// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // libGLESv3.cpp: Implements the exported OpenGL ES 3.0 functions. #include "main.h" #include "Buffer.h" #include "Fence.h" #include "Framebuffer.h" #include "Program.h" #include "Query.h" #include "Sampler.h" #include "Texture.h" #include "mathutil.h" #include "TransformFeedback.h" #include "VertexArray.h" #include "common/debug.h" #include <GLES3/gl3.h> #include <GLES2/gl2ext.h> #include <limits.h> using namespace es2; static bool validImageSize(GLint level, GLsizei width, GLsizei height) { if(level < 0 || level >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS || width < 0 || height < 0) { return false; } return true; } static bool ValidateQueryTarget(GLenum target) { switch(target) { case GL_ANY_SAMPLES_PASSED: case GL_ANY_SAMPLES_PASSED_CONSERVATIVE: case GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN: break; default: return false; } return true; } bool ValidateTexParamParameters(GLenum pname, GLint param) { switch(pname) { case GL_TEXTURE_WRAP_S: case GL_TEXTURE_WRAP_T: case GL_TEXTURE_WRAP_R: switch(param) { case GL_REPEAT: case GL_CLAMP_TO_EDGE: case GL_MIRRORED_REPEAT: return true; default: return error(GL_INVALID_ENUM, false); } case GL_TEXTURE_MIN_FILTER: switch(param) { case GL_NEAREST: case GL_LINEAR: case GL_NEAREST_MIPMAP_NEAREST: case GL_LINEAR_MIPMAP_NEAREST: case GL_NEAREST_MIPMAP_LINEAR: case GL_LINEAR_MIPMAP_LINEAR: return true; default: return error(GL_INVALID_ENUM, false); } break; case GL_TEXTURE_MAG_FILTER: switch(param) { case GL_NEAREST: case GL_LINEAR: return true; default: return error(GL_INVALID_ENUM, false); } break; case GL_TEXTURE_USAGE_ANGLE: switch(param) { case GL_NONE: case GL_FRAMEBUFFER_ATTACHMENT_ANGLE: return true; default: return error(GL_INVALID_ENUM, false); } break; case GL_TEXTURE_MAX_ANISOTROPY_EXT: // we assume the parameter passed to this validation method is truncated, not rounded if(param < 1) { return error(GL_INVALID_VALUE, false); } return true; case GL_TEXTURE_MIN_LOD: case GL_TEXTURE_MAX_LOD: // any value is permissible return true; case GL_TEXTURE_COMPARE_MODE: // Acceptable mode parameters from GLES 3.0.2 spec, table 3.17 switch(param) { case GL_NONE: case GL_COMPARE_REF_TO_TEXTURE: return true; default: return error(GL_INVALID_ENUM, false); } break; case GL_TEXTURE_COMPARE_FUNC: // Acceptable function parameters from GLES 3.0.2 spec, table 3.17 switch(param) { case GL_LEQUAL: case GL_GEQUAL: case GL_LESS: case GL_GREATER: case GL_EQUAL: case GL_NOTEQUAL: case GL_ALWAYS: case GL_NEVER: return true; default: return error(GL_INVALID_ENUM, false); } break; case GL_TEXTURE_SWIZZLE_R: case GL_TEXTURE_SWIZZLE_G: case GL_TEXTURE_SWIZZLE_B: case GL_TEXTURE_SWIZZLE_A: switch(param) { case GL_RED: case GL_GREEN: case GL_BLUE: case GL_ALPHA: case GL_ZERO: case GL_ONE: return true; default: return error(GL_INVALID_ENUM, false); } break; case GL_TEXTURE_BASE_LEVEL: case GL_TEXTURE_MAX_LEVEL: if(param < 0) { return error(GL_INVALID_VALUE, false); } return true; default: return error(GL_INVALID_ENUM, false); } } static bool ValidateSamplerObjectParameter(GLenum pname) { switch(pname) { case GL_TEXTURE_MIN_FILTER: case GL_TEXTURE_MAG_FILTER: case GL_TEXTURE_WRAP_S: case GL_TEXTURE_WRAP_T: case GL_TEXTURE_WRAP_R: case GL_TEXTURE_MIN_LOD: case GL_TEXTURE_MAX_LOD: case GL_TEXTURE_COMPARE_MODE: case GL_TEXTURE_COMPARE_FUNC: case GL_TEXTURE_MAX_ANISOTROPY_EXT: return true; default: return false; } } namespace gl { void ReadBuffer(GLenum src) { TRACE("(GLenum src = 0x%X)", src); auto context = es2::getContext(); if(context) { GLuint readFramebufferName = context->getReadFramebufferName(); switch(src) { case GL_BACK: if(readFramebufferName != 0) { return error(GL_INVALID_OPERATION); } context->setFramebufferReadBuffer(src); break; case GL_NONE: context->setFramebufferReadBuffer(src); break; case GL_COLOR_ATTACHMENT0: case GL_COLOR_ATTACHMENT1: case GL_COLOR_ATTACHMENT2: case GL_COLOR_ATTACHMENT3: case GL_COLOR_ATTACHMENT4: case GL_COLOR_ATTACHMENT5: case GL_COLOR_ATTACHMENT6: case GL_COLOR_ATTACHMENT7: case GL_COLOR_ATTACHMENT8: case GL_COLOR_ATTACHMENT9: case GL_COLOR_ATTACHMENT10: case GL_COLOR_ATTACHMENT11: case GL_COLOR_ATTACHMENT12: case GL_COLOR_ATTACHMENT13: case GL_COLOR_ATTACHMENT14: case GL_COLOR_ATTACHMENT15: case GL_COLOR_ATTACHMENT16: case GL_COLOR_ATTACHMENT17: case GL_COLOR_ATTACHMENT18: case GL_COLOR_ATTACHMENT19: case GL_COLOR_ATTACHMENT20: case GL_COLOR_ATTACHMENT21: case GL_COLOR_ATTACHMENT22: case GL_COLOR_ATTACHMENT23: case GL_COLOR_ATTACHMENT24: case GL_COLOR_ATTACHMENT25: case GL_COLOR_ATTACHMENT26: case GL_COLOR_ATTACHMENT27: case GL_COLOR_ATTACHMENT28: case GL_COLOR_ATTACHMENT29: case GL_COLOR_ATTACHMENT30: case GL_COLOR_ATTACHMENT31: { GLuint index = (src - GL_COLOR_ATTACHMENT0); if(index >= MAX_COLOR_ATTACHMENTS) { return error(GL_INVALID_OPERATION); } if(readFramebufferName == 0) { return error(GL_INVALID_OPERATION); } context->setFramebufferReadBuffer(src); } break; default: return error(GL_INVALID_ENUM); } } } void DrawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count, GLenum type, const void *indices) { TRACE("(GLenum mode = 0x%X, GLuint start = %d, GLuint end = %d, " "GLsizei count = %d, GLenum type = 0x%x, const void* indices = %p)", mode, start, end, count, type, indices); switch(mode) { case GL_POINTS: case GL_LINES: case GL_LINE_LOOP: case GL_LINE_STRIP: case GL_TRIANGLES: case GL_TRIANGLE_FAN: case GL_TRIANGLE_STRIP: break; default: return error(GL_INVALID_ENUM); } switch(type) { case GL_UNSIGNED_BYTE: case GL_UNSIGNED_SHORT: case GL_UNSIGNED_INT: break; default: return error(GL_INVALID_ENUM); } if((count < 0) || (end < start)) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::TransformFeedback* transformFeedback = context->getTransformFeedback(); if(transformFeedback && transformFeedback->isActive() && !transformFeedback->isPaused()) { return error(GL_INVALID_OPERATION); } context->drawElements(mode, start, end, count, type, indices); } } void TexImage3D(GLenum target, GLint level, GLint internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLenum format, GLenum type, const void *data) { TRACE("(GLenum target = 0x%X, GLint level = %d, GLenum internalformat = 0x%X, " "GLsizei width = %d, GLsizei height = %d, GLsizei depth = %d, GLint border = %d, " "GLenum format = 0x%X, GLenum type = 0x%x, const GLvoid* data = %p)", target, level, internalformat, width, height, depth, border, format, type, data); switch(target) { case GL_TEXTURE_3D: case GL_TEXTURE_2D_ARRAY: break; default: return error(GL_INVALID_ENUM); } if((level < 0) || (level >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS)) { return error(GL_INVALID_VALUE); } const GLsizei maxSize3D = es2::IMPLEMENTATION_MAX_3D_TEXTURE_SIZE >> level; if((width < 0) || (height < 0) || (depth < 0) || (width > maxSize3D) || (height > maxSize3D) || (depth > maxSize3D)) { return error(GL_INVALID_VALUE); } if(border != 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { GLenum validationError = ValidateTextureFormatType(format, type, internalformat, target); if(validationError != GL_NO_ERROR) { return error(validationError); } es2::Texture3D *texture = (target == GL_TEXTURE_3D) ? context->getTexture3D() : context->getTexture2DArray(); if(!texture) { return error(GL_INVALID_OPERATION); } validationError = context->getPixels(&data, type, context->getRequiredBufferSize(width, height, depth, format, type)); if(validationError != GL_NO_ERROR) { return error(validationError); } GLint sizedInternalFormat = gl::GetSizedInternalFormat(internalformat, type); texture->setImage(level, width, height, depth, sizedInternalFormat, format, type, context->getUnpackParameters(), data); } } void TexSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type, const void *data) { TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, " "GLint zoffset = %d, GLsizei width = %d, GLsizei height = %d, GLsizei depth = %d, " "GLenum format = 0x%X, GLenum type = 0x%x, const GLvoid* data = %p)", target, level, xoffset, yoffset, zoffset, width, height, depth, format, type, data); switch(target) { case GL_TEXTURE_3D: case GL_TEXTURE_2D_ARRAY: break; default: return error(GL_INVALID_ENUM); } if((level < 0) || (level >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS)) { return error(GL_INVALID_VALUE); } if((width < 0) || (height < 0) || (depth < 0) || (xoffset < 0) || (yoffset < 0) || (zoffset < 0)) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Texture3D *texture = (target == GL_TEXTURE_3D) ? context->getTexture3D() : context->getTexture2DArray(); GLenum validationError = ValidateSubImageParams(false, false, target, level, xoffset, yoffset, zoffset, width, height, depth, format, type, texture); if(validationError != GL_NO_ERROR) { return error(validationError); } validationError = context->getPixels(&data, type, context->getRequiredBufferSize(width, height, depth, format, type)); if(validationError != GL_NO_ERROR) { return error(validationError); } texture->subImage(level, xoffset, yoffset, zoffset, width, height, depth, format, type, context->getUnpackParameters(), data); } } void CopyTexSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLint x, GLint y, GLsizei width, GLsizei height) { TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, " "GLint zoffset = %d, GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d)", target, level, xoffset, yoffset, zoffset, x, y, width, height); switch(target) { case GL_TEXTURE_3D: case GL_TEXTURE_2D_ARRAY: break; default: return error(GL_INVALID_ENUM); } if((level < 0) || (level >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS)) { return error(GL_INVALID_VALUE); } if((width < 0) || (height < 0) || (xoffset < 0) || (yoffset < 0) || (zoffset < 0)) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Framebuffer *framebuffer = context->getReadFramebuffer(); if(!framebuffer || (framebuffer->completeness() != GL_FRAMEBUFFER_COMPLETE)) { return error(GL_INVALID_FRAMEBUFFER_OPERATION); } es2::Renderbuffer *source = framebuffer->getReadColorbuffer(); if(context->getReadFramebufferName() != 0 && (!source || source->getSamples() > 1)) { return error(GL_INVALID_OPERATION); } GLenum colorbufferFormat = source->getFormat(); es2::Texture3D *texture = (target == GL_TEXTURE_3D) ? context->getTexture3D() : context->getTexture2DArray(); GLenum validationError = ValidateSubImageParams(false, true, target, level, xoffset, yoffset, zoffset, width, height, 1, GL_NONE, GL_NONE, texture); if(validationError != GL_NO_ERROR) { return error(validationError); } GLenum textureFormat = texture->getFormat(target, level); if(!ValidateCopyFormats(textureFormat, colorbufferFormat)) { return; } texture->copySubImage(target, level, xoffset, yoffset, zoffset, x, y, width, height, source); } } void CompressedTexImage3D(GLenum target, GLint level, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth, GLint border, GLsizei imageSize, const void *data) { TRACE("(GLenum target = 0x%X, GLint level = %d, GLenum internalformat = 0x%X, GLsizei width = %d, " "GLsizei height = %d, GLsizei depth = %d, GLint border = %d, GLsizei imageSize = %d, const GLvoid* data = %p)", target, level, internalformat, width, height, depth, border, imageSize, data); switch(target) { case GL_TEXTURE_3D: case GL_TEXTURE_2D_ARRAY: break; default: return error(GL_INVALID_ENUM); } if((level < 0) || (level >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS)) { return error(GL_INVALID_VALUE); } const GLsizei maxSize3D = es2::IMPLEMENTATION_MAX_3D_TEXTURE_SIZE >> level; if((width < 0) || (height < 0) || (depth < 0) || (width > maxSize3D) || (height > maxSize3D) || (depth > maxSize3D) || (border != 0) || (imageSize < 0)) { return error(GL_INVALID_VALUE); } if(!IsCompressed(internalformat)) { return error(GL_INVALID_ENUM); } if(imageSize != gl::ComputeCompressedSize(width, height, internalformat) * depth) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Texture3D *texture = (target == GL_TEXTURE_3D) ? context->getTexture3D() : context->getTexture2DArray(); if(!texture) { return error(GL_INVALID_OPERATION); } GLenum validationError = context->getPixels(&data, GL_UNSIGNED_BYTE, imageSize); if(validationError != GL_NO_ERROR) { return error(validationError); } texture->setCompressedImage(level, internalformat, width, height, depth, imageSize, data); } } void CompressedTexSubImage3D(GLenum target, GLint level, GLint xoffset, GLint yoffset, GLint zoffset, GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLsizei imageSize, const void *data) { TRACE("(GLenum target = 0x%X, GLint level = %d, GLint xoffset = %d, GLint yoffset = %d, " "GLint zoffset = %d, GLsizei width = %d, GLsizei height = %d, GLsizei depth = %d, " "GLenum format = 0x%X, GLsizei imageSize = %d, const void *data = %p)", target, level, xoffset, yoffset, zoffset, width, height, depth, format, imageSize, data); switch(target) { case GL_TEXTURE_3D: case GL_TEXTURE_2D_ARRAY: break; default: return error(GL_INVALID_ENUM); } if(level < 0 || level >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS) { return error(GL_INVALID_VALUE); } if(xoffset < 0 || yoffset < 0 || zoffset < 0 || !validImageSize(level, width, height) || depth < 0 || imageSize < 0) { return error(GL_INVALID_VALUE); } if(!IsCompressed(format)) { return error(GL_INVALID_ENUM); } if(imageSize != gl::ComputeCompressedSize(width, height, format) * depth) { return error(GL_INVALID_VALUE); } bool is_ETC2_EAC = false; switch(format) { case GL_COMPRESSED_R11_EAC: case GL_COMPRESSED_SIGNED_R11_EAC: case GL_COMPRESSED_RG11_EAC: case GL_COMPRESSED_SIGNED_RG11_EAC: case GL_COMPRESSED_RGB8_ETC2: case GL_COMPRESSED_SRGB8_ETC2: case GL_COMPRESSED_RGB8_PUNCHTHROUGH_ALPHA1_ETC2: case GL_COMPRESSED_SRGB8_PUNCHTHROUGH_ALPHA1_ETC2: case GL_COMPRESSED_RGBA8_ETC2_EAC: case GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC: if(target != GL_TEXTURE_2D_ARRAY) { return error(GL_INVALID_OPERATION); } if(((width % 4) != 0) || ((height % 4) != 0) || ((xoffset % 4) != 0) || ((yoffset % 4) != 0)) { return error(GL_INVALID_OPERATION); } is_ETC2_EAC = true; break; default: break; } auto context = es2::getContext(); if(context) { es2::Texture3D *texture = (target == GL_TEXTURE_3D) ? context->getTexture3D() : context->getTexture2DArray(); if(!texture) { return error(GL_INVALID_OPERATION); } GLenum validationError = context->getPixels(&data, GL_UNSIGNED_BYTE, imageSize); if(validationError != GL_NO_ERROR) { return error(validationError); } if(is_ETC2_EAC) { if(((width + xoffset) != texture->getWidth(target, level)) || ((height + yoffset) != texture->getHeight(target, level)) || ((depth + zoffset) != texture->getDepth(target, level))) { return error(GL_INVALID_OPERATION); } } texture->subImageCompressed(level, xoffset, yoffset, zoffset, width, height, depth, format, imageSize, data); } } void GenQueries(GLsizei n, GLuint *ids) { TRACE("(GLsizei n = %d, GLuint* ids = %p)", n, ids); if(n < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { for(int i = 0; i < n; i++) { ids[i] = context->createQuery(); } } } void DeleteQueries(GLsizei n, const GLuint *ids) { TRACE("(GLsizei n = %d, GLuint* ids = %p)", n, ids); if(n < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { for(int i = 0; i < n; i++) { context->deleteQuery(ids[i]); } } } GLboolean IsQuery(GLuint id) { TRACE("(GLuint id = %d)", id); if(id == 0) { return GL_FALSE; } auto context = es2::getContext(); if(context) { es2::Query *queryObject = context->getQuery(id); if(queryObject) { return GL_TRUE; } } return GL_FALSE; } void BeginQuery(GLenum target, GLuint id) { TRACE("(GLenum target = 0x%X, GLuint id = %d)", target, id); if(!ValidateQueryTarget(target)) { return error(GL_INVALID_ENUM); } if(id == 0) { return error(GL_INVALID_OPERATION); } auto context = es2::getContext(); if(context) { context->beginQuery(target, id); } } void EndQuery(GLenum target) { TRACE("(GLenum target = 0x%X)", target); if(!ValidateQueryTarget(target)) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { context->endQuery(target); } } void GetQueryiv(GLenum target, GLenum pname, GLint *params) { TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint *params = %p)", target, pname, params); if(!ValidateQueryTarget(target) || (pname != GL_CURRENT_QUERY)) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { params[0] = context->getActiveQuery(target); } } void GetQueryObjectuiv(GLuint id, GLenum pname, GLuint *params) { TRACE("(GLuint id = %d, GLenum pname = 0x%X, GLint *params = %p)", id, pname, params); switch(pname) { case GL_QUERY_RESULT: case GL_QUERY_RESULT_AVAILABLE: break; default: return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { es2::Query *queryObject = context->getQuery(id); if(!queryObject) { return error(GL_INVALID_OPERATION); } if(context->getActiveQuery(queryObject->getType()) == id) { return error(GL_INVALID_OPERATION); } switch(pname) { case GL_QUERY_RESULT: params[0] = queryObject->getResult(); break; case GL_QUERY_RESULT_AVAILABLE: params[0] = queryObject->isResultAvailable(); break; default: ASSERT(false); } } } GLboolean UnmapBuffer(GLenum target) { TRACE("(GLenum target = 0x%X)", target); auto context = es2::getContext(); if(context) { es2::Buffer *buffer = nullptr; if(!context->getBuffer(target, &buffer)) { return error(GL_INVALID_ENUM, GL_TRUE); } if(!buffer) { // A null buffer means that "0" is bound to the requested buffer target return error(GL_INVALID_OPERATION, GL_TRUE); } if(!buffer->isMapped()) { // Already unmapped return error(GL_INVALID_OPERATION, GL_TRUE); } return buffer->unmap() ? GL_TRUE : GL_FALSE; } return GL_TRUE; } void GetBufferPointerv(GLenum target, GLenum pname, void **params) { TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint *params = %p)", target, pname, params); if(pname != GL_BUFFER_MAP_POINTER) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { es2::Buffer *buffer = nullptr; if(!context->getBuffer(target, &buffer)) { return error(GL_INVALID_ENUM); } if(!buffer) { // A null buffer means that "0" is bound to the requested buffer target return error(GL_INVALID_OPERATION); } *params = buffer->isMapped() ? (void*)(((const char*)buffer->data()) + buffer->offset()) : nullptr; } } void DrawBuffers(GLsizei n, const GLenum *bufs) { TRACE("(GLsizei n = %d, const GLenum *bufs = %p)", n, bufs); if(n < 0 || n > MAX_DRAW_BUFFERS) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { GLuint drawFramebufferName = context->getDrawFramebufferName(); if((drawFramebufferName == 0) && (n != 1)) { return error(GL_INVALID_OPERATION); } for(unsigned int i = 0; i < (unsigned)n; i++) { switch(bufs[i]) { case GL_BACK: if(drawFramebufferName != 0) { return error(GL_INVALID_OPERATION); } break; case GL_NONE: break; case GL_COLOR_ATTACHMENT0: case GL_COLOR_ATTACHMENT1: case GL_COLOR_ATTACHMENT2: case GL_COLOR_ATTACHMENT3: case GL_COLOR_ATTACHMENT4: case GL_COLOR_ATTACHMENT5: case GL_COLOR_ATTACHMENT6: case GL_COLOR_ATTACHMENT7: case GL_COLOR_ATTACHMENT8: case GL_COLOR_ATTACHMENT9: case GL_COLOR_ATTACHMENT10: case GL_COLOR_ATTACHMENT11: case GL_COLOR_ATTACHMENT12: case GL_COLOR_ATTACHMENT13: case GL_COLOR_ATTACHMENT14: case GL_COLOR_ATTACHMENT15: case GL_COLOR_ATTACHMENT16: case GL_COLOR_ATTACHMENT17: case GL_COLOR_ATTACHMENT18: case GL_COLOR_ATTACHMENT19: case GL_COLOR_ATTACHMENT20: case GL_COLOR_ATTACHMENT21: case GL_COLOR_ATTACHMENT22: case GL_COLOR_ATTACHMENT23: case GL_COLOR_ATTACHMENT24: case GL_COLOR_ATTACHMENT25: case GL_COLOR_ATTACHMENT26: case GL_COLOR_ATTACHMENT27: case GL_COLOR_ATTACHMENT28: case GL_COLOR_ATTACHMENT29: case GL_COLOR_ATTACHMENT30: case GL_COLOR_ATTACHMENT31: { GLuint index = (bufs[i] - GL_COLOR_ATTACHMENT0); if(index >= MAX_COLOR_ATTACHMENTS) { return error(GL_INVALID_OPERATION); } if(index != i) { return error(GL_INVALID_OPERATION); } if(drawFramebufferName == 0) { return error(GL_INVALID_OPERATION); } } break; default: return error(GL_INVALID_ENUM); } } context->setFramebufferDrawBuffers(n, bufs); } } void UniformMatrix2x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat *value = %p)", location, count, transpose, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniformMatrix2x3fv(location, count, transpose, value)) { return error(GL_INVALID_OPERATION); } } } void UniformMatrix3x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat *value = %p)", location, count, transpose, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniformMatrix3x2fv(location, count, transpose, value)) { return error(GL_INVALID_OPERATION); } } } void UniformMatrix2x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat *value = %p)", location, count, transpose, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniformMatrix2x4fv(location, count, transpose, value)) { return error(GL_INVALID_OPERATION); } } } void UniformMatrix4x2fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat *value = %p)", location, count, transpose, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniformMatrix4x2fv(location, count, transpose, value)) { return error(GL_INVALID_OPERATION); } } } void UniformMatrix3x4fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat *value = %p)", location, count, transpose, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniformMatrix3x4fv(location, count, transpose, value)) { return error(GL_INVALID_OPERATION); } } } void UniformMatrix4x3fv(GLint location, GLsizei count, GLboolean transpose, const GLfloat *value) { TRACE("(GLint location = %d, GLsizei count = %d, GLboolean transpose = %d, const GLfloat *value = %p)", location, count, transpose, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniformMatrix4x3fv(location, count, transpose, value)) { return error(GL_INVALID_OPERATION); } } } void BlitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1, GLbitfield mask, GLenum filter) { TRACE("(GLint srcX0 = %d, GLint srcY0 = %d, GLint srcX1 = %d, GLint srcY1 = %d, " "GLint dstX0 = %d, GLint dstY0 = %d, GLint dstX1 = %d, GLint dstY1 = %d, " "GLbitfield mask = 0x%X, GLenum filter = 0x%X)", srcX0, srcY0, srcX1, srcX1, dstX0, dstY0, dstX1, dstY1, mask, filter); switch(filter) { case GL_NEAREST: break; case GL_LINEAR: if((mask & GL_DEPTH_BUFFER_BIT) || (mask & GL_STENCIL_BUFFER_BIT)) { return error(GL_INVALID_OPERATION); } break; default: return error(GL_INVALID_ENUM); } if((mask & ~(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)) != 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { if(context->getReadFramebufferName() == context->getDrawFramebufferName()) { ERR("Blits with the same source and destination framebuffer are not supported by this implementation."); return error(GL_INVALID_OPERATION); } context->blitFramebuffer(srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1, mask, filter == GL_LINEAR, true); } } void FramebufferTextureLayer(GLenum target, GLenum attachment, GLuint texture, GLint level, GLint layer) { TRACE("(GLenum target = 0x%X, GLenum attachment = 0x%X, GLuint texture = %d, GLint level = %d, GLint layer = %d)", target, attachment, texture, level, layer); // GLES 3.0.4 spec, p.209, section 4.4.2 // If texture is zero, any image or array of images attached to the attachment point // named by attachment is detached. Any additional parameters(level, textarget, // and / or layer) are ignored when texture is zero. if(texture != 0 && (layer < 0 || level < 0)) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { Texture* textureObject = context->getTexture(texture); GLenum textarget = GL_NONE; if(texture != 0) { if(!textureObject) { return error(GL_INVALID_OPERATION); } if(level >= es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS) { return error(GL_INVALID_VALUE); } textarget = textureObject->getTarget(); switch(textarget) { case GL_TEXTURE_3D: if(layer >= es2::IMPLEMENTATION_MAX_3D_TEXTURE_SIZE) { return error(GL_INVALID_VALUE); } break; case GL_TEXTURE_2D_ARRAY: if(layer >= es2::IMPLEMENTATION_MAX_ARRAY_TEXTURE_LAYERS) { return error(GL_INVALID_VALUE); } break; default: return error(GL_INVALID_OPERATION); } if(textureObject->isCompressed(textarget, level)) { return error(GL_INVALID_OPERATION); } } es2::Framebuffer *framebuffer = nullptr; switch(target) { case GL_DRAW_FRAMEBUFFER: case GL_FRAMEBUFFER: if(context->getDrawFramebufferName() == 0) { return error(GL_INVALID_OPERATION); } framebuffer = context->getDrawFramebuffer(); break; case GL_READ_FRAMEBUFFER: if(context->getReadFramebufferName() == 0) { return error(GL_INVALID_OPERATION); } framebuffer = context->getReadFramebuffer(); break; default: return error(GL_INVALID_ENUM); } if(!framebuffer) { return error(GL_INVALID_OPERATION); } switch(attachment) { case GL_DEPTH_ATTACHMENT: framebuffer->setDepthbuffer(textarget, texture, level, layer); break; case GL_STENCIL_ATTACHMENT: framebuffer->setStencilbuffer(textarget, texture, level, layer); break; case GL_DEPTH_STENCIL_ATTACHMENT: framebuffer->setDepthbuffer(textarget, texture, level, layer); framebuffer->setStencilbuffer(textarget, texture, level, layer); break; default: if(attachment < GL_COLOR_ATTACHMENT0 || attachment > GL_COLOR_ATTACHMENT31) { return error(GL_INVALID_ENUM); } if((attachment - GL_COLOR_ATTACHMENT0) >= MAX_COLOR_ATTACHMENTS) { return error(GL_INVALID_OPERATION); } framebuffer->setColorbuffer(textarget, texture, attachment - GL_COLOR_ATTACHMENT0, level, layer); break; } } } void *MapBufferRange(GLenum target, GLintptr offset, GLsizeiptr length, GLbitfield access) { TRACE("(GLenum target = 0x%X, GLintptr offset = %d, GLsizeiptr length = %d, GLbitfield access = %X)", target, offset, length, access); if((offset < 0) || (length < 0)) { return error(GL_INVALID_VALUE, nullptr); } if(!(access & (GL_MAP_READ_BIT | GL_MAP_WRITE_BIT))) { // Must be able to read or write the buffer return error(GL_INVALID_OPERATION, nullptr); } else if((access & GL_MAP_READ_BIT) && (access & (GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | GL_MAP_UNSYNCHRONIZED_BIT))) { // GL_MAP_INVALIDATE_RANGE_BIT, GL_MAP_INVALIDATE_BUFFER_BIT and GL_MAP_UNSYNCHRONIZED_BIT can't be used with GL_MAP_READ_BIT return error(GL_INVALID_OPERATION, nullptr); } else if((!(access & GL_MAP_WRITE_BIT)) && (access & GL_MAP_FLUSH_EXPLICIT_BIT)) { // GL_MAP_FLUSH_EXPLICIT_BIT can't be used without GL_MAP_WRITE_BIT return error(GL_INVALID_OPERATION, nullptr); } auto context = es2::getContext(); if(context) { es2::Buffer *buffer = nullptr; if(!context->getBuffer(target, &buffer)) { return error(GL_INVALID_ENUM, nullptr); } if(!buffer) { // A null buffer means that "0" is bound to the requested buffer target return error(GL_INVALID_OPERATION, nullptr); } if(buffer->isMapped()) { // It is an invalid operation to map an already mapped buffer return error(GL_INVALID_OPERATION, nullptr); } GLsizeiptr bufferSize = buffer->size(); if((offset + length) > bufferSize) { return error(GL_INVALID_VALUE, nullptr); } if((access & ~(GL_MAP_READ_BIT | GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT | GL_MAP_FLUSH_EXPLICIT_BIT | GL_MAP_UNSYNCHRONIZED_BIT)) != 0) { return error(GL_INVALID_VALUE, nullptr); } return buffer->mapRange(offset, length, access); } return nullptr; } void FlushMappedBufferRange(GLenum target, GLintptr offset, GLsizeiptr length) { TRACE("(GLenum target = 0x%X, GLintptr offset = %d, GLsizeiptr length = %d)", target, offset, length); if((offset < 0) || (length < 0)) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Buffer *buffer = nullptr; if(!context->getBuffer(target, &buffer)) { return error(GL_INVALID_ENUM); } if(!buffer) { // A null buffer means that "0" is bound to the requested buffer target return error(GL_INVALID_OPERATION); } if(!buffer->isMapped()) { // Buffer must be mapped return error(GL_INVALID_OPERATION); } GLsizeiptr bufferSize = buffer->length(); if((offset + length) > bufferSize) { return error(GL_INVALID_VALUE); } if(!(buffer->access() & GL_MAP_FLUSH_EXPLICIT_BIT)) { // Flush must be explicitly allowed return error(GL_INVALID_OPERATION); } buffer->flushMappedRange(offset, length); } } void BindVertexArray(GLuint array) { TRACE("(GLuint array = %d)", array); auto context = es2::getContext(); if(context) { if(!context->isVertexArray(array)) { return error(GL_INVALID_OPERATION); } context->bindVertexArray(array); } } void BindVertexArrayOES(GLuint array) { BindVertexArray(array); } void DeleteVertexArrays(GLsizei n, const GLuint *arrays) { TRACE("(GLsizei n = %d, const GLuint *arrays = %p)", n, arrays); if(n < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { for(int i = 0; i < n; i++) { if(arrays[i] != 0) // Attempts to delete default vertex array silently ignored. { context->deleteVertexArray(arrays[i]); } } } } void DeleteVertexArraysOES(GLsizei n, const GLuint *arrays) { DeleteVertexArrays(n, arrays); } void GenVertexArrays(GLsizei n, GLuint *arrays) { TRACE("(GLsizei n = %d, const GLuint *arrays = %p)", n, arrays); if(n < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { for(int i = 0; i < n; i++) { arrays[i] = context->createVertexArray(); } } } void GenVertexArraysOES(GLsizei n, GLuint *arrays) { GenVertexArrays(n, arrays); } GLboolean IsVertexArray(GLuint array) { TRACE("(GLuint array = %d)", array); if(array == 0) { return GL_FALSE; } auto context = es2::getContext(); if(context) { es2::VertexArray *arrayObject = context->getVertexArray(array); if(arrayObject) { return GL_TRUE; } } return GL_FALSE; } GLboolean IsVertexArrayOES(GLuint array) { return IsVertexArray(array); } void GetIntegeri_v(GLenum target, GLuint index, GLint *data) { TRACE("(GLenum target = 0x%X, GLuint index = %d, GLint* data = %p)", target, index, data); auto context = es2::getContext(); if(context) { if(!context->getTransformFeedbackiv(index, target, data) && !context->getUniformBufferiv(index, target, data) && !context->getIntegerv(target, data)) { GLenum nativeType; unsigned int numParams = 0; if(!context->getQueryParameterInfo(target, &nativeType, &numParams)) return error(GL_INVALID_ENUM); if(numParams == 0) return; // it is known that target is valid, but there are no parameters to return if(nativeType == GL_BOOL) { GLboolean *boolParams = nullptr; boolParams = new GLboolean[numParams]; context->getBooleanv(target, boolParams); for(unsigned int i = 0; i < numParams; ++i) { data[i] = (boolParams[i] == GL_FALSE) ? 0 : 1; } delete[] boolParams; } else if(nativeType == GL_FLOAT) { GLfloat *floatParams = nullptr; floatParams = new GLfloat[numParams]; context->getFloatv(target, floatParams); for(unsigned int i = 0; i < numParams; ++i) { if(target == GL_DEPTH_RANGE || target == GL_COLOR_CLEAR_VALUE || target == GL_DEPTH_CLEAR_VALUE || target == GL_BLEND_COLOR) { data[i] = convert_float_fixed(floatParams[i]); } else { data[i] = (GLint)(floatParams[i] > 0.0f ? floor(floatParams[i] + 0.5) : ceil(floatParams[i] - 0.5)); } } delete[] floatParams; } } } } void BeginTransformFeedback(GLenum primitiveMode) { TRACE("(GLenum primitiveMode = 0x%X)", primitiveMode); switch(primitiveMode) { case GL_POINTS: case GL_LINES: case GL_TRIANGLES: break; default: return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { es2::TransformFeedback *transformFeedbackObject = context->getTransformFeedback(); if(transformFeedbackObject) { if(transformFeedbackObject->isActive()) { return error(GL_INVALID_OPERATION); } transformFeedbackObject->begin(primitiveMode); } else { return error(GL_INVALID_OPERATION); } } } void EndTransformFeedback(void) { TRACE("()"); auto context = es2::getContext(); if(context) { es2::TransformFeedback *transformFeedbackObject = context->getTransformFeedback(); if(transformFeedbackObject) { if(!transformFeedbackObject->isActive()) { return error(GL_INVALID_OPERATION); } transformFeedbackObject->end(); } else { return error(GL_INVALID_OPERATION); } } } void BindBufferRange(GLenum target, GLuint index, GLuint buffer, GLintptr offset, GLsizeiptr size) { TRACE("(GLenum target = 0x%X, GLuint index = %d, GLuint buffer = %d, GLintptr offset = %d, GLsizeiptr size = %d)", target, index, buffer, offset, size); if(buffer != 0 && size <= 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { switch(target) { case GL_TRANSFORM_FEEDBACK_BUFFER: if(index >= MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS) { return error(GL_INVALID_VALUE); } if(size & 0x3 || offset & 0x3) // size and offset must be multiples of 4 { return error(GL_INVALID_VALUE); } context->bindIndexedTransformFeedbackBuffer(buffer, index, offset, size); context->bindGenericTransformFeedbackBuffer(buffer); break; case GL_UNIFORM_BUFFER: if(index >= MAX_UNIFORM_BUFFER_BINDINGS) { return error(GL_INVALID_VALUE); } if(offset % UNIFORM_BUFFER_OFFSET_ALIGNMENT != 0) { return error(GL_INVALID_VALUE); } context->bindIndexedUniformBuffer(buffer, index, offset, size); context->bindGenericUniformBuffer(buffer); break; default: return error(GL_INVALID_ENUM); } } } void BindBufferBase(GLenum target, GLuint index, GLuint buffer) { TRACE("(GLenum target = 0x%X, GLuint index = %d, GLuint buffer = %d)", target, index, buffer); auto context = es2::getContext(); if(context) { switch(target) { case GL_TRANSFORM_FEEDBACK_BUFFER: if(index >= MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS) { return error(GL_INVALID_VALUE); } context->bindIndexedTransformFeedbackBuffer(buffer, index, 0, 0); context->bindGenericTransformFeedbackBuffer(buffer); break; case GL_UNIFORM_BUFFER: if(index >= MAX_UNIFORM_BUFFER_BINDINGS) { return error(GL_INVALID_VALUE); } context->bindIndexedUniformBuffer(buffer, index, 0, 0); context->bindGenericUniformBuffer(buffer); break; default: return error(GL_INVALID_ENUM); } } } void TransformFeedbackVaryings(GLuint program, GLsizei count, const GLchar *const*varyings, GLenum bufferMode) { TRACE("(GLuint program = %d, GLsizei count = %d, const GLchar *const*varyings = %p, GLenum bufferMode = 0x%X)", program, count, varyings, bufferMode); switch(bufferMode) { case GL_SEPARATE_ATTRIBS: if(count > MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS) { return error(GL_INVALID_VALUE); } case GL_INTERLEAVED_ATTRIBS: break; default: return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { return error(GL_INVALID_VALUE); } programObject->setTransformFeedbackVaryings(count, varyings, bufferMode); } } void GetTransformFeedbackVarying(GLuint program, GLuint index, GLsizei bufSize, GLsizei *length, GLsizei *size, GLenum *type, GLchar *name) { TRACE("(GLuint program = %d, GLuint index = %d, GLsizei bufSize = %d, GLsizei *length = %p, GLsizei *size = %p, GLenum *type = %p, GLchar *name = %p)", program, index, bufSize, length, size, type, name); if(bufSize < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { return error(GL_INVALID_VALUE); } if(index >= static_cast<GLuint>(programObject->getTransformFeedbackVaryingCount())) { return error(GL_INVALID_VALUE); } programObject->getTransformFeedbackVarying(index, bufSize, length, size, type, name); } } void VertexAttribIPointer(GLuint index, GLint size, GLenum type, GLsizei stride, const void *pointer) { TRACE("(GLuint program = %d, GLuint index = %d, GLsizei bufSize = %d, GLsizei *length = %p, GLsizei *size = %p, GLenum *type = %p, GLchar *name = %p)", index, size, type, stride, pointer); if(index >= es2::MAX_VERTEX_ATTRIBS) { return error(GL_INVALID_VALUE); } if(size < 1 || size > 4 || stride < 0) { return error(GL_INVALID_VALUE); } switch(type) { case GL_BYTE: case GL_UNSIGNED_BYTE: case GL_SHORT: case GL_UNSIGNED_SHORT: case GL_INT: case GL_UNSIGNED_INT: break; default: return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { es2::VertexArray* vertexArray = context->getCurrentVertexArray(); if((context->getArrayBufferName() == 0) && vertexArray && (vertexArray->name != 0) && pointer) { // GL_INVALID_OPERATION is generated if a non-zero vertex array object is bound, zero is bound // to the GL_ARRAY_BUFFER buffer object binding point and the pointer argument is not NULL. return error(GL_INVALID_OPERATION); } context->setVertexAttribState(index, context->getArrayBuffer(), size, type, false, true, stride, pointer); } } void GetVertexAttribIiv(GLuint index, GLenum pname, GLint *params) { TRACE("(GLuint index = %d, GLenum pname = 0x%X, GLint *params = %p)", index, pname, params); auto context = es2::getContext(); if(context) { if(index >= es2::MAX_VERTEX_ATTRIBS) { return error(GL_INVALID_VALUE); } const es2::VertexAttribute &attribState = context->getVertexAttribState(index); switch(pname) { case GL_VERTEX_ATTRIB_ARRAY_ENABLED: *params = (attribState.mArrayEnabled ? GL_TRUE : GL_FALSE); break; case GL_VERTEX_ATTRIB_ARRAY_SIZE: *params = attribState.mSize; break; case GL_VERTEX_ATTRIB_ARRAY_STRIDE: *params = attribState.mStride; break; case GL_VERTEX_ATTRIB_ARRAY_TYPE: *params = attribState.mType; break; case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED: *params = (attribState.mNormalized ? GL_TRUE : GL_FALSE); break; case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING: *params = attribState.mBoundBuffer.name(); break; case GL_CURRENT_VERTEX_ATTRIB: { const VertexAttribute& attrib = context->getCurrentVertexAttributes()[index]; for(int i = 0; i < 4; ++i) { params[i] = attrib.getCurrentValueI(i); } } break; case GL_VERTEX_ATTRIB_ARRAY_INTEGER: *params = (attribState.mPureInteger ? GL_TRUE : GL_FALSE); break; case GL_VERTEX_ATTRIB_ARRAY_DIVISOR: *params = attribState.mDivisor; break; default: return error(GL_INVALID_ENUM); } } } void GetVertexAttribIuiv(GLuint index, GLenum pname, GLuint *params) { TRACE("(GLuint index = %d, GLenum pname = 0x%X, GLuint *params = %p)", index, pname, params); auto context = es2::getContext(); if(context) { if(index >= es2::MAX_VERTEX_ATTRIBS) { return error(GL_INVALID_VALUE); } const es2::VertexAttribute &attribState = context->getVertexAttribState(index); switch(pname) { case GL_VERTEX_ATTRIB_ARRAY_ENABLED: *params = (attribState.mArrayEnabled ? GL_TRUE : GL_FALSE); break; case GL_VERTEX_ATTRIB_ARRAY_SIZE: *params = attribState.mSize; break; case GL_VERTEX_ATTRIB_ARRAY_STRIDE: *params = attribState.mStride; break; case GL_VERTEX_ATTRIB_ARRAY_TYPE: *params = attribState.mType; break; case GL_VERTEX_ATTRIB_ARRAY_NORMALIZED: *params = (attribState.mNormalized ? GL_TRUE : GL_FALSE); break; case GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING: *params = attribState.mBoundBuffer.name(); break; case GL_CURRENT_VERTEX_ATTRIB: { const VertexAttribute& attrib = context->getCurrentVertexAttributes()[index]; for(int i = 0; i < 4; ++i) { params[i] = attrib.getCurrentValueUI(i); } } break; case GL_VERTEX_ATTRIB_ARRAY_INTEGER: *params = (attribState.mPureInteger ? GL_TRUE : GL_FALSE); break; case GL_VERTEX_ATTRIB_ARRAY_DIVISOR: *params = attribState.mDivisor; break; default: return error(GL_INVALID_ENUM); } } } void VertexAttribI4i(GLuint index, GLint x, GLint y, GLint z, GLint w) { TRACE("(GLuint index = %d, GLint x = %d, GLint y = %d, GLint z = %d, GLint w = %d)", index, x, y, z, w); if(index >= es2::MAX_VERTEX_ATTRIBS) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { GLint vals[4] = { x, y, z, w }; context->setVertexAttrib(index, vals); } } void VertexAttribI4ui(GLuint index, GLuint x, GLuint y, GLuint z, GLuint w) { TRACE("(GLuint index = %d, GLint x = %d, GLint y = %d, GLint z = %d, GLint w = %d)", index, x, y, z, w); if(index >= es2::MAX_VERTEX_ATTRIBS) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { GLuint vals[4] = { x, y, z, w }; context->setVertexAttrib(index, vals); } } void VertexAttribI4iv(GLuint index, const GLint *v) { TRACE("(GLuint index = %d, GLint *v = %p)", index, v); if(index >= es2::MAX_VERTEX_ATTRIBS) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { context->setVertexAttrib(index, v); } } void VertexAttribI4uiv(GLuint index, const GLuint *v) { TRACE("(GLuint index = %d, GLint *v = %p)", index, v); if(index >= es2::MAX_VERTEX_ATTRIBS) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { context->setVertexAttrib(index, v); } } void GetUniformuiv(GLuint program, GLint location, GLuint *params) { TRACE("(GLuint program = %d, GLint location = %d, GLuint *params = %p)", program, location, params); auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { if(context->getShader(program)) { return error(GL_INVALID_OPERATION); } else { return error(GL_INVALID_VALUE); } } if(!programObject->isLinked()) { return error(GL_INVALID_OPERATION); } if(!programObject->getUniformuiv(location, nullptr, params)) { return error(GL_INVALID_OPERATION); } } } GLint GetFragDataLocation(GLuint program, const GLchar *name) { TRACE("(GLuint program = %d, const GLchar *name = %p)", program, name); auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { if(context->getShader(program)) { return error(GL_INVALID_OPERATION, -1); } else { return error(GL_INVALID_VALUE, -1); } } if(!programObject->isLinked()) { return error(GL_INVALID_OPERATION, -1); } return programObject->getFragDataLocation(name); } return -1; } void Uniform1uiv(GLint location, GLsizei count, const GLuint *value) { TRACE("(GLint location = %d, GLsizei count = %d, const GLuint *value = %p)", location, count, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniform1uiv(location, count, value)) { return error(GL_INVALID_OPERATION); } } } void Uniform2uiv(GLint location, GLsizei count, const GLuint *value) { TRACE("(GLint location = %d, GLsizei count = %d, const GLuint *value = %p)", location, count, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniform2uiv(location, count, value)) { return error(GL_INVALID_OPERATION); } } } void Uniform3uiv(GLint location, GLsizei count, const GLuint *value) { TRACE("(GLint location = %d, GLsizei count = %d, const GLuint *value = %p)", location, count, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniform3uiv(location, count, value)) { return error(GL_INVALID_OPERATION); } } } void Uniform4uiv(GLint location, GLsizei count, const GLuint *value) { TRACE("(GLint location = %d, GLsizei count = %d, const GLuint *value = %p)", location, count, value); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *program = context->getCurrentProgram(); if(!program) { return error(GL_INVALID_OPERATION); } if(location == -1) { return; } if(!program->setUniform4uiv(location, count, value)) { return error(GL_INVALID_OPERATION); } } } void Uniform1ui(GLint location, GLuint v0) { Uniform1uiv(location, 1, &v0); } void Uniform2ui(GLint location, GLuint v0, GLuint v1) { GLuint xy[2] = { v0, v1 }; Uniform2uiv(location, 1, (GLuint*)&xy); } void Uniform3ui(GLint location, GLuint v0, GLuint v1, GLuint v2) { GLuint xyz[3] = { v0, v1, v2 }; Uniform3uiv(location, 1, (GLuint*)&xyz); } void Uniform4ui(GLint location, GLuint v0, GLuint v1, GLuint v2, GLuint v3) { GLuint xyzw[4] = { v0, v1, v2, v3 }; Uniform4uiv(location, 1, (GLuint*)&xyzw); } void ClearBufferiv(GLenum buffer, GLint drawbuffer, const GLint *value) { TRACE("(GLenum buffer = 0x%X, GLint drawbuffer = %d, const GLint *value = %p)", buffer, drawbuffer, value); auto context = es2::getContext(); if(context) { switch(buffer) { case GL_COLOR: if(drawbuffer < 0 || drawbuffer >= MAX_DRAW_BUFFERS) { return error(GL_INVALID_VALUE); } else { context->clearColorBuffer(drawbuffer, value); } break; case GL_STENCIL: if(drawbuffer != 0) { return error(GL_INVALID_VALUE); } else { context->clearStencilBuffer(value[0]); } break; default: return error(GL_INVALID_ENUM); } } } void ClearBufferuiv(GLenum buffer, GLint drawbuffer, const GLuint *value) { TRACE("(GLenum buffer = 0x%X, GLint drawbuffer = %d, const GLuint *value = %p)", buffer, drawbuffer, value); auto context = es2::getContext(); if(context) { switch(buffer) { case GL_COLOR: if(drawbuffer < 0 || drawbuffer >= MAX_DRAW_BUFFERS) { return error(GL_INVALID_VALUE); } else { context->clearColorBuffer(drawbuffer, value); } break; default: return error(GL_INVALID_ENUM); } } } void ClearBufferfv(GLenum buffer, GLint drawbuffer, const GLfloat *value) { TRACE("(GLenum buffer = 0x%X, GLint drawbuffer = %d, const GLfloat *value = %p)", buffer, drawbuffer, value); auto context = es2::getContext(); if(context) { switch(buffer) { case GL_COLOR: if(drawbuffer < 0 || drawbuffer >= MAX_DRAW_BUFFERS) { return error(GL_INVALID_VALUE); } else { context->clearColorBuffer(drawbuffer, value); } break; case GL_DEPTH: if(drawbuffer != 0) { return error(GL_INVALID_VALUE); } else { context->clearDepthBuffer(value[0]); } break; default: return error(GL_INVALID_ENUM); } } } void ClearBufferfi(GLenum buffer, GLint drawbuffer, GLfloat depth, GLint stencil) { TRACE("(GLenum buffer = 0x%X, GLint drawbuffer = %d, GLfloat depth = %f, GLint stencil = %d)", buffer, drawbuffer, depth, stencil); auto context = es2::getContext(); if(context) { switch(buffer) { case GL_DEPTH_STENCIL: if(drawbuffer != 0) { return error(GL_INVALID_VALUE); } else { context->clearDepthBuffer(depth); context->clearStencilBuffer(stencil); } break; default: return error(GL_INVALID_ENUM); } } } const GLubyte *GetStringi(GLenum name, GLuint index) { TRACE("(GLenum name = 0x%X, GLuint index = %d)", name, index); auto context = es2::getContext(); if(context) { GLuint numExtensions; context->getExtensions(0, &numExtensions); if(index >= numExtensions) { return error(GL_INVALID_VALUE, (GLubyte*)nullptr); } switch(name) { case GL_EXTENSIONS: return context->getExtensions(index); default: return error(GL_INVALID_ENUM, (GLubyte*)nullptr); } } return (GLubyte*)nullptr; } void CopyBufferSubData(GLenum readTarget, GLenum writeTarget, GLintptr readOffset, GLintptr writeOffset, GLsizeiptr size) { TRACE("(GLenum readTarget = 0x%X, GLenum writeTarget = 0x%X, GLintptr readOffset = %d, GLintptr writeOffset = %d, GLsizeiptr size = %d)", readTarget, writeTarget, readOffset, writeOffset, size); if(readOffset < 0 || writeOffset < 0 || size < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Buffer *readBuffer = nullptr, *writeBuffer = nullptr; if(!context->getBuffer(readTarget, &readBuffer) || !context->getBuffer(writeTarget, &writeBuffer)) { return error(GL_INVALID_ENUM); } if(!readBuffer || readBuffer->isMapped() || !writeBuffer || writeBuffer->isMapped()) { return error(GL_INVALID_OPERATION); } if(readBuffer == writeBuffer) { // If same buffer, check for overlap if(((readOffset >= writeOffset) && (readOffset < (writeOffset + size))) || ((writeOffset >= readOffset) && (writeOffset < (readOffset + size)))) { return error(GL_INVALID_VALUE); } } if((static_cast<size_t>(readOffset + size) > readBuffer->size()) || (static_cast<size_t>(writeOffset + size) > writeBuffer->size())) { return error(GL_INVALID_VALUE); } writeBuffer->bufferSubData(((char*)readBuffer->data()) + readOffset, size, writeOffset); } } void GetUniformIndices(GLuint program, GLsizei uniformCount, const GLchar *const*uniformNames, GLuint *uniformIndices) { TRACE("(GLuint program = %d, GLsizei uniformCount = %d, const GLchar *const*uniformNames = %p, GLuint *uniformIndices = %p)", program, uniformCount, uniformNames, uniformIndices); if(uniformCount < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { if(context->getShader(program)) { return error(GL_INVALID_OPERATION); } else { return error(GL_INVALID_VALUE); } } if(!programObject->isLinked()) { for(int uniformId = 0; uniformId < uniformCount; uniformId++) { uniformIndices[uniformId] = GL_INVALID_INDEX; } } else { for(int uniformId = 0; uniformId < uniformCount; uniformId++) { uniformIndices[uniformId] = programObject->getUniformIndex(uniformNames[uniformId]); } } } } void GetActiveUniformsiv(GLuint program, GLsizei uniformCount, const GLuint *uniformIndices, GLenum pname, GLint *params) { TRACE("(GLuint program = %d, GLsizei uniformCount = %d, const GLchar *const*uniformNames = %p, GLenum pname = 0x%X, GLuint *uniformIndices = %p)", program, uniformCount, uniformIndices, pname, uniformIndices); switch(pname) { case GL_UNIFORM_TYPE: case GL_UNIFORM_SIZE: case GL_UNIFORM_NAME_LENGTH: case GL_UNIFORM_BLOCK_INDEX: case GL_UNIFORM_OFFSET: case GL_UNIFORM_ARRAY_STRIDE: case GL_UNIFORM_MATRIX_STRIDE: case GL_UNIFORM_IS_ROW_MAJOR: break; default: return error(GL_INVALID_ENUM); } if(uniformCount < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { if(context->getShader(program)) { return error(GL_INVALID_OPERATION); } else { return error(GL_INVALID_VALUE); } } for(int uniformId = 0; uniformId < uniformCount; uniformId++) { const GLuint index = uniformIndices[uniformId]; if(index >= programObject->getActiveUniformCount()) { return error(GL_INVALID_VALUE); } } for(int uniformId = 0; uniformId < uniformCount; uniformId++) { const GLuint index = uniformIndices[uniformId]; params[uniformId] = programObject->getActiveUniformi(index, pname); } } } GLuint GetUniformBlockIndex(GLuint program, const GLchar *uniformBlockName) { TRACE("(GLuint program = %d, const GLchar *uniformBlockName = %p)", program, uniformBlockName); auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { if(context->getShader(program)) { return error(GL_INVALID_OPERATION, GL_INVALID_INDEX); } else { return error(GL_INVALID_VALUE, GL_INVALID_INDEX); } } return programObject->getUniformBlockIndex(uniformBlockName); } return GL_INVALID_INDEX; } void GetActiveUniformBlockiv(GLuint program, GLuint uniformBlockIndex, GLenum pname, GLint *params) { TRACE("(GLuint program = %d, GLuint uniformBlockIndex = %d, GLenum pname = 0x%X, GLint *params = %p)", program, uniformBlockIndex, pname, params); auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { return error(GL_INVALID_OPERATION); } if(uniformBlockIndex >= programObject->getActiveUniformBlockCount()) { return error(GL_INVALID_VALUE); } switch(pname) { case GL_UNIFORM_BLOCK_BINDING: *params = static_cast<GLint>(programObject->getUniformBlockBinding(uniformBlockIndex)); break; case GL_UNIFORM_BLOCK_DATA_SIZE: case GL_UNIFORM_BLOCK_NAME_LENGTH: case GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS: case GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES: case GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER: case GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER: programObject->getActiveUniformBlockiv(uniformBlockIndex, pname, params); break; default: return error(GL_INVALID_ENUM); } } } void GetActiveUniformBlockName(GLuint program, GLuint uniformBlockIndex, GLsizei bufSize, GLsizei *length, GLchar *uniformBlockName) { TRACE("(GLuint program = %d, GLuint uniformBlockIndex = %d, GLsizei bufSize = %d, GLsizei *length = %p, GLchar *uniformBlockName = %p)", program, uniformBlockIndex, bufSize, length, uniformBlockName); if(bufSize < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { return error(GL_INVALID_OPERATION); } if(uniformBlockIndex >= programObject->getActiveUniformBlockCount()) { return error(GL_INVALID_VALUE); } programObject->getActiveUniformBlockName(uniformBlockIndex, bufSize, length, uniformBlockName); } } void UniformBlockBinding(GLuint program, GLuint uniformBlockIndex, GLuint uniformBlockBinding) { TRACE("(GLuint program = %d, GLuint uniformBlockIndex = %d, GLuint uniformBlockBinding = %d)", program, uniformBlockIndex, uniformBlockBinding); if(uniformBlockBinding >= MAX_UNIFORM_BUFFER_BINDINGS) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { return error(GL_INVALID_VALUE); } if(uniformBlockIndex >= programObject->getActiveUniformBlockCount()) { return error(GL_INVALID_VALUE); } programObject->bindUniformBlock(uniformBlockIndex, uniformBlockBinding); } } void DrawArraysInstanced(GLenum mode, GLint first, GLsizei count, GLsizei instanceCount) { TRACE("(GLenum mode = 0x%X, GLint first = %d, GLsizei count = %d, GLsizei instanceCount = %d)", mode, first, count, instanceCount); switch(mode) { case GL_POINTS: case GL_LINES: case GL_LINE_LOOP: case GL_LINE_STRIP: case GL_TRIANGLES: case GL_TRIANGLE_FAN: case GL_TRIANGLE_STRIP: break; default: return error(GL_INVALID_ENUM); } if(count < 0 || instanceCount < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::TransformFeedback* transformFeedback = context->getTransformFeedback(); if(transformFeedback && transformFeedback->isActive() && (mode != transformFeedback->primitiveMode())) { return error(GL_INVALID_OPERATION); } context->drawArrays(mode, first, count, instanceCount); } } void DrawElementsInstanced(GLenum mode, GLsizei count, GLenum type, const void *indices, GLsizei instanceCount) { TRACE("(GLenum mode = 0x%X, GLsizei count = %d, GLenum type = 0x%X, const void *indices = %p, GLsizei instanceCount = %d)", mode, count, type, indices, instanceCount); switch(mode) { case GL_POINTS: case GL_LINES: case GL_LINE_LOOP: case GL_LINE_STRIP: case GL_TRIANGLES: case GL_TRIANGLE_FAN: case GL_TRIANGLE_STRIP: break; default: return error(GL_INVALID_ENUM); } switch(type) { case GL_UNSIGNED_BYTE: case GL_UNSIGNED_SHORT: case GL_UNSIGNED_INT: break; default: return error(GL_INVALID_ENUM); } if(count < 0 || instanceCount < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::TransformFeedback* transformFeedback = context->getTransformFeedback(); if(transformFeedback && transformFeedback->isActive() && !transformFeedback->isPaused()) { return error(GL_INVALID_OPERATION); } context->drawElements(mode, 0, MAX_ELEMENT_INDEX, count, type, indices, instanceCount); } } GLsync FenceSync(GLenum condition, GLbitfield flags) { TRACE("(GLenum condition = 0x%X, GLbitfield flags = %X)", condition, flags); switch(condition) { case GL_SYNC_GPU_COMMANDS_COMPLETE: break; default: return error(GL_INVALID_ENUM, nullptr); } if(flags != 0) { return error(GL_INVALID_VALUE, nullptr); } auto context = es2::getContext(); if(context) { return context->createFenceSync(condition, flags); } return nullptr; } GLboolean IsSync(GLsync sync) { TRACE("(GLsync sync = %p)", sync); auto context = es2::getContext(); if(context) { es2::FenceSync *fenceSyncObject = context->getFenceSync(sync); if(fenceSyncObject) { return GL_TRUE; } } return GL_FALSE; } void DeleteSync(GLsync sync) { TRACE("(GLsync sync = %p)", sync); if(!sync) { return; } auto context = es2::getContext(); if(context) { if(!context->getFenceSync(sync)) { return error(GL_INVALID_VALUE); } context->deleteFenceSync(sync); } } GLenum ClientWaitSync(GLsync sync, GLbitfield flags, GLuint64 timeout) { TRACE("(GLsync sync = %p, GLbitfield flags = %X, GLuint64 timeout = %llu)", sync, flags, timeout); if((flags & ~(GL_SYNC_FLUSH_COMMANDS_BIT)) != 0) { return error(GL_INVALID_VALUE, GL_FALSE); } auto context = es2::getContext(); if(context) { es2::FenceSync *fenceSyncObject = context->getFenceSync(sync); if(fenceSyncObject) { return fenceSyncObject->clientWait(flags, timeout); } else { return error(GL_INVALID_VALUE, GL_FALSE); } } return GL_FALSE; } void WaitSync(GLsync sync, GLbitfield flags, GLuint64 timeout) { TRACE("(GLsync sync = %p, GLbitfield flags = %X, GLuint64 timeout = %llu)", sync, flags, timeout); if(flags != 0) { return error(GL_INVALID_VALUE); } if(timeout != GL_TIMEOUT_IGNORED) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::FenceSync *fenceSyncObject = context->getFenceSync(sync); if(fenceSyncObject) { fenceSyncObject->serverWait(flags, timeout); } else { return error(GL_INVALID_VALUE); } } } void GetInteger64v(GLenum pname, GLint64 *data) { TRACE("(GLenum pname = 0x%X, GLint64 *data = %p)", pname, data); auto context = es2::getContext(); if(context) { if(!(context->getIntegerv(pname, data))) { GLenum nativeType; unsigned int numParams = 0; if(!context->getQueryParameterInfo(pname, &nativeType, &numParams)) return error(GL_INVALID_ENUM); if(numParams == 0) return; // it is known that pname is valid, but there are no parameters to return if(nativeType == GL_BOOL) { GLboolean *boolParams = nullptr; boolParams = new GLboolean[numParams]; context->getBooleanv(pname, boolParams); for(unsigned int i = 0; i < numParams; ++i) { data[i] = (boolParams[i] == GL_FALSE) ? 0 : 1; } delete[] boolParams; } else if(nativeType == GL_FLOAT) { GLfloat *floatParams = nullptr; floatParams = new GLfloat[numParams]; context->getFloatv(pname, floatParams); for(unsigned int i = 0; i < numParams; ++i) { if(pname == GL_DEPTH_RANGE || pname == GL_COLOR_CLEAR_VALUE || pname == GL_DEPTH_CLEAR_VALUE || pname == GL_BLEND_COLOR) { data[i] = (GLint64)(convert_float_fixed(floatParams[i])); } else { data[i] = (GLint64)(floatParams[i] > 0.0f ? floor(floatParams[i] + 0.5) : ceil(floatParams[i] - 0.5)); } } delete[] floatParams; } } } } void GetSynciv(GLsync sync, GLenum pname, GLsizei bufSize, GLsizei *length, GLint *values) { TRACE("(GLsync sync = %p, GLenum pname = 0x%X, GLsizei bufSize = %d, GLsizei *length = %p, GLint *values = %p)", sync, pname, bufSize, length, values); if(bufSize < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::FenceSync *fenceSyncObject = context->getFenceSync(sync); if(!fenceSyncObject) { return error(GL_INVALID_VALUE); } fenceSyncObject->getSynciv(pname, length, values); } } void GetInteger64i_v(GLenum target, GLuint index, GLint64 *data) { TRACE("(GLenum target = 0x%X, GLuint index = %d, GLint64 *data = %p)", target, index, data); auto context = es2::getContext(); if(context) { if(!context->getTransformFeedbackiv(index, target, data) && !context->getUniformBufferiv(index, target, data) && !context->getIntegerv(target, data)) { GLenum nativeType; unsigned int numParams = 0; if(!context->getQueryParameterInfo(target, &nativeType, &numParams)) return error(GL_INVALID_ENUM); if(numParams == 0) return; // it is known that target is valid, but there are no parameters to return if(nativeType == GL_BOOL) { GLboolean *boolParams = nullptr; boolParams = new GLboolean[numParams]; context->getBooleanv(target, boolParams); for(unsigned int i = 0; i < numParams; ++i) { data[i] = (boolParams[i] == GL_FALSE) ? 0 : 1; } delete[] boolParams; } else if(nativeType == GL_FLOAT) { GLfloat *floatParams = nullptr; floatParams = new GLfloat[numParams]; context->getFloatv(target, floatParams); for(unsigned int i = 0; i < numParams; ++i) { if(target == GL_DEPTH_RANGE || target == GL_COLOR_CLEAR_VALUE || target == GL_DEPTH_CLEAR_VALUE || target == GL_BLEND_COLOR) { data[i] = (GLint64)(convert_float_fixed(floatParams[i])); } else { data[i] = (GLint64)(floatParams[i] > 0.0f ? floor(floatParams[i] + 0.5) : ceil(floatParams[i] - 0.5)); } } delete[] floatParams; } } } } void GetBufferParameteri64v(GLenum target, GLenum pname, GLint64 *params) { TRACE("(GLenum target = 0x%X, GLenum pname = 0x%X, GLint64 *params = %p)", target, pname, params); auto context = es2::getContext(); if(context) { es2::Buffer *buffer = nullptr; if(!context->getBuffer(target, &buffer)) { return error(GL_INVALID_ENUM); } if(!buffer) { // A null buffer means that "0" is bound to the requested buffer target return error(GL_INVALID_OPERATION); } switch(pname) { case GL_BUFFER_USAGE: *params = buffer->usage(); break; case GL_BUFFER_SIZE: *params = buffer->size(); break; case GL_BUFFER_ACCESS_FLAGS: *params = buffer->access(); break; case GL_BUFFER_MAPPED: *params = buffer->isMapped(); break; case GL_BUFFER_MAP_LENGTH: *params = buffer->length(); break; case GL_BUFFER_MAP_OFFSET: *params = buffer->offset(); break; default: return error(GL_INVALID_ENUM); } } } void GenSamplers(GLsizei count, GLuint *samplers) { TRACE("(GLsizei count = %d, GLuint *samplers = %p)", count, samplers); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { for(int i = 0; i < count; i++) { samplers[i] = context->createSampler(); } } } void DeleteSamplers(GLsizei count, const GLuint *samplers) { TRACE("(GLsizei count = %d, GLuint *samplers = %p)", count, samplers); if(count < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { for(int i = 0; i < count; i++) { context->deleteSampler(samplers[i]); } } } GLboolean IsSampler(GLuint sampler) { TRACE("(GLuint sampler = %d)", sampler); if(sampler == 0) { return GL_FALSE; } auto context = es2::getContext(); if(context) { if(context->isSampler(sampler)) { return GL_TRUE; } } return GL_FALSE; } void BindSampler(GLuint unit, GLuint sampler) { TRACE("(GLuint unit = %d, GLuint sampler = %d)", unit, sampler); if(unit >= es2::MAX_COMBINED_TEXTURE_IMAGE_UNITS) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { if(sampler != 0 && !context->isSampler(sampler)) { return error(GL_INVALID_OPERATION); } context->bindSampler(unit, sampler); } } void SamplerParameteriv(GLuint sampler, GLenum pname, const GLint *param) { TRACE("(GLuint sampler = %d, GLenum pname = 0x%X, const GLint *param = %p)", sampler, pname, param); if(!ValidateSamplerObjectParameter(pname)) { return error(GL_INVALID_ENUM); } if(!ValidateTexParamParameters(pname, *param)) { return; } auto context = es2::getContext(); if(context) { if(!context->isSampler(sampler)) { return error(GL_INVALID_OPERATION); } context->samplerParameteri(sampler, pname, *param); } } void SamplerParameteri(GLuint sampler, GLenum pname, GLint param) { TRACE("(GLuint sampler = %d, GLenum pname = 0x%X, GLint param = %d)", sampler, pname, param); SamplerParameteriv(sampler, pname, ¶m); } void SamplerParameterfv(GLuint sampler, GLenum pname, const GLfloat *param) { TRACE("(GLuint sampler = %d, GLenum pname = 0x%X, const GLfloat *param = %p)", sampler, pname, param); if(!ValidateSamplerObjectParameter(pname)) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { if(!context->isSampler(sampler)) { return error(GL_INVALID_OPERATION); } if(ValidateTexParamParameters(pname, static_cast<GLint>(roundf(*param)))) { context->samplerParameterf(sampler, pname, *param); } } } void SamplerParameterf(GLuint sampler, GLenum pname, GLfloat param) { TRACE("(GLuint sampler = %d, GLenum pname = 0x%X, GLfloat param = %f)", sampler, pname, param); SamplerParameterfv(sampler, pname, ¶m); } void GetSamplerParameteriv(GLuint sampler, GLenum pname, GLint *params) { TRACE("(GLuint sampler = %d, GLenum pname = 0x%X, GLint *params = %p)", sampler, pname, params); if(!ValidateSamplerObjectParameter(pname)) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { if(!context->isSampler(sampler)) { return error(GL_INVALID_OPERATION); } *params = context->getSamplerParameteri(sampler, pname); } } void GetSamplerParameterfv(GLuint sampler, GLenum pname, GLfloat *params) { TRACE("(GLuint sampler = %d, GLenum pname = 0x%X, GLfloat *params = %p)", sampler, pname, params); if(!ValidateSamplerObjectParameter(pname)) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { if(!context->isSampler(sampler)) { return error(GL_INVALID_OPERATION); } *params = context->getSamplerParameterf(sampler, pname); } } void VertexAttribDivisor(GLuint index, GLuint divisor) { TRACE("(GLuint index = %d, GLuint divisor = %d)", index, divisor); auto context = es2::getContext(); if(context) { if(index >= es2::MAX_VERTEX_ATTRIBS) { return error(GL_INVALID_VALUE); } context->setVertexAttribDivisor(index, divisor); } } void BindTransformFeedback(GLenum target, GLuint id) { TRACE("(GLenum target = 0x%X, GLuint id = %d)", target, id); if(target != GL_TRANSFORM_FEEDBACK) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { es2::TransformFeedback *transformFeedbackObject = context->getTransformFeedback(); if(transformFeedbackObject && transformFeedbackObject->isActive() && !transformFeedbackObject->isPaused()) { return error(GL_INVALID_OPERATION); } if(!context->isTransformFeedback(id)) { return error(GL_INVALID_OPERATION); } context->bindTransformFeedback(id); } } void DeleteTransformFeedbacks(GLsizei n, const GLuint *ids) { TRACE("(GLsizei n = %d, const GLuint *ids = %p)", n, ids); if(n < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { for(int i = 0; i < n; i++) { if(ids[i] != 0) // Attempts to delete default transform feedback silently ignored. { es2::TransformFeedback *transformFeedbackObject = context->getTransformFeedback(ids[i]); if(transformFeedbackObject && transformFeedbackObject->isActive()) { return error(GL_INVALID_OPERATION); } context->deleteTransformFeedback(ids[i]); } } } } void GenTransformFeedbacks(GLsizei n, GLuint *ids) { TRACE("(GLsizei n = %d, const GLuint *ids = %p)", n, ids); if(n < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { for(int i = 0; i < n; i++) { ids[i] = context->createTransformFeedback(); } } } GLboolean IsTransformFeedback(GLuint id) { TRACE("(GLuint id = %d)", id); if(id == 0) { return GL_FALSE; } auto context = es2::getContext(); if(context) { es2::TransformFeedback *transformFeedbackObject = context->getTransformFeedback(id); if(transformFeedbackObject) { return GL_TRUE; } } return GL_FALSE; } void PauseTransformFeedback(void) { TRACE("()"); auto context = es2::getContext(); if(context) { es2::TransformFeedback *transformFeedbackObject = context->getTransformFeedback(); if(transformFeedbackObject) { if(!transformFeedbackObject->isActive() || transformFeedbackObject->isPaused()) { return error(GL_INVALID_OPERATION); } transformFeedbackObject->setPaused(true); } } } void ResumeTransformFeedback(void) { TRACE("()"); auto context = es2::getContext(); if(context) { es2::TransformFeedback *transformFeedbackObject = context->getTransformFeedback(); if(transformFeedbackObject) { if(!transformFeedbackObject->isActive() || !transformFeedbackObject->isPaused()) { return error(GL_INVALID_OPERATION); } transformFeedbackObject->setPaused(false); } } } void GetProgramBinary(GLuint program, GLsizei bufSize, GLsizei *length, GLenum *binaryFormat, void *binary) { TRACE("(GLuint program = %d, GLsizei bufSize = %d, GLsizei *length = %p, GLenum *binaryFormat = %p, void *binary = %p)", program, bufSize, length, binaryFormat, binary); if(bufSize < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject || !programObject->isLinked()) { return error(GL_INVALID_OPERATION); } } // SwiftShader doesn't return a program binary and sets the program binay size to 0, so any attempt at getting one is invalid. return error(GL_INVALID_OPERATION); } void ProgramBinary(GLuint program, GLenum binaryFormat, const void *binary, GLsizei length) { TRACE("(GLuint program = %d, GLenum binaryFormat = 0x%X, const void *binary = %p, GLsizei length = %d)", program, binaryFormat, binaryFormat, length); if(length < 0) { return error(GL_INVALID_VALUE); } auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { return error(GL_INVALID_OPERATION); } } // Regardless of what the binaryFormat is, it is unrecognized by SwiftShader, since it supports no format. return error(GL_INVALID_ENUM); } void ProgramParameteri(GLuint program, GLenum pname, GLint value) { TRACE("(GLuint program = %d, GLenum pname = 0x%X, GLint value = %d)", program, pname, value); auto context = es2::getContext(); if(context) { es2::Program *programObject = context->getProgram(program); if(!programObject) { return error(GL_INVALID_VALUE); } switch(pname) { case GL_PROGRAM_BINARY_RETRIEVABLE_HINT: if((value != GL_TRUE) && (value != GL_FALSE)) { return error(GL_INVALID_VALUE); } programObject->setBinaryRetrievable(value != GL_FALSE); break; default: return error(GL_INVALID_ENUM); } } } void InvalidateSubFramebuffer(GLenum target, GLsizei numAttachments, const GLenum *attachments, GLint x, GLint y, GLsizei width, GLsizei height) { TRACE("(GLenum target = 0x%X, GLsizei numAttachments = %d, const GLenum *attachments = %p, GLint x = %d, GLint y = %d, GLsizei width = %d, GLsizei height = %d)", target, numAttachments, attachments, x, y, width, height); auto context = es2::getContext(); if(context) { if(numAttachments < 0 || width < 0 || height < 0) { return error(GL_INVALID_VALUE); } es2::Framebuffer *framebuffer = nullptr; switch(target) { case GL_DRAW_FRAMEBUFFER: case GL_FRAMEBUFFER: framebuffer = context->getDrawFramebuffer(); break; case GL_READ_FRAMEBUFFER: framebuffer = context->getReadFramebuffer(); break; default: return error(GL_INVALID_ENUM); } if(framebuffer) { for(int i = 0; i < numAttachments; i++) { switch(attachments[i]) { case GL_COLOR: case GL_DEPTH: case GL_STENCIL: if(!framebuffer->isDefaultFramebuffer()) { return error(GL_INVALID_ENUM); } break; case GL_DEPTH_ATTACHMENT: case GL_STENCIL_ATTACHMENT: case GL_DEPTH_STENCIL_ATTACHMENT: break; default: if(attachments[i] >= GL_COLOR_ATTACHMENT0 && attachments[i] <= GL_COLOR_ATTACHMENT31) { if(attachments[i] - GL_COLOR_ATTACHMENT0 >= MAX_DRAW_BUFFERS) { return error(GL_INVALID_OPERATION); } } else { return error(GL_INVALID_ENUM); } break; } } } // UNIMPLEMENTED(); // It is valid for this function to be treated as a no-op } } void InvalidateFramebuffer(GLenum target, GLsizei numAttachments, const GLenum *attachments) { TRACE("(GLenum target = 0x%X, GLsizei numAttachments = %d, const GLenum *attachments = %p)", target, numAttachments, attachments); InvalidateSubFramebuffer(target, numAttachments, attachments, 0, 0, std::numeric_limits<GLsizei>::max(), std::numeric_limits<GLsizei>::max()); } void TexStorage2D(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height) { TRACE("(GLenum target = 0x%X, GLsizei levels = %d, GLenum internalformat = 0x%X, GLsizei width = %d, GLsizei height = %d)", target, levels, internalformat, width, height); if(width < 1 || height < 1 || levels < 1 || ((target == GL_TEXTURE_RECTANGLE_ARB) && (levels != 1))) { return error(GL_INVALID_VALUE); } if(levels > es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS || levels > (log2(std::max(width, height)) + 1)) { return error(GL_INVALID_OPERATION); } bool isCompressed = IsCompressed(internalformat); if(!IsSizedInternalFormat(internalformat) && !isCompressed) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { switch(target) { case GL_TEXTURE_RECTANGLE_ARB: if(isCompressed) // Rectangle textures cannot be compressed { return error(GL_INVALID_ENUM); } // Fall through to GL_TEXTURE_2D case. case GL_TEXTURE_2D: { if((width > es2::IMPLEMENTATION_MAX_TEXTURE_SIZE) || (height > es2::IMPLEMENTATION_MAX_TEXTURE_SIZE)) { return error(GL_INVALID_VALUE); } es2::Texture2D *texture = context->getTexture2D(target); if(!texture || texture->name == 0 || texture->getImmutableFormat() != GL_FALSE) { return error(GL_INVALID_OPERATION); } for(int level = 0; level < levels; level++) { texture->setImage(level, width, height, internalformat, GL_NONE, GL_NONE, context->getUnpackParameters(), nullptr); width = std::max(1, (width / 2)); height = std::max(1, (height / 2)); } texture->makeImmutable(levels); } break; case GL_TEXTURE_CUBE_MAP: { if((width > es2::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE) || (height > es2::IMPLEMENTATION_MAX_CUBE_MAP_TEXTURE_SIZE)) { return error(GL_INVALID_VALUE); } es2::TextureCubeMap *texture = context->getTextureCubeMap(); if(!texture || texture->name == 0 || texture->getImmutableFormat()) { return error(GL_INVALID_OPERATION); } for(int level = 0; level < levels; level++) { for(int face = GL_TEXTURE_CUBE_MAP_POSITIVE_X; face <= GL_TEXTURE_CUBE_MAP_NEGATIVE_Z; face++) { texture->setImage(face, level, width, height, internalformat, GL_NONE, GL_NONE, context->getUnpackParameters(), nullptr); } width = std::max(1, (width / 2)); height = std::max(1, (height / 2)); } texture->makeImmutable(levels); } break; default: return error(GL_INVALID_ENUM); } } } void TexStorage3D(GLenum target, GLsizei levels, GLenum internalformat, GLsizei width, GLsizei height, GLsizei depth) { TRACE("(GLenum target = 0x%X, GLsizei levels = %d, GLenum internalformat = 0x%X, GLsizei width = %d, GLsizei height = %d, GLsizei depth = %d)", target, levels, internalformat, width, height, depth); if(width < 1 || height < 1 || depth < 1 || levels < 1) { return error(GL_INVALID_VALUE); } if(!IsSizedInternalFormat(internalformat) && !IsCompressed(internalformat)) { return error(GL_INVALID_ENUM); } auto context = es2::getContext(); if(context) { switch(target) { case GL_TEXTURE_3D: { if(levels > es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS || levels > (log2(std::max(std::max(width, height), depth)) + 1)) { return error(GL_INVALID_OPERATION); } es2::Texture3D *texture = context->getTexture3D(); if(!texture || texture->name == 0 || texture->getImmutableFormat() != GL_FALSE) { return error(GL_INVALID_OPERATION); } for(int level = 0; level < levels; level++) { texture->setImage(level, width, height, depth, internalformat, GL_NONE, GL_NONE, context->getUnpackParameters(), nullptr); width = std::max(1, (width / 2)); height = std::max(1, (height / 2)); depth = std::max(1, (depth / 2)); } texture->makeImmutable(levels); } break; case GL_TEXTURE_2D_ARRAY: { if(levels > es2::IMPLEMENTATION_MAX_TEXTURE_LEVELS || levels > (log2(std::max(width, height)) + 1)) { return error(GL_INVALID_OPERATION); } es2::Texture3D *texture = context->getTexture2DArray(); if(!texture || texture->name == 0 || texture->getImmutableFormat()) { return error(GL_INVALID_OPERATION); } for(int level = 0; level < levels; level++) { texture->setImage(level, width, height, depth, internalformat, GL_NONE, GL_NONE, context->getUnpackParameters(), nullptr); width = std::max(1, (width / 2)); height = std::max(1, (height / 2)); } texture->makeImmutable(levels); } break; default: return error(GL_INVALID_ENUM); } } } void GetInternalformativ(GLenum target, GLenum internalformat, GLenum pname, GLsizei bufSize, GLint *params) { TRACE("(GLenum target = 0x%X, GLenum internalformat = 0x%X, GLenum pname = 0x%X, GLsizei bufSize = %d, GLint *params = %p)", target, internalformat, pname, bufSize, params); if(bufSize < 0) { return error(GL_INVALID_VALUE); } if(bufSize == 0) { return; } // OpenGL ES 3.0, section 4.4.4: "An internal format is color-renderable if it is one of the formats // from table 3.13 noted as color-renderable or if it is unsized format RGBA or RGB." // Since we only use sized formats internally, replace them here (assuming type = GL_UNSIGNED_BYTE). if(internalformat == GL_RGB) internalformat = GL_RGB8; if(internalformat == GL_RGBA) internalformat = GL_RGBA8; if(!IsColorRenderable(internalformat) && !IsDepthRenderable(internalformat) && !IsStencilRenderable(internalformat)) { return error(GL_INVALID_ENUM); } switch(target) { case GL_RENDERBUFFER: break; default: return error(GL_INVALID_ENUM); } GLint numMultisampleCounts = NUM_MULTISAMPLE_COUNTS; // Integer types have no multisampling GLenum type = GetColorComponentType(internalformat); if(type != GL_UNSIGNED_NORMALIZED && type != GL_FLOAT) { numMultisampleCounts = 0; } switch(pname) { case GL_NUM_SAMPLE_COUNTS: *params = numMultisampleCounts; break; case GL_SAMPLES: for(int i = 0; i < numMultisampleCounts && i < bufSize; i++) { params[i] = multisampleCount[i]; } break; default: return error(GL_INVALID_ENUM); } } }