d += *Pointer<Int>(blit + OFFSET(BlitData,dSliceB)); } } } } } return function("BlitRoutine"); } bool Blitter::blitReactor(Surface *source, const SliceRectF &sourceRect, Surface *dest, const SliceRect &destRect, const Blitter::Options &options) { ASSERT(!options.clearOperation || ((source->getWidth() == 1) && (source->getHeight() == 1) && (source->getDepth() == 1))); Rect dRect = destRect; RectF sRect = sourceRect; if(destRect.x0 > destRect.x1) { swap(dRect.x0, dRect.x1); swap(sRect.x0, sRect.x1); } if(destRect.y0 > destRect.y1) { swap(dRect.y0, dRect.y1); swap(sRect.y0, sRect.y1); } State state(options); state.clampToEdge = (sourceRect.x0 < 0.0f) || (sourceRect.y0 < 0.0f) || (sourceRect.x1 > (float)source->getWidth()) || (sourceRect.y1 > (float)source->getHeight()); bool useSourceInternal = !source->isExternalDirty(); bool useDestInternal = !dest->isExternalDirty(); bool isStencil = options.useStencil; state.sourceFormat = isStencil ? source->getStencilFormat() : source->getFormat(useSourceInternal); state.destFormat = isStencil ? dest->getStencilFormat() : dest->getFormat(useDestInternal); state.destSamples = dest->getSamples(); criticalSection.lock(); Routine *blitRoutine = blitCache->query(state); if(!blitRoutine) { blitRoutine = generate(state); if(!blitRoutine) { criticalSection.unlock(); return false; } blitCache->add(state, blitRoutine); } criticalSection.unlock(); void (*blitFunction)(const BlitData *data) = (void(*)(const BlitData*))blitRoutine->getEntry(); BlitData data; bool isRGBA = options.writeMask == 0xF; bool isEntireDest = dest->isEntire(destRect); data.source = isStencil ? source->lockStencil(0, 0, 0, sw::PUBLIC) : source->lock(0, 0, sourceRect.slice, sw::LOCK_READONLY, sw::PUBLIC, useSourceInternal); data.dest = isStencil ? dest->lockStencil(0, 0, 0, sw::PUBLIC) : dest->lock(0, 0, destRect.slice, isRGBA ? (isEntireDest ? sw::LOCK_DISCARD : sw::LOCK_WRITEONLY) : sw::LOCK_READWRITE, sw::PUBLIC, useDestInternal); data.sPitchB = isStencil ? source->getStencilPitchB() : source->getPitchB(useSourceInternal); data.dPitchB = isStencil ? dest->getStencilPitchB() : dest->getPitchB(useDestInternal); data.dSliceB = isStencil ? dest->getStencilSliceB() : dest->getSliceB(useDestInternal); data.w = sRect.width() / dRect.width(); data.h = sRect.height() / dRect.height(); data.x0 = sRect.x0 + (0.5f - dRect.x0) * data.w; data.y0 = sRect.y0 + (0.5f - dRect.y0) * data.h; data.x0d = dRect.x0; data.x1d = dRect.x1; data.y0d = dRect.y0; data.y1d = dRect.y1; data.sWidth = source->getWidth(); data.sHeight = source->getHeight(); blitFunction(&data); if(isStencil) { source->unlockStencil(); dest->unlockStencil(); } else { source->unlock(useSourceInternal); dest->unlock(useDestInternal); } return true; } }