// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "localintermediate.h" #include "SymbolTable.h" // // Two purposes: // 1. Show an example of how to iterate tree. Functions can // also directly call Traverse() on children themselves to // have finer grained control over the process than shown here. // See the last function for how to get started. // 2. Print out a text based description of the tree. // // // Use this class to carry along data from node to node in // the traversal // class TOutputTraverser : public TIntermTraverser { public: TOutputTraverser(TInfoSinkBase& i) : sink(i) { } TInfoSinkBase& sink; protected: void visitSymbol(TIntermSymbol*); void visitConstantUnion(TIntermConstantUnion*); bool visitBinary(Visit visit, TIntermBinary*); bool visitUnary(Visit visit, TIntermUnary*); bool visitSelection(Visit visit, TIntermSelection*); bool visitAggregate(Visit visit, TIntermAggregate*); bool visitLoop(Visit visit, TIntermLoop*); bool visitBranch(Visit visit, TIntermBranch*); }; TString TType::getCompleteString() const { TStringStream stream; if (qualifier != EvqTemporary && qualifier != EvqGlobal) stream << getQualifierString() << " " << getPrecisionString() << " "; if (array) stream << "array of "; if (isMatrix()) stream << static_cast<int>(primarySize) << "X" << static_cast<int>(secondarySize) << " matrix of "; else if(primarySize > 1) stream << static_cast<int>(primarySize) << "-component vector of "; stream << getBasicString(); return stream.str(); } // // Helper functions for printing, not part of traversing. // void OutputTreeText(TInfoSinkBase& sink, TIntermNode* node, const int depth) { int i; sink.location(node->getLine()); for (i = 0; i < depth; ++i) sink << " "; } // // The rest of the file are the traversal functions. The last one // is the one that starts the traversal. // // Return true from interior nodes to have the external traversal // continue on to children. If you process children yourself, // return false. // void TOutputTraverser::visitSymbol(TIntermSymbol* node) { OutputTreeText(sink, node, mDepth); sink << "'" << node->getSymbol() << "' "; sink << "(" << node->getCompleteString() << ")\n"; } bool TOutputTraverser::visitBinary(Visit visit, TIntermBinary* node) { TInfoSinkBase& out = sink; OutputTreeText(out, node, mDepth); switch (node->getOp()) { case EOpAssign: out << "move second child to first child"; break; case EOpInitialize: out << "initialize first child with second child"; break; case EOpAddAssign: out << "add second child into first child"; break; case EOpSubAssign: out << "subtract second child into first child"; break; case EOpMulAssign: out << "multiply second child into first child"; break; case EOpVectorTimesMatrixAssign: out << "matrix mult second child into first child"; break; case EOpVectorTimesScalarAssign: out << "vector scale second child into first child"; break; case EOpMatrixTimesScalarAssign: out << "matrix scale second child into first child"; break; case EOpMatrixTimesMatrixAssign: out << "matrix mult second child into first child"; break; case EOpDivAssign: out << "divide second child into first child"; break; case EOpIModAssign: out << "modulo second child into first child"; break; case EOpBitShiftLeftAssign: out << "bit-wise shift first child left by second child"; break; case EOpBitShiftRightAssign: out << "bit-wise shift first child right by second child"; break; case EOpBitwiseAndAssign: out << "bit-wise and second child into first child"; break; case EOpBitwiseXorAssign: out << "bit-wise xor second child into first child"; break; case EOpBitwiseOrAssign: out << "bit-wise or second child into first child"; break; case EOpIndexDirect: out << "direct index"; break; case EOpIndexIndirect: out << "indirect index"; break; case EOpIndexDirectStruct: out << "direct index for structure"; break; case EOpVectorSwizzle: out << "vector swizzle"; break; case EOpAdd: out << "add"; break; case EOpSub: out << "subtract"; break; case EOpMul: out << "component-wise multiply"; break; case EOpDiv: out << "divide"; break; case EOpIMod: out << "modulo"; break; case EOpBitShiftLeft: out << "bit-wise shift left"; break; case EOpBitShiftRight: out << "bit-wise shift right"; break; case EOpBitwiseAnd: out << "bit-wise and"; break; case EOpBitwiseXor: out << "bit-wise xor"; break; case EOpBitwiseOr: out << "bit-wise or"; break; case EOpEqual: out << "Compare Equal"; break; case EOpNotEqual: out << "Compare Not Equal"; break; case EOpLessThan: out << "Compare Less Than"; break; case EOpGreaterThan: out << "Compare Greater Than"; break; case EOpLessThanEqual: out << "Compare Less Than or Equal"; break; case EOpGreaterThanEqual: out << "Compare Greater Than or Equal"; break; case EOpVectorTimesScalar: out << "vector-scale"; break; case EOpVectorTimesMatrix: out << "vector-times-matrix"; break; case EOpMatrixTimesVector: out << "matrix-times-vector"; break; case EOpMatrixTimesScalar: out << "matrix-scale"; break; case EOpMatrixTimesMatrix: out << "matrix-multiply"; break; case EOpLogicalOr: out << "logical-or"; break; case EOpLogicalXor: out << "logical-xor"; break; case EOpLogicalAnd: out << "logical-and"; break; default: out << "<unknown op>"; } out << " (" << node->getCompleteString() << ")"; out << "\n"; return true; } bool TOutputTraverser::visitUnary(Visit visit, TIntermUnary* node) { TInfoSinkBase& out = sink; OutputTreeText(out, node, mDepth); switch (node->getOp()) { case EOpNegative: out << "Negate value"; break; case EOpVectorLogicalNot: case EOpLogicalNot: out << "Negate conditional"; break; case EOpBitwiseNot: out << "bit-wise not"; break; case EOpPostIncrement: out << "Post-Increment"; break; case EOpPostDecrement: out << "Post-Decrement"; break; case EOpPreIncrement: out << "Pre-Increment"; break; case EOpPreDecrement: out << "Pre-Decrement"; break; case EOpRadians: out << "radians"; break; case EOpDegrees: out << "degrees"; break; case EOpSin: out << "sine"; break; case EOpCos: out << "cosine"; break; case EOpTan: out << "tangent"; break; case EOpAsin: out << "arc sine"; break; case EOpAcos: out << "arc cosine"; break; case EOpAtan: out << "arc tangent"; break; case EOpSinh: out << "hyperbolic sine"; break; case EOpCosh: out << "hyperbolic cosine"; break; case EOpTanh: out << "hyperbolic tangent"; break; case EOpAsinh: out << "arc hyperbolic sine"; break; case EOpAcosh: out << "arc hyperbolic cosine"; break; case EOpAtanh: out << "arc hyperbolic tangent"; break; case EOpExp: out << "exp"; break; case EOpLog: out << "log"; break; case EOpExp2: out << "exp2"; break; case EOpLog2: out << "log2"; break; case EOpSqrt: out << "sqrt"; break; case EOpInverseSqrt: out << "inverse sqrt"; break; case EOpAbs: out << "Absolute value"; break; case EOpSign: out << "Sign"; break; case EOpFloor: out << "Floor"; break; case EOpTrunc: out << "Trunc"; break; case EOpRound: out << "Round"; break; case EOpRoundEven: out << "RoundEven"; break; case EOpCeil: out << "Ceiling"; break; case EOpFract: out << "Fraction"; break; case EOpIsNan: out << "Is not a number"; break; case EOpIsInf: out << "Is infinity"; break; case EOpFloatBitsToInt: out << "float bits to int"; break; case EOpFloatBitsToUint: out << "float bits to uint"; break; case EOpIntBitsToFloat: out << "int bits to float"; break; case EOpUintBitsToFloat: out << "uint bits to float"; break; case EOpPackSnorm2x16: out << "pack Snorm 2x16"; break; case EOpPackUnorm2x16: out << "pack Unorm 2x16"; break; case EOpPackHalf2x16: out << "pack half 2x16"; break; case EOpUnpackSnorm2x16: out << "unpack Snorm 2x16"; break; case EOpUnpackUnorm2x16: out << "unpack Unorm 2x16"; break; case EOpUnpackHalf2x16: out << "unpack half 2x16"; break; case EOpLength: out << "length"; break; case EOpNormalize: out << "normalize"; break; // case EOpDPdx: out << "dPdx"; break; // case EOpDPdy: out << "dPdy"; break; // case EOpFwidth: out << "fwidth"; break; case EOpDeterminant: out << "determinant"; break; case EOpTranspose: out << "transpose"; break; case EOpInverse: out << "inverse"; break; case EOpAny: out << "any"; break; case EOpAll: out << "all"; break; default: out.message(EPrefixError, "Bad unary op"); } out << " (" << node->getCompleteString() << ")"; out << "\n"; return true; } bool TOutputTraverser::visitAggregate(Visit visit, TIntermAggregate* node) { TInfoSinkBase& out = sink; if (node->getOp() == EOpNull) { out.message(EPrefixError, "node is still EOpNull!"); return true; } OutputTreeText(out, node, mDepth); switch (node->getOp()) { case EOpSequence: out << "Sequence\n"; return true; case EOpComma: out << "Comma\n"; return true; case EOpFunction: out << "Function Definition: " << node->getName(); break; case EOpFunctionCall: out << "Function Call: " << node->getName(); break; case EOpParameters: out << "Function Parameters: "; break; case EOpConstructFloat: out << "Construct float"; break; case EOpConstructVec2: out << "Construct vec2"; break; case EOpConstructVec3: out << "Construct vec3"; break; case EOpConstructVec4: out << "Construct vec4"; break; case EOpConstructBool: out << "Construct bool"; break; case EOpConstructBVec2: out << "Construct bvec2"; break; case EOpConstructBVec3: out << "Construct bvec3"; break; case EOpConstructBVec4: out << "Construct bvec4"; break; case EOpConstructInt: out << "Construct int"; break; case EOpConstructIVec2: out << "Construct ivec2"; break; case EOpConstructIVec3: out << "Construct ivec3"; break; case EOpConstructIVec4: out << "Construct ivec4"; break; case EOpConstructUInt: out << "Construct uint"; break; case EOpConstructUVec2: out << "Construct uvec2"; break; case EOpConstructUVec3: out << "Construct uvec3"; break; case EOpConstructUVec4: out << "Construct uvec4"; break; case EOpConstructMat2: out << "Construct mat2"; break; case EOpConstructMat2x3: out << "Construct mat2x3"; break; case EOpConstructMat2x4: out << "Construct mat2x4"; break; case EOpConstructMat3x2: out << "Construct mat3x2"; break; case EOpConstructMat3: out << "Construct mat3"; break; case EOpConstructMat3x4: out << "Construct mat3x4"; break; case EOpConstructMat4x2: out << "Construct mat4x2"; break; case EOpConstructMat4x3: out << "Construct mat4x3"; break; case EOpConstructMat4: out << "Construct mat4"; break; case EOpConstructStruct: out << "Construct structure"; break; case EOpLessThan: out << "Compare Less Than"; break; case EOpGreaterThan: out << "Compare Greater Than"; break; case EOpLessThanEqual: out << "Compare Less Than or Equal"; break; case EOpGreaterThanEqual: out << "Compare Greater Than or Equal"; break; case EOpVectorEqual: out << "Equal"; break; case EOpVectorNotEqual: out << "NotEqual"; break; case EOpMod: out << "mod"; break; case EOpModf: out << "modf"; break; case EOpPow: out << "pow"; break; case EOpAtan: out << "arc tangent"; break; case EOpMin: out << "min"; break; case EOpMax: out << "max"; break; case EOpClamp: out << "clamp"; break; case EOpMix: out << "mix"; break; case EOpStep: out << "step"; break; case EOpSmoothStep: out << "smoothstep"; break; case EOpFloatBitsToInt: out << "floatBitsToInt"; break; case EOpFloatBitsToUint: out << "floatBitsToUint"; break; case EOpIntBitsToFloat: out << "intBitsToFloat"; break; case EOpUintBitsToFloat: out << "uintBitsToFloat"; break; case EOpDistance: out << "distance"; break; case EOpDot: out << "dot-product"; break; case EOpCross: out << "cross-product"; break; case EOpFaceForward: out << "face-forward"; break; case EOpReflect: out << "reflect"; break; case EOpRefract: out << "refract"; break; case EOpMul: out << "component-wise multiply"; break; case EOpOuterProduct: out << "outer product"; break; case EOpDeclaration: out << "Declaration"; break; default: out.message(EPrefixError, "Bad aggregation op"); } if (node->getOp() != EOpSequence && node->getOp() != EOpParameters) out << " (" << node->getCompleteString() << ")"; out << "\n"; return true; } bool TOutputTraverser::visitSelection(Visit visit, TIntermSelection* node) { TInfoSinkBase& out = sink; OutputTreeText(out, node, mDepth); out << "Test condition and select"; out << " (" << node->getCompleteString() << ")\n"; ++mDepth; OutputTreeText(sink, node, mDepth); out << "Condition\n"; node->getCondition()->traverse(this); OutputTreeText(sink, node, mDepth); if (node->getTrueBlock()) { out << "true case\n"; node->getTrueBlock()->traverse(this); } else out << "true case is null\n"; if (node->getFalseBlock()) { OutputTreeText(sink, node, mDepth); out << "false case\n"; node->getFalseBlock()->traverse(this); } --mDepth; return false; } void TOutputTraverser::visitConstantUnion(TIntermConstantUnion* node) { TInfoSinkBase& out = sink; size_t size = node->getType().getObjectSize(); for(size_t i = 0; i < size; i++) { OutputTreeText(out, node, mDepth); switch (node->getUnionArrayPointer()[i].getType()) { case EbtBool: if (node->getUnionArrayPointer()[i].getBConst()) out << "true"; else out << "false"; out << " (" << "const bool" << ")"; out << "\n"; break; case EbtFloat: out << node->getUnionArrayPointer()[i].getFConst(); out << " (const float)\n"; break; case EbtInt: out << node->getUnionArrayPointer()[i].getIConst(); out << " (const int)\n"; break; case EbtUInt: out << node->getUnionArrayPointer()[i].getUConst(); out << " (const uint)\n"; break; default: out.message(EPrefixInternalError, "Unknown constant", node->getLine()); break; } } } bool TOutputTraverser::visitLoop(Visit visit, TIntermLoop* node) { TInfoSinkBase& out = sink; OutputTreeText(out, node, mDepth); out << "Loop with condition "; if (node->getType() == ELoopDoWhile) out << "not "; out << "tested first\n"; ++mDepth; OutputTreeText(sink, node, mDepth); if (node->getCondition()) { out << "Loop Condition\n"; node->getCondition()->traverse(this); } else out << "No loop condition\n"; OutputTreeText(sink, node, mDepth); if (node->getBody()) { out << "Loop Body\n"; node->getBody()->traverse(this); } else out << "No loop body\n"; if (node->getExpression()) { OutputTreeText(sink, node, mDepth); out << "Loop Terminal Expression\n"; node->getExpression()->traverse(this); } --mDepth; return false; } bool TOutputTraverser::visitBranch(Visit visit, TIntermBranch* node) { TInfoSinkBase& out = sink; OutputTreeText(out, node, mDepth); switch (node->getFlowOp()) { case EOpKill: out << "Branch: Kill"; break; case EOpBreak: out << "Branch: Break"; break; case EOpContinue: out << "Branch: Continue"; break; case EOpReturn: out << "Branch: Return"; break; default: out << "Branch: Unknown Branch"; break; } if (node->getExpression()) { out << " with expression\n"; ++mDepth; node->getExpression()->traverse(this); --mDepth; } else out << "\n"; return false; } // // This function is the one to call externally to start the traversal. // Individual functions can be initialized to 0 to skip processing of that // type of node. It's children will still be processed. // void TIntermediate::outputTree(TIntermNode* root) { if (root == 0) return; TOutputTraverser it(infoSink.info); root->traverse(&it); }