// Copyright 2016 The SwiftShader Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "Reactor.hpp"

#include "x86.hpp"
#include "CPUID.hpp"
#include "Thread.hpp"
#include "ExecutableMemory.hpp"
#include "MutexLock.hpp"

#undef min
#undef max

#if REACTOR_LLVM_VERSION < 7
	#include "llvm/Analysis/LoopPass.h"
	#include "llvm/Constants.h"
	#include "llvm/Function.h"
	#include "llvm/GlobalVariable.h"
	#include "llvm/Intrinsics.h"
	#include "llvm/LLVMContext.h"
	#include "llvm/Module.h"
	#include "llvm/PassManager.h"
	#include "llvm/Support/IRBuilder.h"
	#include "llvm/Support/TargetSelect.h"
	#include "llvm/Target/TargetData.h"
	#include "llvm/Target/TargetOptions.h"
	#include "llvm/Transforms/Scalar.h"
	#include "../lib/ExecutionEngine/JIT/JIT.h"

	#include "LLVMRoutine.hpp"
	#include "LLVMRoutineManager.hpp"

	#define ARGS(...) __VA_ARGS__
#else
	#include "llvm/Analysis/LoopPass.h"
	#include "llvm/ExecutionEngine/ExecutionEngine.h"
	#include "llvm/ExecutionEngine/JITSymbol.h"
	#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
	#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
	#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
	#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
	#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
	#include "llvm/ExecutionEngine/SectionMemoryManager.h"
	#include "llvm/IR/Constants.h"
	#include "llvm/IR/DataLayout.h"
	#include "llvm/IR/Function.h"
	#include "llvm/IR/GlobalVariable.h"
	#include "llvm/IR/IRBuilder.h"
	#include "llvm/IR/Intrinsics.h"
	#include "llvm/IR/LLVMContext.h"
	#include "llvm/IR/LegacyPassManager.h"
	#include "llvm/IR/Mangler.h"
	#include "llvm/IR/Module.h"
	#include "llvm/Support/Error.h"
	#include "llvm/Support/TargetSelect.h"
	#include "llvm/Target/TargetOptions.h"
	#include "llvm/Transforms/InstCombine/InstCombine.h"
	#include "llvm/Transforms/Scalar.h"
	#include "llvm/Transforms/Scalar/GVN.h"

	#include "LLVMRoutine.hpp"

	#define ARGS(...) {__VA_ARGS__}
	#define CreateCall2 CreateCall
	#define CreateCall3 CreateCall

	#include <unordered_map>
#endif

#include <numeric>
#include <fstream>

#if defined(__i386__) || defined(__x86_64__)
#include <xmmintrin.h>
#endif

#include <math.h>

#if defined(__x86_64__) && defined(_WIN32)
extern "C" void X86CompilationCallback()
{
	assert(false);   // UNIMPLEMENTED
}
#endif

#if REACTOR_LLVM_VERSION < 7
namespace llvm
{
	extern bool JITEmitDebugInfo;
}
#endif

namespace rr
{
	class LLVMReactorJIT;
}

namespace
{
	rr::LLVMReactorJIT *reactorJIT = nullptr;
	llvm::IRBuilder<> *builder = nullptr;
	llvm::LLVMContext *context = nullptr;
	llvm::Module *module = nullptr;
	llvm::Function *function = nullptr;

	rr::MutexLock codegenMutex;

#if REACTOR_LLVM_VERSION >= 7
	llvm::Value *lowerPAVG(llvm::Value *x, llvm::Value *y)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());

		llvm::VectorType *extTy =
			llvm::VectorType::getExtendedElementVectorType(ty);
		x = ::builder->CreateZExt(x, extTy);
		y = ::builder->CreateZExt(y, extTy);

		// (x + y + 1) >> 1
		llvm::Constant *one = llvm::ConstantInt::get(extTy, 1);
		llvm::Value *res = ::builder->CreateAdd(x, y);
		res = ::builder->CreateAdd(res, one);
		res = ::builder->CreateLShr(res, one);
		return ::builder->CreateTrunc(res, ty);
	}

	llvm::Value *lowerPMINMAX(llvm::Value *x, llvm::Value *y,
	                          llvm::ICmpInst::Predicate pred)
	{
		return ::builder->CreateSelect(::builder->CreateICmp(pred, x, y), x, y);
	}

	llvm::Value *lowerPCMP(llvm::ICmpInst::Predicate pred, llvm::Value *x,
	                       llvm::Value *y, llvm::Type *dstTy)
	{
		return ::builder->CreateSExt(::builder->CreateICmp(pred, x, y), dstTy, "");
	}

#if defined(__i386__) || defined(__x86_64__)
	llvm::Value *lowerPMOV(llvm::Value *op, llvm::Type *dstType, bool sext)
	{
		llvm::VectorType *srcTy = llvm::cast<llvm::VectorType>(op->getType());
		llvm::VectorType *dstTy = llvm::cast<llvm::VectorType>(dstType);

		llvm::Value *undef = llvm::UndefValue::get(srcTy);
		llvm::SmallVector<uint32_t, 16> mask(dstTy->getNumElements());
		std::iota(mask.begin(), mask.end(), 0);
		llvm::Value *v = ::builder->CreateShuffleVector(op, undef, mask);

		return sext ? ::builder->CreateSExt(v, dstTy)
		            : ::builder->CreateZExt(v, dstTy);
	}

	llvm::Value *lowerPABS(llvm::Value *v)
	{
		llvm::Value *zero = llvm::Constant::getNullValue(v->getType());
		llvm::Value *cmp = ::builder->CreateICmp(llvm::ICmpInst::ICMP_SGT, v, zero);
		llvm::Value *neg = ::builder->CreateNeg(v);
		return ::builder->CreateSelect(cmp, v, neg);
	}
#endif  // defined(__i386__) || defined(__x86_64__)

#if !defined(__i386__) && !defined(__x86_64__)
	llvm::Value *lowerPFMINMAX(llvm::Value *x, llvm::Value *y,
	                           llvm::FCmpInst::Predicate pred)
	{
		return ::builder->CreateSelect(::builder->CreateFCmp(pred, x, y), x, y);
	}

	llvm::Value *lowerRound(llvm::Value *x)
	{
		llvm::Function *nearbyint = llvm::Intrinsic::getDeclaration(
			::module, llvm::Intrinsic::nearbyint, {x->getType()});
		return ::builder->CreateCall(nearbyint, ARGS(x));
	}

	llvm::Value *lowerRoundInt(llvm::Value *x, llvm::Type *ty)
	{
		return ::builder->CreateFPToSI(lowerRound(x), ty);
	}

	llvm::Value *lowerFloor(llvm::Value *x)
	{
		llvm::Function *floor = llvm::Intrinsic::getDeclaration(
			::module, llvm::Intrinsic::floor, {x->getType()});
		return ::builder->CreateCall(floor, ARGS(x));
	}

	llvm::Value *lowerTrunc(llvm::Value *x)
	{
		llvm::Function *trunc = llvm::Intrinsic::getDeclaration(
			::module, llvm::Intrinsic::trunc, {x->getType()});
		return ::builder->CreateCall(trunc, ARGS(x));
	}

	// Packed add/sub saturatation
	llvm::Value *lowerPSAT(llvm::Value *x, llvm::Value *y, bool isAdd, bool isSigned)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
		llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty);

		unsigned numBits = ty->getScalarSizeInBits();

		llvm::Value *max, *min, *extX, *extY;
		if (isSigned)
		{
			max = llvm::ConstantInt::get(extTy, (1LL << (numBits - 1)) - 1, true);
			min = llvm::ConstantInt::get(extTy, (-1LL << (numBits - 1)), true);
			extX = ::builder->CreateSExt(x, extTy);
			extY = ::builder->CreateSExt(y, extTy);
		}
		else
		{
			assert(numBits <= 64);
			uint64_t maxVal = (numBits == 64) ? ~0ULL : (1ULL << numBits) - 1;
			max = llvm::ConstantInt::get(extTy, maxVal, false);
			min = llvm::ConstantInt::get(extTy, 0, false);
			extX = ::builder->CreateZExt(x, extTy);
			extY = ::builder->CreateZExt(y, extTy);
		}

		llvm::Value *res = isAdd ? ::builder->CreateAdd(extX, extY)
		                         : ::builder->CreateSub(extX, extY);

		res = lowerPMINMAX(res, min, llvm::ICmpInst::ICMP_SGT);
		res = lowerPMINMAX(res, max, llvm::ICmpInst::ICMP_SLT);

		return ::builder->CreateTrunc(res, ty);
	}

	llvm::Value *lowerPUADDSAT(llvm::Value *x, llvm::Value *y)
	{
		return lowerPSAT(x, y, true, false);
	}

	llvm::Value *lowerPSADDSAT(llvm::Value *x, llvm::Value *y)
	{
		return lowerPSAT(x, y, true, true);
	}

	llvm::Value *lowerPUSUBSAT(llvm::Value *x, llvm::Value *y)
	{
		return lowerPSAT(x, y, false, false);
	}

	llvm::Value *lowerPSSUBSAT(llvm::Value *x, llvm::Value *y)
	{
		return lowerPSAT(x, y, false, true);
	}

	llvm::Value *lowerSQRT(llvm::Value *x)
	{
		llvm::Function *sqrt = llvm::Intrinsic::getDeclaration(
			::module, llvm::Intrinsic::sqrt, {x->getType()});
		return ::builder->CreateCall(sqrt, ARGS(x));
	}

	llvm::Value *lowerRCP(llvm::Value *x)
	{
		llvm::Type *ty = x->getType();
		llvm::Constant *one;
		if (llvm::VectorType *vectorTy = llvm::dyn_cast<llvm::VectorType>(ty))
		{
			one = llvm::ConstantVector::getSplat(
				vectorTy->getNumElements(),
				llvm::ConstantFP::get(vectorTy->getElementType(), 1));
		}
		else
		{
			one = llvm::ConstantFP::get(ty, 1);
		}
		return ::builder->CreateFDiv(one, x);
	}

	llvm::Value *lowerRSQRT(llvm::Value *x)
	{
		return lowerRCP(lowerSQRT(x));
	}

	llvm::Value *lowerVectorShl(llvm::Value *x, uint64_t scalarY)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
		llvm::Value *y = llvm::ConstantVector::getSplat(
			ty->getNumElements(),
			llvm::ConstantInt::get(ty->getElementType(), scalarY));
		return ::builder->CreateShl(x, y);
	}

	llvm::Value *lowerVectorAShr(llvm::Value *x, uint64_t scalarY)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
		llvm::Value *y = llvm::ConstantVector::getSplat(
			ty->getNumElements(),
			llvm::ConstantInt::get(ty->getElementType(), scalarY));
		return ::builder->CreateAShr(x, y);
	}

	llvm::Value *lowerVectorLShr(llvm::Value *x, uint64_t scalarY)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
		llvm::Value *y = llvm::ConstantVector::getSplat(
			ty->getNumElements(),
			llvm::ConstantInt::get(ty->getElementType(), scalarY));
		return ::builder->CreateLShr(x, y);
	}

	llvm::Value *lowerMulAdd(llvm::Value *x, llvm::Value *y)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
		llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty);

		llvm::Value *extX = ::builder->CreateSExt(x, extTy);
		llvm::Value *extY = ::builder->CreateSExt(y, extTy);
		llvm::Value *mult = ::builder->CreateMul(extX, extY);

		llvm::Value *undef = llvm::UndefValue::get(extTy);

		llvm::SmallVector<uint32_t, 16> evenIdx;
		llvm::SmallVector<uint32_t, 16> oddIdx;
		for (uint64_t i = 0, n = ty->getNumElements(); i < n; i += 2)
		{
			evenIdx.push_back(i);
			oddIdx.push_back(i + 1);
		}

		llvm::Value *lhs = ::builder->CreateShuffleVector(mult, undef, evenIdx);
		llvm::Value *rhs = ::builder->CreateShuffleVector(mult, undef, oddIdx);
		return ::builder->CreateAdd(lhs, rhs);
	}

	llvm::Value *lowerMulHigh(llvm::Value *x, llvm::Value *y, bool sext)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
		llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty);

		llvm::Value *extX, *extY;
		if (sext)
		{
			extX = ::builder->CreateSExt(x, extTy);
			extY = ::builder->CreateSExt(y, extTy);
		}
		else
		{
			extX = ::builder->CreateZExt(x, extTy);
			extY = ::builder->CreateZExt(y, extTy);
		}

		llvm::Value *mult = ::builder->CreateMul(extX, extY);

		llvm::IntegerType *intTy = llvm::cast<llvm::IntegerType>(ty->getElementType());
		llvm::Value *mulh = ::builder->CreateAShr(mult, intTy->getIntegerBitWidth());
		return ::builder->CreateTrunc(mulh, ty);
	}

	llvm::Value *lowerPack(llvm::Value *x, llvm::Value *y, bool isSigned)
	{
		llvm::VectorType *srcTy = llvm::cast<llvm::VectorType>(x->getType());
		llvm::VectorType *dstTy = llvm::VectorType::getTruncatedElementVectorType(srcTy);

		llvm::IntegerType *dstElemTy =
			llvm::cast<llvm::IntegerType>(dstTy->getElementType());

		uint64_t truncNumBits = dstElemTy->getIntegerBitWidth();
		assert(truncNumBits < 64 && "shift 64 must be handled separately");
		llvm::Constant *max, *min;
		if (isSigned)
		{
			max = llvm::ConstantInt::get(srcTy, (1LL << (truncNumBits - 1)) - 1, true);
			min = llvm::ConstantInt::get(srcTy, (-1LL << (truncNumBits - 1)), true);
		}
		else
		{
			max = llvm::ConstantInt::get(srcTy, (1ULL << truncNumBits) - 1, false);
			min = llvm::ConstantInt::get(srcTy, 0, false);
		}

		x = lowerPMINMAX(x, min, llvm::ICmpInst::ICMP_SGT);
		x = lowerPMINMAX(x, max, llvm::ICmpInst::ICMP_SLT);
		y = lowerPMINMAX(y, min, llvm::ICmpInst::ICMP_SGT);
		y = lowerPMINMAX(y, max, llvm::ICmpInst::ICMP_SLT);

		x = ::builder->CreateTrunc(x, dstTy);
		y = ::builder->CreateTrunc(y, dstTy);

		llvm::SmallVector<uint32_t, 16> index(srcTy->getNumElements() * 2);
		std::iota(index.begin(), index.end(), 0);

		return ::builder->CreateShuffleVector(x, y, index);
	}

	llvm::Value *lowerSignMask(llvm::Value *x, llvm::Type *retTy)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
		llvm::Constant *zero = llvm::ConstantInt::get(ty, 0);
		llvm::Value *cmp = ::builder->CreateICmpSLT(x, zero);

		llvm::Value *ret = ::builder->CreateZExt(
			::builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy);
		for (uint64_t i = 1, n = ty->getNumElements(); i < n; ++i)
		{
			llvm::Value *elem = ::builder->CreateZExt(
				::builder->CreateExtractElement(cmp, i), retTy);
			ret = ::builder->CreateOr(ret, ::builder->CreateShl(elem, i));
		}
		return ret;
	}

	llvm::Value *lowerFPSignMask(llvm::Value *x, llvm::Type *retTy)
	{
		llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType());
		llvm::Constant *zero = llvm::ConstantFP::get(ty, 0);
		llvm::Value *cmp = ::builder->CreateFCmpULT(x, zero);

		llvm::Value *ret = ::builder->CreateZExt(
			::builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy);
		for (uint64_t i = 1, n = ty->getNumElements(); i < n; ++i)
		{
			llvm::Value *elem = ::builder->CreateZExt(
				::builder->CreateExtractElement(cmp, i), retTy);
			ret = ::builder->CreateOr(ret, ::builder->CreateShl(elem, i));
		}
		return ret;
	}
#endif  // !defined(__i386__) && !defined(__x86_64__)
#endif  // REACTOR_LLVM_VERSION >= 7
}

namespace rr
{
#if REACTOR_LLVM_VERSION < 7
	class LLVMReactorJIT
	{
	private:
		std::string arch;
		llvm::SmallVector<std::string, 16> mattrs;
		llvm::ExecutionEngine *executionEngine;
		LLVMRoutineManager *routineManager;

	public:
		LLVMReactorJIT(const std::string &arch_,
		               const llvm::SmallVectorImpl<std::string> &mattrs_) :
			arch(arch_),
			mattrs(mattrs_.begin(), mattrs_.end()),
			executionEngine(nullptr),
			routineManager(nullptr)
		{
		}

		void startSession()
		{
			std::string error;

			::module = new llvm::Module("", *::context);

			routineManager = new LLVMRoutineManager();

			llvm::TargetMachine *targetMachine =
				llvm::EngineBuilder::selectTarget(
					::module, arch, "", mattrs, llvm::Reloc::Default,
					llvm::CodeModel::JITDefault, &error);

			executionEngine = llvm::JIT::createJIT(
				::module, &error, routineManager, llvm::CodeGenOpt::Aggressive,
				true, targetMachine);
		}

		void endSession()
		{
			delete executionEngine;
			executionEngine = nullptr;
			routineManager = nullptr;

			::function = nullptr;
			::module = nullptr;
		}

		LLVMRoutine *acquireRoutine(llvm::Function *func)
		{
			void *entry = executionEngine->getPointerToFunction(::function);
			return routineManager->acquireRoutine(entry);
		}

		void optimize(llvm::Module *module)
		{
			static llvm::PassManager *passManager = nullptr;

			if(!passManager)
			{
				passManager = new llvm::PassManager();

				passManager->add(new llvm::TargetData(*executionEngine->getTargetData()));
				passManager->add(llvm::createScalarReplAggregatesPass());

				for(int pass = 0; pass < 10 && optimization[pass] != Disabled; pass++)
				{
					switch(optimization[pass])
					{
					case Disabled:                                                                       break;
					case CFGSimplification:    passManager->add(llvm::createCFGSimplificationPass());    break;
					case LICM:                 passManager->add(llvm::createLICMPass());                 break;
					case AggressiveDCE:        passManager->add(llvm::createAggressiveDCEPass());        break;
					case GVN:                  passManager->add(llvm::createGVNPass());                  break;
					case InstructionCombining: passManager->add(llvm::createInstructionCombiningPass()); break;
					case Reassociate:          passManager->add(llvm::createReassociatePass());          break;
					case DeadStoreElimination: passManager->add(llvm::createDeadStoreEliminationPass()); break;
					case SCCP:                 passManager->add(llvm::createSCCPPass());                 break;
					case ScalarReplAggregates: passManager->add(llvm::createScalarReplAggregatesPass()); break;
					default:
						assert(false);
					}
				}
			}

			passManager->run(*::module);
		}
	};
#else
	class ExternalFunctionSymbolResolver
	{
	private:
		using FunctionMap = std::unordered_map<std::string, void *>;
		FunctionMap func_;

	public:
		ExternalFunctionSymbolResolver()
		{
			func_.emplace("floorf", reinterpret_cast<void*>(floorf));
			func_.emplace("nearbyintf", reinterpret_cast<void*>(nearbyintf));
			func_.emplace("truncf", reinterpret_cast<void*>(truncf));
		}

		void *findSymbol(const std::string &name) const
		{
			FunctionMap::const_iterator it = func_.find(name);
			return (it != func_.end()) ? it->second : nullptr;
		}
	};

	class LLVMReactorJIT
	{
	private:
		using ObjLayer = llvm::orc::RTDyldObjectLinkingLayer;
		using CompileLayer = llvm::orc::IRCompileLayer<ObjLayer, llvm::orc::SimpleCompiler>;

		llvm::orc::ExecutionSession session;
		ExternalFunctionSymbolResolver externalSymbolResolver;
		std::shared_ptr<llvm::orc::SymbolResolver> resolver;
		std::unique_ptr<llvm::TargetMachine> targetMachine;
		const llvm::DataLayout dataLayout;
		ObjLayer objLayer;
		CompileLayer compileLayer;
		size_t emittedFunctionsNum;

	public:
		LLVMReactorJIT(const char *arch, const llvm::SmallVectorImpl<std::string>& mattrs,
					   const llvm::TargetOptions &targetOpts):
			resolver(createLegacyLookupResolver(
				session,
				[this](const std::string &name) {
					void *func = externalSymbolResolver.findSymbol(name);
					if (func != nullptr)
					{
						return llvm::JITSymbol(
							reinterpret_cast<uintptr_t>(func), llvm::JITSymbolFlags::Absolute);
					}

					return objLayer.findSymbol(name, true);
				},
				[](llvm::Error err) {
					if (err)
					{
						// TODO: Log the symbol resolution errors.
						return;
					}
				})),
			targetMachine(llvm::EngineBuilder()
				.setMArch(arch)
				.setMAttrs(mattrs)
				.setTargetOptions(targetOpts)
				.selectTarget()),
			dataLayout(targetMachine->createDataLayout()),
			objLayer(
				session,
				[this](llvm::orc::VModuleKey) {
					return ObjLayer::Resources{
						std::make_shared<llvm::SectionMemoryManager>(),
						resolver};
				}),
			compileLayer(objLayer, llvm::orc::SimpleCompiler(*targetMachine)),
			emittedFunctionsNum(0)
		{
		}

		void startSession()
		{
			::module = new llvm::Module("", *::context);
		}

		void endSession()
		{
			::function = nullptr;
			::module = nullptr;
		}

		LLVMRoutine *acquireRoutine(llvm::Function *func)
		{
			std::string name = "f" + llvm::Twine(emittedFunctionsNum++).str();
			func->setName(name);
			func->setLinkage(llvm::GlobalValue::ExternalLinkage);
			func->setDoesNotThrow();

			std::unique_ptr<llvm::Module> mod(::module);
			::module = nullptr;
			mod->setDataLayout(dataLayout);

			auto moduleKey = session.allocateVModule();
			llvm::cantFail(compileLayer.addModule(moduleKey, std::move(mod)));

			std::string mangledName;
			{
				llvm::raw_string_ostream mangledNameStream(mangledName);
				llvm::Mangler::getNameWithPrefix(mangledNameStream, name, dataLayout);
			}

			llvm::JITSymbol symbol = compileLayer.findSymbolIn(moduleKey, mangledName, false);

			llvm::Expected<llvm::JITTargetAddress> expectAddr = symbol.getAddress();
			if(!expectAddr)
			{
				return nullptr;
			}

			void *addr = reinterpret_cast<void *>(static_cast<intptr_t>(expectAddr.get()));
			return new LLVMRoutine(addr, releaseRoutineCallback, this, moduleKey);
		}

		void optimize(llvm::Module *module)
		{
			std::unique_ptr<llvm::legacy::PassManager> passManager(
				new llvm::legacy::PassManager());

			passManager->add(llvm::createSROAPass());

			for(int pass = 0; pass < 10 && optimization[pass] != Disabled; pass++)
			{
				switch(optimization[pass])
				{
				case Disabled:                                                                       break;
				case CFGSimplification:    passManager->add(llvm::createCFGSimplificationPass());    break;
				case LICM:                 passManager->add(llvm::createLICMPass());                 break;
				case AggressiveDCE:        passManager->add(llvm::createAggressiveDCEPass());        break;
				case GVN:                  passManager->add(llvm::createGVNPass());                  break;
				case InstructionCombining: passManager->add(llvm::createInstructionCombiningPass()); break;
				case Reassociate:          passManager->add(llvm::createReassociatePass());          break;
				case DeadStoreElimination: passManager->add(llvm::createDeadStoreEliminationPass()); break;
				case SCCP:                 passManager->add(llvm::createSCCPPass());                 break;
				case ScalarReplAggregates: passManager->add(llvm::createSROAPass());                 break;
				default:
				                           assert(false);
				}
			}

			passManager->run(*::module);
		}

	private:
		void releaseRoutineModule(llvm::orc::VModuleKey moduleKey)
		{
			llvm::cantFail(compileLayer.removeModule(moduleKey));
		}

		static void releaseRoutineCallback(LLVMReactorJIT *jit, uint64_t moduleKey)
		{
			jit->releaseRoutineModule(moduleKey);
		}
	};
#endif

	Optimization optimization[10] = {InstructionCombining, Disabled};

	enum EmulatedType
	{
		Type_v2i32,
		Type_v4i16,
		Type_v2i16,
		Type_v8i8,
		Type_v4i8,
		Type_v2f32,
		EmulatedTypeCount
	};

	llvm::Type *T(Type *t)
	{
		uintptr_t type = reinterpret_cast<uintptr_t>(t);
		if(type < EmulatedTypeCount)
		{
			// Use 128-bit vectors to implement logically shorter ones.
			switch(type)
			{
			case Type_v2i32: return T(Int4::getType());
			case Type_v4i16: return T(Short8::getType());
			case Type_v2i16: return T(Short8::getType());
			case Type_v8i8:  return T(Byte16::getType());
			case Type_v4i8:  return T(Byte16::getType());
			case Type_v2f32: return T(Float4::getType());
			default: assert(false);
			}
		}

		return reinterpret_cast<llvm::Type*>(t);
	}

	inline Type *T(llvm::Type *t)
	{
		return reinterpret_cast<Type*>(t);
	}

	Type *T(EmulatedType t)
	{
		return reinterpret_cast<Type*>(t);
	}

	inline llvm::Value *V(Value *t)
	{
		return reinterpret_cast<llvm::Value*>(t);
	}

	inline Value *V(llvm::Value *t)
	{
		return reinterpret_cast<Value*>(t);
	}

	inline std::vector<llvm::Type*> &T(std::vector<Type*> &t)
	{
		return reinterpret_cast<std::vector<llvm::Type*>&>(t);
	}

	inline llvm::BasicBlock *B(BasicBlock *t)
	{
		return reinterpret_cast<llvm::BasicBlock*>(t);
	}

	inline BasicBlock *B(llvm::BasicBlock *t)
	{
		return reinterpret_cast<BasicBlock*>(t);
	}

	static size_t typeSize(Type *type)
	{
		uintptr_t t = reinterpret_cast<uintptr_t>(type);
		if(t < EmulatedTypeCount)
		{
			switch(t)
			{
			case Type_v2i32: return 8;
			case Type_v4i16: return 8;
			case Type_v2i16: return 4;
			case Type_v8i8:  return 8;
			case Type_v4i8:  return 4;
			case Type_v2f32: return 8;
			default: assert(false);
			}
		}

		return T(type)->getPrimitiveSizeInBits() / 8;
	}

	static unsigned int elementCount(Type *type)
	{
		uintptr_t t = reinterpret_cast<uintptr_t>(type);
		if(t < EmulatedTypeCount)
		{
			switch(t)
			{
			case Type_v2i32: return 2;
			case Type_v4i16: return 4;
			case Type_v2i16: return 2;
			case Type_v8i8:  return 8;
			case Type_v4i8:  return 4;
			case Type_v2f32: return 2;
			default: assert(false);
			}
		}

		return llvm::cast<llvm::VectorType>(T(type))->getNumElements();
	}

	Nucleus::Nucleus()
	{
		::codegenMutex.lock();   // Reactor and LLVM are currently not thread safe

		llvm::InitializeNativeTarget();

#if REACTOR_LLVM_VERSION >= 7
		llvm::InitializeNativeTargetAsmPrinter();
		llvm::InitializeNativeTargetAsmParser();
#endif

		if(!::context)
		{
			::context = new llvm::LLVMContext();
		}

		#if defined(__x86_64__)
			static const char arch[] = "x86-64";
		#elif defined(__i386__)
			static const char arch[] = "x86";
		#elif defined(__aarch64__)
			static const char arch[] = "arm64";
		#elif defined(__arm__)
			static const char arch[] = "arm";
		#elif defined(__mips__)
			#if defined(__mips64)
			    static const char arch[] = "mips64el";
			#else
			    static const char arch[] = "mipsel";
			#endif
		#else
		#error "unknown architecture"
		#endif

		llvm::SmallVector<std::string, 1> mattrs;
#if defined(__i386__) || defined(__x86_64__)
		mattrs.push_back(CPUID::supportsMMX()    ? "+mmx"    : "-mmx");
		mattrs.push_back(CPUID::supportsCMOV()   ? "+cmov"   : "-cmov");
		mattrs.push_back(CPUID::supportsSSE()    ? "+sse"    : "-sse");
		mattrs.push_back(CPUID::supportsSSE2()   ? "+sse2"   : "-sse2");
		mattrs.push_back(CPUID::supportsSSE3()   ? "+sse3"   : "-sse3");
		mattrs.push_back(CPUID::supportsSSSE3()  ? "+ssse3"  : "-ssse3");
#if REACTOR_LLVM_VERSION < 7
		mattrs.push_back(CPUID::supportsSSE4_1() ? "+sse41"  : "-sse41");
#else
		mattrs.push_back(CPUID::supportsSSE4_1() ? "+sse4.1" : "-sse4.1");
#endif
#elif defined(__arm__)
#if __ARM_ARCH >= 8
		mattrs.push_back("+armv8-a");
#else
		// armv7-a requires compiler-rt routines; otherwise, compiled kernel
		// might fail to link.
#endif
#endif

#if REACTOR_LLVM_VERSION < 7
		llvm::JITEmitDebugInfo = false;
		llvm::UnsafeFPMath = true;
		// llvm::NoInfsFPMath = true;
		// llvm::NoNaNsFPMath = true;
#else
		llvm::TargetOptions targetOpts;
		targetOpts.UnsafeFPMath = false;
		// targetOpts.NoInfsFPMath = true;
		// targetOpts.NoNaNsFPMath = true;
#endif

		if(!::reactorJIT)
		{
#if REACTOR_LLVM_VERSION < 7
			::reactorJIT = new LLVMReactorJIT(arch, mattrs);
#else
			::reactorJIT = new LLVMReactorJIT(arch, mattrs, targetOpts);
#endif
		}

		::reactorJIT->startSession();

		if(!::builder)
		{
			::builder = new llvm::IRBuilder<>(*::context);
		}
	}

	Nucleus::~Nucleus()
	{
		::reactorJIT->endSession();

		::codegenMutex.unlock();
	}

	Routine *Nucleus::acquireRoutine(const char *name, bool runOptimizations)
	{
		if(::builder->GetInsertBlock()->empty() || !::builder->GetInsertBlock()->back().isTerminator())
		{
			llvm::Type *type = ::function->getReturnType();

			if(type->isVoidTy())
			{
				createRetVoid();
			}
			else
			{
				createRet(V(llvm::UndefValue::get(type)));
			}
		}

		if(false)
		{
			#if REACTOR_LLVM_VERSION < 7
				std::string error;
				llvm::raw_fd_ostream file((std::string(name) + "-llvm-dump-unopt.txt").c_str(), error);
			#else
				std::error_code error;
				llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-unopt.txt", error);
			#endif

			::module->print(file, 0);
		}

		if(runOptimizations)
		{
			optimize();
		}

		if(false)
		{
			#if REACTOR_LLVM_VERSION < 7
				std::string error;
				llvm::raw_fd_ostream file((std::string(name) + "-llvm-dump-opt.txt").c_str(), error);
			#else
				std::error_code error;
				llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-opt.txt", error);
			#endif

			::module->print(file, 0);
		}

		LLVMRoutine *routine = ::reactorJIT->acquireRoutine(::function);

		return routine;
	}

	void Nucleus::optimize()
	{
		::reactorJIT->optimize(::module);
	}

	Value *Nucleus::allocateStackVariable(Type *type, int arraySize)
	{
		// Need to allocate it in the entry block for mem2reg to work
		llvm::BasicBlock &entryBlock = ::function->getEntryBlock();

		llvm::Instruction *declaration;

		if(arraySize)
		{
#if REACTOR_LLVM_VERSION < 7
			declaration = new llvm::AllocaInst(T(type), V(Nucleus::createConstantInt(arraySize)));
#else
			declaration = new llvm::AllocaInst(T(type), 0, V(Nucleus::createConstantInt(arraySize)));
#endif
		}
		else
		{
#if REACTOR_LLVM_VERSION < 7
			declaration = new llvm::AllocaInst(T(type), (llvm::Value*)nullptr);
#else
			declaration = new llvm::AllocaInst(T(type), 0, (llvm::Value*)nullptr);
#endif
		}

		entryBlock.getInstList().push_front(declaration);

		return V(declaration);
	}

	BasicBlock *Nucleus::createBasicBlock()
	{
		return B(llvm::BasicBlock::Create(*::context, "", ::function));
	}

	BasicBlock *Nucleus::getInsertBlock()
	{
		return B(::builder->GetInsertBlock());
	}

	void Nucleus::setInsertBlock(BasicBlock *basicBlock)
	{
	//	assert(::builder->GetInsertBlock()->back().isTerminator());
		::builder->SetInsertPoint(B(basicBlock));
	}

	void Nucleus::createFunction(Type *ReturnType, std::vector<Type*> &Params)
	{
		llvm::FunctionType *functionType = llvm::FunctionType::get(T(ReturnType), T(Params), false);
		::function = llvm::Function::Create(functionType, llvm::GlobalValue::InternalLinkage, "", ::module);
		::function->setCallingConv(llvm::CallingConv::C);

		#if defined(_WIN32) && REACTOR_LLVM_VERSION >= 7
			// FIXME(capn):
			// On Windows, stack memory is committed in increments of 4 kB pages, with the last page
			// having a trap which allows the OS to grow the stack. For functions with a stack frame
			// larger than 4 kB this can cause an issue when a variable is accessed beyond the guard
			// page. Therefore the compiler emits a call to __chkstk in the function prolog to probe
			// the stack and ensure all pages have been committed. This is currently broken in LLVM
			// JIT, but we can prevent emitting the stack probe call:
			::function->addFnAttr("stack-probe-size", "1048576");
		#endif

		::builder->SetInsertPoint(llvm::BasicBlock::Create(*::context, "", ::function));
	}

	Value *Nucleus::getArgument(unsigned int index)
	{
		llvm::Function::arg_iterator args = ::function->arg_begin();

		while(index)
		{
			args++;
			index--;
		}

		return V(&*args);
	}

	void Nucleus::createRetVoid()
	{
		::builder->CreateRetVoid();
	}

	void Nucleus::createRet(Value *v)
	{
		::builder->CreateRet(V(v));
	}

	void Nucleus::createBr(BasicBlock *dest)
	{
		::builder->CreateBr(B(dest));
	}

	void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse)
	{
		::builder->CreateCondBr(V(cond), B(ifTrue), B(ifFalse));
	}

	Value *Nucleus::createAdd(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateAdd(V(lhs), V(rhs)));
	}

	Value *Nucleus::createSub(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateSub(V(lhs), V(rhs)));
	}

	Value *Nucleus::createMul(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateMul(V(lhs), V(rhs)));
	}

	Value *Nucleus::createUDiv(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateUDiv(V(lhs), V(rhs)));
	}

	Value *Nucleus::createSDiv(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateSDiv(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFAdd(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFAdd(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFSub(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFSub(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFMul(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFMul(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFDiv(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFDiv(V(lhs), V(rhs)));
	}

	Value *Nucleus::createURem(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateURem(V(lhs), V(rhs)));
	}

	Value *Nucleus::createSRem(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateSRem(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFRem(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFRem(V(lhs), V(rhs)));
	}

	Value *Nucleus::createShl(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateShl(V(lhs), V(rhs)));
	}

	Value *Nucleus::createLShr(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateLShr(V(lhs), V(rhs)));
	}

	Value *Nucleus::createAShr(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateAShr(V(lhs), V(rhs)));
	}

	Value *Nucleus::createAnd(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateAnd(V(lhs), V(rhs)));
	}

	Value *Nucleus::createOr(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateOr(V(lhs), V(rhs)));
	}

	Value *Nucleus::createXor(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateXor(V(lhs), V(rhs)));
	}

	Value *Nucleus::createNeg(Value *v)
	{
		return V(::builder->CreateNeg(V(v)));
	}

	Value *Nucleus::createFNeg(Value *v)
	{
		return V(::builder->CreateFNeg(V(v)));
	}

	Value *Nucleus::createNot(Value *v)
	{
		return V(::builder->CreateNot(V(v)));
	}

	Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int alignment)
	{
		uintptr_t t = reinterpret_cast<uintptr_t>(type);
		if(t < EmulatedTypeCount)
		{
			switch(t)
			{
			case Type_v2i32:
			case Type_v4i16:
			case Type_v8i8:
			case Type_v2f32:
				return createBitCast(
					createInsertElement(
						V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::getType()), 2))),
						createLoad(createBitCast(ptr, Pointer<Long>::getType()), Long::getType(), isVolatile, alignment),
						0),
					type);
			case Type_v2i16:
			case Type_v4i8:
				if(alignment != 0)   // Not a local variable (all vectors are 128-bit).
				{
					Value *u = V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::getType()), 2)));
					Value *i = createLoad(createBitCast(ptr, Pointer<Int>::getType()), Int::getType(), isVolatile, alignment);
					i = createZExt(i, Long::getType());
					Value *v = createInsertElement(u, i, 0);
					return createBitCast(v, type);
				}
				break;
			default:
				assert(false);
			}
		}

		assert(V(ptr)->getType()->getContainedType(0) == T(type));
		return V(::builder->Insert(new llvm::LoadInst(V(ptr), "", isVolatile, alignment)));
	}

	Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int alignment)
	{
		uintptr_t t = reinterpret_cast<uintptr_t>(type);
		if(t < EmulatedTypeCount)
		{
			switch(t)
			{
			case Type_v2i32:
			case Type_v4i16:
			case Type_v8i8:
			case Type_v2f32:
				createStore(
					createExtractElement(
						createBitCast(value, T(llvm::VectorType::get(T(Long::getType()), 2))), Long::getType(), 0),
					createBitCast(ptr, Pointer<Long>::getType()),
					Long::getType(), isVolatile, alignment);
				return value;
			case Type_v2i16:
			case Type_v4i8:
				if(alignment != 0)   // Not a local variable (all vectors are 128-bit).
				{
					createStore(
						createExtractElement(createBitCast(value, Int4::getType()), Int::getType(), 0),
						createBitCast(ptr, Pointer<Int>::getType()),
						Int::getType(), isVolatile, alignment);
					return value;
				}
				break;
			default:
				assert(false);
			}
		}

		assert(V(ptr)->getType()->getContainedType(0) == T(type));
		::builder->Insert(new llvm::StoreInst(V(value), V(ptr), isVolatile, alignment));
		return value;
	}

	Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex)
	{
		if(sizeof(void*) == 8)
		{
			if(unsignedIndex)
			{
				index = createZExt(index, Long::getType());
			}
			else
			{
				index = createSExt(index, Long::getType());
			}

			index = createMul(index, createConstantLong((int64_t)typeSize(type)));
		}
		else
		{
			index = createMul(index, createConstantInt((int)typeSize(type)));
		}

		assert(V(ptr)->getType()->getContainedType(0) == T(type));
		return createBitCast(
			V(::builder->CreateGEP(V(createBitCast(ptr, T(llvm::PointerType::get(T(Byte::getType()), 0)))), V(index))),
			T(llvm::PointerType::get(T(type), 0)));
	}

	Value *Nucleus::createAtomicAdd(Value *ptr, Value *value)
	{
		return V(::builder->CreateAtomicRMW(llvm::AtomicRMWInst::Add, V(ptr), V(value), llvm::AtomicOrdering::SequentiallyConsistent));
	}

	Value *Nucleus::createTrunc(Value *v, Type *destType)
	{
		return V(::builder->CreateTrunc(V(v), T(destType)));
	}

	Value *Nucleus::createZExt(Value *v, Type *destType)
	{
		return V(::builder->CreateZExt(V(v), T(destType)));
	}

	Value *Nucleus::createSExt(Value *v, Type *destType)
	{
		return V(::builder->CreateSExt(V(v), T(destType)));
	}

	Value *Nucleus::createFPToSI(Value *v, Type *destType)
	{
		return V(::builder->CreateFPToSI(V(v), T(destType)));
	}

	Value *Nucleus::createSIToFP(Value *v, Type *destType)
	{
		return V(::builder->CreateSIToFP(V(v), T(destType)));
	}

	Value *Nucleus::createFPTrunc(Value *v, Type *destType)
	{
		return V(::builder->CreateFPTrunc(V(v), T(destType)));
	}

	Value *Nucleus::createFPExt(Value *v, Type *destType)
	{
		return V(::builder->CreateFPExt(V(v), T(destType)));
	}

	Value *Nucleus::createBitCast(Value *v, Type *destType)
	{
		// Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need
		// support for casting between scalars and wide vectors. Emulate them by writing to the stack and
		// reading back as the destination type.
		if(!V(v)->getType()->isVectorTy() && T(destType)->isVectorTy())
		{
			Value *readAddress = allocateStackVariable(destType);
			Value *writeAddress = createBitCast(readAddress, T(llvm::PointerType::get(V(v)->getType(), 0)));
			createStore(v, writeAddress, T(V(v)->getType()));
			return createLoad(readAddress, destType);
		}
		else if(V(v)->getType()->isVectorTy() && !T(destType)->isVectorTy())
		{
			Value *writeAddress = allocateStackVariable(T(V(v)->getType()));
			createStore(v, writeAddress, T(V(v)->getType()));
			Value *readAddress = createBitCast(writeAddress, T(llvm::PointerType::get(T(destType), 0)));
			return createLoad(readAddress, destType);
		}

		return V(::builder->CreateBitCast(V(v), T(destType)));
	}

	Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpEQ(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpNE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpNE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpUGT(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpUGE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpULT(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpULT(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpULE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpULE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpSGT(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpSGE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpSLT(V(lhs), V(rhs)));
	}

	Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateICmpSLE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpOEQ(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpOGT(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpOGE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpOLT(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpOLE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpONE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpORD(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpUNO(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpUEQ(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpUGT(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpUGE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpULT(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpULE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs)
	{
		return V(::builder->CreateFCmpULE(V(lhs), V(rhs)));
	}

	Value *Nucleus::createExtractElement(Value *vector, Type *type, int index)
	{
		assert(V(vector)->getType()->getContainedType(0) == T(type));
		return V(::builder->CreateExtractElement(V(vector), V(createConstantInt(index))));
	}

	Value *Nucleus::createInsertElement(Value *vector, Value *element, int index)
	{
		return V(::builder->CreateInsertElement(V(vector), V(element), V(createConstantInt(index))));
	}

	Value *Nucleus::createShuffleVector(Value *v1, Value *v2, const int *select)
	{
		int size = llvm::cast<llvm::VectorType>(V(v1)->getType())->getNumElements();
		const int maxSize = 16;
		llvm::Constant *swizzle[maxSize];
		assert(size <= maxSize);

		for(int i = 0; i < size; i++)
		{
			swizzle[i] = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), select[i]);
		}

		llvm::Value *shuffle = llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(swizzle, size));

		return V(::builder->CreateShuffleVector(V(v1), V(v2), shuffle));
	}

	Value *Nucleus::createSelect(Value *c, Value *ifTrue, Value *ifFalse)
	{
		return V(::builder->CreateSelect(V(c), V(ifTrue), V(ifFalse)));
	}

	SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases)
	{
		return reinterpret_cast<SwitchCases*>(::builder->CreateSwitch(V(control), B(defaultBranch), numCases));
	}

	void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch)
	{
		llvm::SwitchInst *sw = reinterpret_cast<llvm::SwitchInst *>(switchCases);
		sw->addCase(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), label, true), B(branch));
	}

	void Nucleus::createUnreachable()
	{
		::builder->CreateUnreachable();
	}

	static Value *createSwizzle4(Value *val, unsigned char select)
	{
		int swizzle[4] =
		{
			(select >> 0) & 0x03,
			(select >> 2) & 0x03,
			(select >> 4) & 0x03,
			(select >> 6) & 0x03,
		};

		return Nucleus::createShuffleVector(val, val, swizzle);
	}

	static Value *createMask4(Value *lhs, Value *rhs, unsigned char select)
	{
		bool mask[4] = {false, false, false, false};

		mask[(select >> 0) & 0x03] = true;
		mask[(select >> 2) & 0x03] = true;
		mask[(select >> 4) & 0x03] = true;
		mask[(select >> 6) & 0x03] = true;

		int swizzle[4] =
		{
			mask[0] ? 4 : 0,
			mask[1] ? 5 : 1,
			mask[2] ? 6 : 2,
			mask[3] ? 7 : 3,
		};

		return Nucleus::createShuffleVector(lhs, rhs, swizzle);
	}

	Type *Nucleus::getPointerType(Type *ElementType)
	{
		return T(llvm::PointerType::get(T(ElementType), 0));
	}

	Value *Nucleus::createNullValue(Type *Ty)
	{
		return V(llvm::Constant::getNullValue(T(Ty)));
	}

	Value *Nucleus::createConstantLong(int64_t i)
	{
		return V(llvm::ConstantInt::get(llvm::Type::getInt64Ty(*::context), i, true));
	}

	Value *Nucleus::createConstantInt(int i)
	{
		return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), i, true));
	}

	Value *Nucleus::createConstantInt(unsigned int i)
	{
		return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), i, false));
	}

	Value *Nucleus::createConstantBool(bool b)
	{
		return V(llvm::ConstantInt::get(llvm::Type::getInt1Ty(*::context), b));
	}

	Value *Nucleus::createConstantByte(signed char i)
	{
		return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*::context), i, true));
	}

	Value *Nucleus::createConstantByte(unsigned char i)
	{
		return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*::context), i, false));
	}

	Value *Nucleus::createConstantShort(short i)
	{
		return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*::context), i, true));
	}

	Value *Nucleus::createConstantShort(unsigned short i)
	{
		return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*::context), i, false));
	}

	Value *Nucleus::createConstantFloat(float x)
	{
		return V(llvm::ConstantFP::get(T(Float::getType()), x));
	}

	Value *Nucleus::createNullPointer(Type *Ty)
	{
		return V(llvm::ConstantPointerNull::get(llvm::PointerType::get(T(Ty), 0)));
	}

	Value *Nucleus::createConstantVector(const int64_t *constants, Type *type)
	{
		assert(llvm::isa<llvm::VectorType>(T(type)));
		const int numConstants = elementCount(type);                                       // Number of provided constants for the (emulated) type.
		const int numElements = llvm::cast<llvm::VectorType>(T(type))->getNumElements();   // Number of elements of the underlying vector type.
		assert(numElements <= 16 && numConstants <= numElements);
		llvm::Constant *constantVector[16];

		for(int i = 0; i < numElements; i++)
		{
			constantVector[i] = llvm::ConstantInt::get(T(type)->getContainedType(0), constants[i % numConstants]);
		}

		return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(constantVector, numElements)));
	}

	Value *Nucleus::createConstantVector(const double *constants, Type *type)
	{
		assert(llvm::isa<llvm::VectorType>(T(type)));
		const int numConstants = elementCount(type);                                       // Number of provided constants for the (emulated) type.
		const int numElements = llvm::cast<llvm::VectorType>(T(type))->getNumElements();   // Number of elements of the underlying vector type.
		assert(numElements <= 8 && numConstants <= numElements);
		llvm::Constant *constantVector[8];

		for(int i = 0; i < numElements; i++)
		{
			constantVector[i] = llvm::ConstantFP::get(T(type)->getContainedType(0), constants[i % numConstants]);
		}

		return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(constantVector, numElements)));
	}

	Type *Void::getType()
	{
		return T(llvm::Type::getVoidTy(*::context));
	}

	Bool::Bool(Argument<Bool> argument)
	{
		storeValue(argument.value);
	}

	Bool::Bool(bool x)
	{
		storeValue(Nucleus::createConstantBool(x));
	}

	Bool::Bool(RValue<Bool> rhs)
	{
		storeValue(rhs.value);
	}

	Bool::Bool(const Bool &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Bool::Bool(const Reference<Bool> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<Bool> Bool::operator=(RValue<Bool> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Bool> Bool::operator=(const Bool &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Bool>(value);
	}

	RValue<Bool> Bool::operator=(const Reference<Bool> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Bool>(value);
	}

	RValue<Bool> operator!(RValue<Bool> val)
	{
		return RValue<Bool>(Nucleus::createNot(val.value));
	}

	RValue<Bool> operator&&(RValue<Bool> lhs, RValue<Bool> rhs)
	{
		return RValue<Bool>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Bool> operator||(RValue<Bool> lhs, RValue<Bool> rhs)
	{
		return RValue<Bool>(Nucleus::createOr(lhs.value, rhs.value));
	}

	Type *Bool::getType()
	{
		return T(llvm::Type::getInt1Ty(*::context));
	}

	Byte::Byte(Argument<Byte> argument)
	{
		storeValue(argument.value);
	}

	Byte::Byte(RValue<Int> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, Byte::getType());

		storeValue(integer);
	}

	Byte::Byte(RValue<UInt> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, Byte::getType());

		storeValue(integer);
	}

	Byte::Byte(RValue<UShort> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, Byte::getType());

		storeValue(integer);
	}

	Byte::Byte(int x)
	{
		storeValue(Nucleus::createConstantByte((unsigned char)x));
	}

	Byte::Byte(unsigned char x)
	{
		storeValue(Nucleus::createConstantByte(x));
	}

	Byte::Byte(RValue<Byte> rhs)
	{
		storeValue(rhs.value);
	}

	Byte::Byte(const Byte &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Byte::Byte(const Reference<Byte> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<Byte> Byte::operator=(RValue<Byte> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Byte> Byte::operator=(const Byte &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Byte>(value);
	}

	RValue<Byte> Byte::operator=(const Reference<Byte> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Byte>(value);
	}

	RValue<Byte> operator+(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Byte> operator-(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<Byte> operator*(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<Byte> operator/(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createUDiv(lhs.value, rhs.value));
	}

	RValue<Byte> operator%(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createURem(lhs.value, rhs.value));
	}

	RValue<Byte> operator&(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Byte> operator|(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<Byte> operator^(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<Byte> operator<<(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createShl(lhs.value, rhs.value));
	}

	RValue<Byte> operator>>(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Byte>(Nucleus::createLShr(lhs.value, rhs.value));
	}

	RValue<Byte> operator+=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Byte> operator-=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<Byte> operator*=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs * rhs;
	}

	RValue<Byte> operator/=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs / rhs;
	}

	RValue<Byte> operator%=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs % rhs;
	}

	RValue<Byte> operator&=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<Byte> operator|=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<Byte> operator^=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<Byte> operator<<=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<Byte> operator>>=(Byte &lhs, RValue<Byte> rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<Byte> operator+(RValue<Byte> val)
	{
		return val;
	}

	RValue<Byte> operator-(RValue<Byte> val)
	{
		return RValue<Byte>(Nucleus::createNeg(val.value));
	}

	RValue<Byte> operator~(RValue<Byte> val)
	{
		return RValue<Byte>(Nucleus::createNot(val.value));
	}

	RValue<Byte> operator++(Byte &val, int)   // Post-increment
	{
		RValue<Byte> res = val;

		Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantByte((unsigned char)1));
		val.storeValue(inc);

		return res;
	}

	const Byte &operator++(Byte &val)   // Pre-increment
	{
		Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantByte((unsigned char)1));
		val.storeValue(inc);

		return val;
	}

	RValue<Byte> operator--(Byte &val, int)   // Post-decrement
	{
		RValue<Byte> res = val;

		Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantByte((unsigned char)1));
		val.storeValue(inc);

		return res;
	}

	const Byte &operator--(Byte &val)   // Pre-decrement
	{
		Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantByte((unsigned char)1));
		val.storeValue(inc);

		return val;
	}

	RValue<Bool> operator<(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value));
	}

	RValue<Bool> operator<=(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value));
	}

	RValue<Bool> operator>(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value));
	}

	RValue<Bool> operator>=(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value));
	}

	RValue<Bool> operator!=(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
	}

	RValue<Bool> operator==(RValue<Byte> lhs, RValue<Byte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
	}

	Type *Byte::getType()
	{
		return T(llvm::Type::getInt8Ty(*::context));
	}

	SByte::SByte(Argument<SByte> argument)
	{
		storeValue(argument.value);
	}

	SByte::SByte(RValue<Int> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, SByte::getType());

		storeValue(integer);
	}

	SByte::SByte(RValue<Short> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, SByte::getType());

		storeValue(integer);
	}

	SByte::SByte(signed char x)
	{
		storeValue(Nucleus::createConstantByte(x));
	}

	SByte::SByte(RValue<SByte> rhs)
	{
		storeValue(rhs.value);
	}

	SByte::SByte(const SByte &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	SByte::SByte(const Reference<SByte> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<SByte> SByte::operator=(RValue<SByte> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<SByte> SByte::operator=(const SByte &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<SByte>(value);
	}

	RValue<SByte> SByte::operator=(const Reference<SByte> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<SByte>(value);
	}

	RValue<SByte> operator+(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<SByte> operator-(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<SByte> operator*(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<SByte> operator/(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createSDiv(lhs.value, rhs.value));
	}

	RValue<SByte> operator%(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createSRem(lhs.value, rhs.value));
	}

	RValue<SByte> operator&(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<SByte> operator|(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<SByte> operator^(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<SByte> operator<<(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createShl(lhs.value, rhs.value));
	}

	RValue<SByte> operator>>(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<SByte>(Nucleus::createAShr(lhs.value, rhs.value));
	}

	RValue<SByte> operator+=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<SByte> operator-=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<SByte> operator*=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs * rhs;
	}

	RValue<SByte> operator/=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs / rhs;
	}

	RValue<SByte> operator%=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs % rhs;
	}

	RValue<SByte> operator&=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<SByte> operator|=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<SByte> operator^=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<SByte> operator<<=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<SByte> operator>>=(SByte &lhs, RValue<SByte> rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<SByte> operator+(RValue<SByte> val)
	{
		return val;
	}

	RValue<SByte> operator-(RValue<SByte> val)
	{
		return RValue<SByte>(Nucleus::createNeg(val.value));
	}

	RValue<SByte> operator~(RValue<SByte> val)
	{
		return RValue<SByte>(Nucleus::createNot(val.value));
	}

	RValue<SByte> operator++(SByte &val, int)   // Post-increment
	{
		RValue<SByte> res = val;

		Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantByte((signed char)1));
		val.storeValue(inc);

		return res;
	}

	const SByte &operator++(SByte &val)   // Pre-increment
	{
		Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantByte((signed char)1));
		val.storeValue(inc);

		return val;
	}

	RValue<SByte> operator--(SByte &val, int)   // Post-decrement
	{
		RValue<SByte> res = val;

		Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantByte((signed char)1));
		val.storeValue(inc);

		return res;
	}

	const SByte &operator--(SByte &val)   // Pre-decrement
	{
		Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantByte((signed char)1));
		val.storeValue(inc);

		return val;
	}

	RValue<Bool> operator<(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value));
	}

	RValue<Bool> operator<=(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value));
	}

	RValue<Bool> operator>(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value));
	}

	RValue<Bool> operator>=(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value));
	}

	RValue<Bool> operator!=(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
	}

	RValue<Bool> operator==(RValue<SByte> lhs, RValue<SByte> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
	}

	Type *SByte::getType()
	{
		return T(llvm::Type::getInt8Ty(*::context));
	}

	Short::Short(Argument<Short> argument)
	{
		storeValue(argument.value);
	}

	Short::Short(RValue<Int> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, Short::getType());

		storeValue(integer);
	}

	Short::Short(short x)
	{
		storeValue(Nucleus::createConstantShort(x));
	}

	Short::Short(RValue<Short> rhs)
	{
		storeValue(rhs.value);
	}

	Short::Short(const Short &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Short::Short(const Reference<Short> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<Short> Short::operator=(RValue<Short> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Short> Short::operator=(const Short &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Short>(value);
	}

	RValue<Short> Short::operator=(const Reference<Short> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Short>(value);
	}

	RValue<Short> operator+(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Short> operator-(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<Short> operator*(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<Short> operator/(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createSDiv(lhs.value, rhs.value));
	}

	RValue<Short> operator%(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createSRem(lhs.value, rhs.value));
	}

	RValue<Short> operator&(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Short> operator|(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<Short> operator^(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<Short> operator<<(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createShl(lhs.value, rhs.value));
	}

	RValue<Short> operator>>(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Short>(Nucleus::createAShr(lhs.value, rhs.value));
	}

	RValue<Short> operator+=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Short> operator-=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<Short> operator*=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs * rhs;
	}

	RValue<Short> operator/=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs / rhs;
	}

	RValue<Short> operator%=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs % rhs;
	}

	RValue<Short> operator&=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<Short> operator|=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<Short> operator^=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<Short> operator<<=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<Short> operator>>=(Short &lhs, RValue<Short> rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<Short> operator+(RValue<Short> val)
	{
		return val;
	}

	RValue<Short> operator-(RValue<Short> val)
	{
		return RValue<Short>(Nucleus::createNeg(val.value));
	}

	RValue<Short> operator~(RValue<Short> val)
	{
		return RValue<Short>(Nucleus::createNot(val.value));
	}

	RValue<Short> operator++(Short &val, int)   // Post-increment
	{
		RValue<Short> res = val;

		Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantShort((short)1));
		val.storeValue(inc);

		return res;
	}

	const Short &operator++(Short &val)   // Pre-increment
	{
		Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantShort((short)1));
		val.storeValue(inc);

		return val;
	}

	RValue<Short> operator--(Short &val, int)   // Post-decrement
	{
		RValue<Short> res = val;

		Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantShort((short)1));
		val.storeValue(inc);

		return res;
	}

	const Short &operator--(Short &val)   // Pre-decrement
	{
		Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantShort((short)1));
		val.storeValue(inc);

		return val;
	}

	RValue<Bool> operator<(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value));
	}

	RValue<Bool> operator<=(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value));
	}

	RValue<Bool> operator>(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value));
	}

	RValue<Bool> operator>=(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value));
	}

	RValue<Bool> operator!=(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
	}

	RValue<Bool> operator==(RValue<Short> lhs, RValue<Short> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
	}

	Type *Short::getType()
	{
		return T(llvm::Type::getInt16Ty(*::context));
	}

	UShort::UShort(Argument<UShort> argument)
	{
		storeValue(argument.value);
	}

	UShort::UShort(RValue<UInt> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, UShort::getType());

		storeValue(integer);
	}

	UShort::UShort(RValue<Int> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, UShort::getType());

		storeValue(integer);
	}

	UShort::UShort(unsigned short x)
	{
		storeValue(Nucleus::createConstantShort(x));
	}

	UShort::UShort(RValue<UShort> rhs)
	{
		storeValue(rhs.value);
	}

	UShort::UShort(const UShort &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UShort::UShort(const Reference<UShort> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<UShort> UShort::operator=(RValue<UShort> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<UShort> UShort::operator=(const UShort &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UShort>(value);
	}

	RValue<UShort> UShort::operator=(const Reference<UShort> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UShort>(value);
	}

	RValue<UShort> operator+(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<UShort> operator-(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<UShort> operator*(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<UShort> operator/(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createUDiv(lhs.value, rhs.value));
	}

	RValue<UShort> operator%(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createURem(lhs.value, rhs.value));
	}

	RValue<UShort> operator&(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<UShort> operator|(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<UShort> operator^(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<UShort> operator<<(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createShl(lhs.value, rhs.value));
	}

	RValue<UShort> operator>>(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<UShort>(Nucleus::createLShr(lhs.value, rhs.value));
	}

	RValue<UShort> operator+=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<UShort> operator-=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<UShort> operator*=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs * rhs;
	}

	RValue<UShort> operator/=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs / rhs;
	}

	RValue<UShort> operator%=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs % rhs;
	}

	RValue<UShort> operator&=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<UShort> operator|=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<UShort> operator^=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<UShort> operator<<=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<UShort> operator>>=(UShort &lhs, RValue<UShort> rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<UShort> operator+(RValue<UShort> val)
	{
		return val;
	}

	RValue<UShort> operator-(RValue<UShort> val)
	{
		return RValue<UShort>(Nucleus::createNeg(val.value));
	}

	RValue<UShort> operator~(RValue<UShort> val)
	{
		return RValue<UShort>(Nucleus::createNot(val.value));
	}

	RValue<UShort> operator++(UShort &val, int)   // Post-increment
	{
		RValue<UShort> res = val;

		Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantShort((unsigned short)1));
		val.storeValue(inc);

		return res;
	}

	const UShort &operator++(UShort &val)   // Pre-increment
	{
		Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantShort((unsigned short)1));
		val.storeValue(inc);

		return val;
	}

	RValue<UShort> operator--(UShort &val, int)   // Post-decrement
	{
		RValue<UShort> res = val;

		Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantShort((unsigned short)1));
		val.storeValue(inc);

		return res;
	}

	const UShort &operator--(UShort &val)   // Pre-decrement
	{
		Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantShort((unsigned short)1));
		val.storeValue(inc);

		return val;
	}

	RValue<Bool> operator<(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value));
	}

	RValue<Bool> operator<=(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value));
	}

	RValue<Bool> operator>(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value));
	}

	RValue<Bool> operator>=(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value));
	}

	RValue<Bool> operator!=(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
	}

	RValue<Bool> operator==(RValue<UShort> lhs, RValue<UShort> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
	}

	Type *UShort::getType()
	{
		return T(llvm::Type::getInt16Ty(*::context));
	}

	Byte4::Byte4(RValue<Byte8> cast)
	{
		storeValue(Nucleus::createBitCast(cast.value, getType()));
	}

	Byte4::Byte4(const Reference<Byte4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Type *Byte4::getType()
	{
		return T(Type_v4i8);
	}

	Type *SByte4::getType()
	{
		return T(Type_v4i8);
	}

	Byte8::Byte8(uint8_t x0, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4, uint8_t x5, uint8_t x6, uint8_t x7)
	{
		int64_t constantVector[8] = {x0, x1, x2, x3, x4, x5, x6, x7};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	Byte8::Byte8(RValue<Byte8> rhs)
	{
		storeValue(rhs.value);
	}

	Byte8::Byte8(const Byte8 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Byte8::Byte8(const Reference<Byte8> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<Byte8> Byte8::operator=(RValue<Byte8> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Byte8> Byte8::operator=(const Byte8 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Byte8>(value);
	}

	RValue<Byte8> Byte8::operator=(const Reference<Byte8> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Byte8>(value);
	}

	RValue<Byte8> operator+(RValue<Byte8> lhs, RValue<Byte8> rhs)
	{
		return RValue<Byte8>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Byte8> operator-(RValue<Byte8> lhs, RValue<Byte8> rhs)
	{
		return RValue<Byte8>(Nucleus::createSub(lhs.value, rhs.value));
	}

//	RValue<Byte8> operator*(RValue<Byte8> lhs, RValue<Byte8> rhs)
//	{
//		return RValue<Byte8>(Nucleus::createMul(lhs.value, rhs.value));
//	}

//	RValue<Byte8> operator/(RValue<Byte8> lhs, RValue<Byte8> rhs)
//	{
//		return RValue<Byte8>(Nucleus::createUDiv(lhs.value, rhs.value));
//	}

//	RValue<Byte8> operator%(RValue<Byte8> lhs, RValue<Byte8> rhs)
//	{
//		return RValue<Byte8>(Nucleus::createURem(lhs.value, rhs.value));
//	}

	RValue<Byte8> operator&(RValue<Byte8> lhs, RValue<Byte8> rhs)
	{
		return RValue<Byte8>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Byte8> operator|(RValue<Byte8> lhs, RValue<Byte8> rhs)
	{
		return RValue<Byte8>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<Byte8> operator^(RValue<Byte8> lhs, RValue<Byte8> rhs)
	{
		return RValue<Byte8>(Nucleus::createXor(lhs.value, rhs.value));
	}

//	RValue<Byte8> operator<<(RValue<Byte8> lhs, unsigned char rhs)
//	{
//		return RValue<Byte8>(Nucleus::createShl(lhs.value, rhs.value));
//	}

//	RValue<Byte8> operator>>(RValue<Byte8> lhs, unsigned char rhs)
//	{
//		return RValue<Byte8>(Nucleus::createLShr(lhs.value, rhs.value));
//	}

	RValue<Byte8> operator+=(Byte8 &lhs, RValue<Byte8> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Byte8> operator-=(Byte8 &lhs, RValue<Byte8> rhs)
	{
		return lhs = lhs - rhs;
	}

//	RValue<Byte8> operator*=(Byte8 &lhs, RValue<Byte8> rhs)
//	{
//		return lhs = lhs * rhs;
//	}

//	RValue<Byte8> operator/=(Byte8 &lhs, RValue<Byte8> rhs)
//	{
//		return lhs = lhs / rhs;
//	}

//	RValue<Byte8> operator%=(Byte8 &lhs, RValue<Byte8> rhs)
//	{
//		return lhs = lhs % rhs;
//	}

	RValue<Byte8> operator&=(Byte8 &lhs, RValue<Byte8> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<Byte8> operator|=(Byte8 &lhs, RValue<Byte8> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<Byte8> operator^=(Byte8 &lhs, RValue<Byte8> rhs)
	{
		return lhs = lhs ^ rhs;
	}

//	RValue<Byte8> operator<<=(Byte8 &lhs, RValue<Byte8> rhs)
//	{
//		return lhs = lhs << rhs;
//	}

//	RValue<Byte8> operator>>=(Byte8 &lhs, RValue<Byte8> rhs)
//	{
//		return lhs = lhs >> rhs;
//	}

//	RValue<Byte8> operator+(RValue<Byte8> val)
//	{
//		return val;
//	}

//	RValue<Byte8> operator-(RValue<Byte8> val)
//	{
//		return RValue<Byte8>(Nucleus::createNeg(val.value));
//	}

	RValue<Byte8> operator~(RValue<Byte8> val)
	{
		return RValue<Byte8>(Nucleus::createNot(val.value));
	}

	RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::paddusb(x, y);
#else
		return As<Byte8>(V(lowerPUADDSAT(V(x.value), V(y.value))));
#endif
	}

	RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psubusb(x, y);
#else
		return As<Byte8>(V(lowerPUSUBSAT(V(x.value), V(y.value))));
#endif
	}

	RValue<Short4> Unpack(RValue<Byte4> x)
	{
		int shuffle[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7};   // Real type is v16i8
		return As<Short4>(Nucleus::createShuffleVector(x.value, x.value, shuffle));
	}

	RValue<Short4> Unpack(RValue<Byte4> x, RValue<Byte4> y)
	{
		return UnpackLow(As<Byte8>(x), As<Byte8>(y));
	}

	RValue<Short4> UnpackLow(RValue<Byte8> x, RValue<Byte8> y)
	{
		int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23};   // Real type is v16i8
		return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
	}

	RValue<Short4> UnpackHigh(RValue<Byte8> x, RValue<Byte8> y)
	{
		int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23};   // Real type is v16i8
		auto lowHigh = RValue<Byte16>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
		return As<Short4>(Swizzle(As<Int4>(lowHigh), 0xEE));
	}

	RValue<Int> SignMask(RValue<Byte8> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmovmskb(x);
#else
		return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType()))));
#endif
	}

//	RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y)
//	{
//#if defined(__i386__) || defined(__x86_64__)
//		return x86::pcmpgtb(x, y);   // FIXME: Signedness
//#else
//		return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType()))));
//#endif
//	}

	RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pcmpeqb(x, y);
#else
		return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
	}

	Type *Byte8::getType()
	{
		return T(Type_v8i8);
	}

	SByte8::SByte8(uint8_t x0, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4, uint8_t x5, uint8_t x6, uint8_t x7)
	{
		int64_t constantVector[8] = {x0, x1, x2, x3, x4, x5, x6, x7};
		Value *vector = Nucleus::createConstantVector(constantVector, getType());

		storeValue(Nucleus::createBitCast(vector, getType()));
	}

	SByte8::SByte8(RValue<SByte8> rhs)
	{
		storeValue(rhs.value);
	}

	SByte8::SByte8(const SByte8 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	SByte8::SByte8(const Reference<SByte8> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<SByte8> SByte8::operator=(RValue<SByte8> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<SByte8> SByte8::operator=(const SByte8 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<SByte8>(value);
	}

	RValue<SByte8> SByte8::operator=(const Reference<SByte8> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<SByte8>(value);
	}

	RValue<SByte8> operator+(RValue<SByte8> lhs, RValue<SByte8> rhs)
	{
		return RValue<SByte8>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<SByte8> operator-(RValue<SByte8> lhs, RValue<SByte8> rhs)
	{
		return RValue<SByte8>(Nucleus::createSub(lhs.value, rhs.value));
	}

//	RValue<SByte8> operator*(RValue<SByte8> lhs, RValue<SByte8> rhs)
//	{
//		return RValue<SByte8>(Nucleus::createMul(lhs.value, rhs.value));
//	}

//	RValue<SByte8> operator/(RValue<SByte8> lhs, RValue<SByte8> rhs)
//	{
//		return RValue<SByte8>(Nucleus::createSDiv(lhs.value, rhs.value));
//	}

//	RValue<SByte8> operator%(RValue<SByte8> lhs, RValue<SByte8> rhs)
//	{
//		return RValue<SByte8>(Nucleus::createSRem(lhs.value, rhs.value));
//	}

	RValue<SByte8> operator&(RValue<SByte8> lhs, RValue<SByte8> rhs)
	{
		return RValue<SByte8>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<SByte8> operator|(RValue<SByte8> lhs, RValue<SByte8> rhs)
	{
		return RValue<SByte8>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<SByte8> operator^(RValue<SByte8> lhs, RValue<SByte8> rhs)
	{
		return RValue<SByte8>(Nucleus::createXor(lhs.value, rhs.value));
	}

//	RValue<SByte8> operator<<(RValue<SByte8> lhs, unsigned char rhs)
//	{
//		return RValue<SByte8>(Nucleus::createShl(lhs.value, rhs.value));
//	}

//	RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs)
//	{
//		return RValue<SByte8>(Nucleus::createAShr(lhs.value, rhs.value));
//	}

	RValue<SByte8> operator+=(SByte8 &lhs, RValue<SByte8> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<SByte8> operator-=(SByte8 &lhs, RValue<SByte8> rhs)
	{
		return lhs = lhs - rhs;
	}

//	RValue<SByte8> operator*=(SByte8 &lhs, RValue<SByte8> rhs)
//	{
//		return lhs = lhs * rhs;
//	}

//	RValue<SByte8> operator/=(SByte8 &lhs, RValue<SByte8> rhs)
//	{
//		return lhs = lhs / rhs;
//	}

//	RValue<SByte8> operator%=(SByte8 &lhs, RValue<SByte8> rhs)
//	{
//		return lhs = lhs % rhs;
//	}

	RValue<SByte8> operator&=(SByte8 &lhs, RValue<SByte8> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<SByte8> operator|=(SByte8 &lhs, RValue<SByte8> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<SByte8> operator^=(SByte8 &lhs, RValue<SByte8> rhs)
	{
		return lhs = lhs ^ rhs;
	}

//	RValue<SByte8> operator<<=(SByte8 &lhs, RValue<SByte8> rhs)
//	{
//		return lhs = lhs << rhs;
//	}

//	RValue<SByte8> operator>>=(SByte8 &lhs, RValue<SByte8> rhs)
//	{
//		return lhs = lhs >> rhs;
//	}

//	RValue<SByte8> operator+(RValue<SByte8> val)
//	{
//		return val;
//	}

//	RValue<SByte8> operator-(RValue<SByte8> val)
//	{
//		return RValue<SByte8>(Nucleus::createNeg(val.value));
//	}

	RValue<SByte8> operator~(RValue<SByte8> val)
	{
		return RValue<SByte8>(Nucleus::createNot(val.value));
	}

	RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::paddsb(x, y);
#else
		return As<SByte8>(V(lowerPSADDSAT(V(x.value), V(y.value))));
#endif
	}

	RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psubsb(x, y);
#else
		return As<SByte8>(V(lowerPSSUBSAT(V(x.value), V(y.value))));
#endif
	}

	RValue<Short4> UnpackLow(RValue<SByte8> x, RValue<SByte8> y)
	{
		int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23};   // Real type is v16i8
		return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
	}

	RValue<Short4> UnpackHigh(RValue<SByte8> x, RValue<SByte8> y)
	{
		int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23};   // Real type is v16i8
		auto lowHigh = RValue<Byte16>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
		return As<Short4>(Swizzle(As<Int4>(lowHigh), 0xEE));
	}

	RValue<Int> SignMask(RValue<SByte8> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmovmskb(As<Byte8>(x));
#else
		return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType()))));
#endif
	}

	RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pcmpgtb(x, y);
#else
		return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
	}

	RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pcmpeqb(As<Byte8>(x), As<Byte8>(y));
#else
		return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
	}

	Type *SByte8::getType()
	{
		return T(Type_v8i8);
	}

	Byte16::Byte16(RValue<Byte16> rhs)
	{
		storeValue(rhs.value);
	}

	Byte16::Byte16(const Byte16 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Byte16::Byte16(const Reference<Byte16> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<Byte16> Byte16::operator=(RValue<Byte16> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Byte16> Byte16::operator=(const Byte16 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Byte16>(value);
	}

	RValue<Byte16> Byte16::operator=(const Reference<Byte16> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Byte16>(value);
	}

	Type *Byte16::getType()
	{
		return T(llvm::VectorType::get(T(Byte::getType()), 16));
	}

	Type *SByte16::getType()
	{
		return T(llvm::VectorType::get(T(SByte::getType()), 16));
	}

	Short2::Short2(RValue<Short4> cast)
	{
		storeValue(Nucleus::createBitCast(cast.value, getType()));
	}

	Type *Short2::getType()
	{
		return T(Type_v2i16);
	}

	UShort2::UShort2(RValue<UShort4> cast)
	{
		storeValue(Nucleus::createBitCast(cast.value, getType()));
	}

	Type *UShort2::getType()
	{
		return T(Type_v2i16);
	}

	Short4::Short4(RValue<Int> cast)
	{
		Value *vector = loadValue();
		Value *element = Nucleus::createTrunc(cast.value, Short::getType());
		Value *insert = Nucleus::createInsertElement(vector, element, 0);
		Value *swizzle = Swizzle(RValue<Short4>(insert), 0x00).value;

		storeValue(swizzle);
	}

	Short4::Short4(RValue<Int4> cast)
	{
		int select[8] = {0, 2, 4, 6, 0, 2, 4, 6};
		Value *short8 = Nucleus::createBitCast(cast.value, Short8::getType());

		Value *packed = Nucleus::createShuffleVector(short8, short8, select);
		Value *short4 = As<Short4>(Int2(As<Int4>(packed))).value;

		storeValue(short4);
	}

//	Short4::Short4(RValue<Float> cast)
//	{
//	}

	Short4::Short4(RValue<Float4> cast)
	{
		Int4 v4i32 = Int4(cast);
#if defined(__i386__) || defined(__x86_64__)
		v4i32 = As<Int4>(x86::packssdw(v4i32, v4i32));
#else
		Value *v = v4i32.loadValue();
		v4i32 = As<Int4>(V(lowerPack(V(v), V(v), true)));
#endif

		storeValue(As<Short4>(Int2(v4i32)).value);
	}

	Short4::Short4(short xyzw)
	{
		int64_t constantVector[4] = {xyzw, xyzw, xyzw, xyzw};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	Short4::Short4(short x, short y, short z, short w)
	{
		int64_t constantVector[4] = {x, y, z, w};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	Short4::Short4(RValue<Short4> rhs)
	{
		storeValue(rhs.value);
	}

	Short4::Short4(const Short4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Short4::Short4(const Reference<Short4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Short4::Short4(RValue<UShort4> rhs)
	{
		storeValue(rhs.value);
	}

	Short4::Short4(const UShort4 &rhs)
	{
		storeValue(rhs.loadValue());
	}

	Short4::Short4(const Reference<UShort4> &rhs)
	{
		storeValue(rhs.loadValue());
	}

	RValue<Short4> Short4::operator=(RValue<Short4> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Short4> Short4::operator=(const Short4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Short4>(value);
	}

	RValue<Short4> Short4::operator=(const Reference<Short4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Short4>(value);
	}

	RValue<Short4> Short4::operator=(RValue<UShort4> rhs)
	{
		storeValue(rhs.value);

		return RValue<Short4>(rhs);
	}

	RValue<Short4> Short4::operator=(const UShort4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Short4>(value);
	}

	RValue<Short4> Short4::operator=(const Reference<UShort4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Short4>(value);
	}

	RValue<Short4> operator+(RValue<Short4> lhs, RValue<Short4> rhs)
	{
		return RValue<Short4>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Short4> operator-(RValue<Short4> lhs, RValue<Short4> rhs)
	{
		return RValue<Short4>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<Short4> operator*(RValue<Short4> lhs, RValue<Short4> rhs)
	{
		return RValue<Short4>(Nucleus::createMul(lhs.value, rhs.value));
	}

//	RValue<Short4> operator/(RValue<Short4> lhs, RValue<Short4> rhs)
//	{
//		return RValue<Short4>(Nucleus::createSDiv(lhs.value, rhs.value));
//	}

//	RValue<Short4> operator%(RValue<Short4> lhs, RValue<Short4> rhs)
//	{
//		return RValue<Short4>(Nucleus::createSRem(lhs.value, rhs.value));
//	}

	RValue<Short4> operator&(RValue<Short4> lhs, RValue<Short4> rhs)
	{
		return RValue<Short4>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Short4> operator|(RValue<Short4> lhs, RValue<Short4> rhs)
	{
		return RValue<Short4>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<Short4> operator^(RValue<Short4> lhs, RValue<Short4> rhs)
	{
		return RValue<Short4>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
	//	return RValue<Short4>(Nucleus::createShl(lhs.value, rhs.value));

		return x86::psllw(lhs, rhs);
#else
		return As<Short4>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
	}

	RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psraw(lhs, rhs);
#else
		return As<Short4>(V(lowerVectorAShr(V(lhs.value), rhs)));
#endif
	}

	RValue<Short4> operator+=(Short4 &lhs, RValue<Short4> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Short4> operator-=(Short4 &lhs, RValue<Short4> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<Short4> operator*=(Short4 &lhs, RValue<Short4> rhs)
	{
		return lhs = lhs * rhs;
	}

//	RValue<Short4> operator/=(Short4 &lhs, RValue<Short4> rhs)
//	{
//		return lhs = lhs / rhs;
//	}

//	RValue<Short4> operator%=(Short4 &lhs, RValue<Short4> rhs)
//	{
//		return lhs = lhs % rhs;
//	}

	RValue<Short4> operator&=(Short4 &lhs, RValue<Short4> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<Short4> operator|=(Short4 &lhs, RValue<Short4> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<Short4> operator^=(Short4 &lhs, RValue<Short4> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<Short4> operator<<=(Short4 &lhs, unsigned char rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<Short4> operator>>=(Short4 &lhs, unsigned char rhs)
	{
		return lhs = lhs >> rhs;
	}

//	RValue<Short4> operator+(RValue<Short4> val)
//	{
//		return val;
//	}

	RValue<Short4> operator-(RValue<Short4> val)
	{
		return RValue<Short4>(Nucleus::createNeg(val.value));
	}

	RValue<Short4> operator~(RValue<Short4> val)
	{
		return RValue<Short4>(Nucleus::createNot(val.value));
	}

	RValue<Short4> RoundShort4(RValue<Float4> cast)
	{
		RValue<Int4> int4 = RoundInt(cast);
		return As<Short4>(PackSigned(int4, int4));
	}

	RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmaxsw(x, y);
#else
		return RValue<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT)));
#endif
	}

	RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pminsw(x, y);
#else
		return RValue<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT)));
#endif
	}

	RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::paddsw(x, y);
#else
		return As<Short4>(V(lowerPSADDSAT(V(x.value), V(y.value))));
#endif
	}

	RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psubsw(x, y);
#else
		return As<Short4>(V(lowerPSSUBSAT(V(x.value), V(y.value))));
#endif
	}

	RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmulhw(x, y);
#else
		return As<Short4>(V(lowerMulHigh(V(x.value), V(y.value), true)));
#endif
	}

	RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmaddwd(x, y);
#else
		return As<Int2>(V(lowerMulAdd(V(x.value), V(y.value))));
#endif
	}

	RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		auto result = x86::packsswb(x, y);
#else
		auto result = V(lowerPack(V(x.value), V(y.value), true));
#endif
		return As<SByte8>(Swizzle(As<Int4>(result), 0x88));
	}

	RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		auto result = x86::packuswb(x, y);
#else
		auto result = V(lowerPack(V(x.value), V(y.value), false));
#endif
		return As<Byte8>(Swizzle(As<Int4>(result), 0x88));
	}

	RValue<Int2> UnpackLow(RValue<Short4> x, RValue<Short4> y)
	{
		int shuffle[8] = {0, 8, 1, 9, 2, 10, 3, 11};   // Real type is v8i16
		return As<Int2>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
	}

	RValue<Int2> UnpackHigh(RValue<Short4> x, RValue<Short4> y)
	{
		int shuffle[8] = {0, 8, 1, 9, 2, 10, 3, 11};   // Real type is v8i16
		auto lowHigh = RValue<Short8>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
		return As<Int2>(Swizzle(As<Int4>(lowHigh), 0xEE));
	}

	RValue<Short4> Swizzle(RValue<Short4> x, unsigned char select)
	{
		// Real type is v8i16
		int shuffle[8] =
		{
			(select >> 0) & 0x03,
			(select >> 2) & 0x03,
			(select >> 4) & 0x03,
			(select >> 6) & 0x03,
			(select >> 0) & 0x03,
			(select >> 2) & 0x03,
			(select >> 4) & 0x03,
			(select >> 6) & 0x03,
		};

		return As<Short4>(Nucleus::createShuffleVector(x.value, x.value, shuffle));
	}

	RValue<Short4> Insert(RValue<Short4> val, RValue<Short> element, int i)
	{
		return RValue<Short4>(Nucleus::createInsertElement(val.value, element.value, i));
	}

	RValue<Short> Extract(RValue<Short4> val, int i)
	{
		return RValue<Short>(Nucleus::createExtractElement(val.value, Short::getType(), i));
	}

	RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pcmpgtw(x, y);
#else
		return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Short4::getType()))));
#endif
	}

	RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pcmpeqw(x, y);
#else
		return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Short4::getType()))));
#endif
	}

	Type *Short4::getType()
	{
		return T(Type_v4i16);
	}

	UShort4::UShort4(RValue<Int4> cast)
	{
		*this = Short4(cast);
	}

	UShort4::UShort4(RValue<Float4> cast, bool saturate)
	{
		if(saturate)
		{
#if defined(__i386__) || defined(__x86_64__)
			if(CPUID::supportsSSE4_1())
			{
				Int4 int4(Min(cast, Float4(0xFFFF)));   // packusdw takes care of 0x0000 saturation
				*this = As<Short4>(PackUnsigned(int4, int4));
			}
			else
#endif
			{
				*this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000))));
			}
		}
		else
		{
			*this = Short4(Int4(cast));
		}
	}

	UShort4::UShort4(unsigned short xyzw)
	{
		int64_t constantVector[4] = {xyzw, xyzw, xyzw, xyzw};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	UShort4::UShort4(unsigned short x, unsigned short y, unsigned short z, unsigned short w)
	{
		int64_t constantVector[4] = {x, y, z, w};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	UShort4::UShort4(RValue<UShort4> rhs)
	{
		storeValue(rhs.value);
	}

	UShort4::UShort4(const UShort4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UShort4::UShort4(const Reference<UShort4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UShort4::UShort4(RValue<Short4> rhs)
	{
		storeValue(rhs.value);
	}

	UShort4::UShort4(const Short4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UShort4::UShort4(const Reference<Short4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<UShort4> UShort4::operator=(RValue<UShort4> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<UShort4> UShort4::operator=(const UShort4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UShort4>(value);
	}

	RValue<UShort4> UShort4::operator=(const Reference<UShort4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UShort4>(value);
	}

	RValue<UShort4> UShort4::operator=(RValue<Short4> rhs)
	{
		storeValue(rhs.value);

		return RValue<UShort4>(rhs);
	}

	RValue<UShort4> UShort4::operator=(const Short4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UShort4>(value);
	}

	RValue<UShort4> UShort4::operator=(const Reference<Short4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UShort4>(value);
	}

	RValue<UShort4> operator+(RValue<UShort4> lhs, RValue<UShort4> rhs)
	{
		return RValue<UShort4>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<UShort4> operator-(RValue<UShort4> lhs, RValue<UShort4> rhs)
	{
		return RValue<UShort4>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<UShort4> operator*(RValue<UShort4> lhs, RValue<UShort4> rhs)
	{
		return RValue<UShort4>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<UShort4> operator&(RValue<UShort4> lhs, RValue<UShort4> rhs)
	{
		return RValue<UShort4>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<UShort4> operator|(RValue<UShort4> lhs, RValue<UShort4> rhs)
	{
		return RValue<UShort4>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<UShort4> operator^(RValue<UShort4> lhs, RValue<UShort4> rhs)
	{
		return RValue<UShort4>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
	//	return RValue<Short4>(Nucleus::createShl(lhs.value, rhs.value));

		return As<UShort4>(x86::psllw(As<Short4>(lhs), rhs));
#else
		return As<UShort4>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
	}

	RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
	//	return RValue<Short4>(Nucleus::createLShr(lhs.value, rhs.value));

		return x86::psrlw(lhs, rhs);
#else
		return As<UShort4>(V(lowerVectorLShr(V(lhs.value), rhs)));
#endif
	}

	RValue<UShort4> operator<<=(UShort4 &lhs, unsigned char rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<UShort4> operator>>=(UShort4 &lhs, unsigned char rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<UShort4> operator~(RValue<UShort4> val)
	{
		return RValue<UShort4>(Nucleus::createNot(val.value));
	}

	RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y)
	{
		return RValue<UShort4>(Max(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u));
	}

	RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y)
	{
		return RValue<UShort4>(Min(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u));
	}

	RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::paddusw(x, y);
#else
		return As<UShort4>(V(lowerPUADDSAT(V(x.value), V(y.value))));
#endif
	}

	RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psubusw(x, y);
#else
		return As<UShort4>(V(lowerPUSUBSAT(V(x.value), V(y.value))));
#endif
	}

	RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmulhuw(x, y);
#else
		return As<UShort4>(V(lowerMulHigh(V(x.value), V(y.value), false)));
#endif
	}

	RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pavgw(x, y);
#else
		return As<UShort4>(V(lowerPAVG(V(x.value), V(y.value))));
#endif
	}

	Type *UShort4::getType()
	{
		return T(Type_v4i16);
	}

	Short8::Short8(short c)
	{
		int64_t constantVector[8] = {c, c, c, c, c, c, c, c};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	Short8::Short8(short c0, short c1, short c2, short c3, short c4, short c5, short c6, short c7)
	{
		int64_t constantVector[8] = {c0, c1, c2, c3, c4, c5, c6, c7};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	Short8::Short8(RValue<Short8> rhs)
	{
		storeValue(rhs.value);
	}

	Short8::Short8(const Reference<Short8> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Short8::Short8(RValue<Short4> lo, RValue<Short4> hi)
	{
		int shuffle[8] = {0, 1, 2, 3, 8, 9, 10, 11};   // Real type is v8i16
		Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle);

		storeValue(packed);
	}

	RValue<Short8> operator+(RValue<Short8> lhs, RValue<Short8> rhs)
	{
		return RValue<Short8>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Short8> operator&(RValue<Short8> lhs, RValue<Short8> rhs)
	{
		return RValue<Short8>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psllw(lhs, rhs);
#else
		return As<Short8>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
	}

	RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psraw(lhs, rhs);
#else
		return As<Short8>(V(lowerVectorAShr(V(lhs.value), rhs)));
#endif
	}

	RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmaddwd(x, y);
#else
		return As<Int4>(V(lowerMulAdd(V(x.value), V(y.value))));
#endif
	}

	RValue<Int4> Abs(RValue<Int4> x)
	{
		auto negative = x >> 31;
		return (x ^ negative) - negative;
	}

	RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmulhw(x, y);
#else
		return As<Short8>(V(lowerMulHigh(V(x.value), V(y.value), true)));
#endif
	}

	Type *Short8::getType()
	{
		return T(llvm::VectorType::get(T(Short::getType()), 8));
	}

	UShort8::UShort8(unsigned short c)
	{
		int64_t constantVector[8] = {c, c, c, c, c, c, c, c};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	UShort8::UShort8(unsigned short c0, unsigned short c1, unsigned short c2, unsigned short c3, unsigned short c4, unsigned short c5, unsigned short c6, unsigned short c7)
	{
		int64_t constantVector[8] = {c0, c1, c2, c3, c4, c5, c6, c7};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	UShort8::UShort8(RValue<UShort8> rhs)
	{
		storeValue(rhs.value);
	}

	UShort8::UShort8(const Reference<UShort8> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UShort8::UShort8(RValue<UShort4> lo, RValue<UShort4> hi)
	{
		int shuffle[8] = {0, 1, 2, 3, 8, 9, 10, 11};   // Real type is v8i16
		Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle);

		storeValue(packed);
	}

	RValue<UShort8> UShort8::operator=(RValue<UShort8> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<UShort8> UShort8::operator=(const UShort8 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UShort8>(value);
	}

	RValue<UShort8> UShort8::operator=(const Reference<UShort8> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UShort8>(value);
	}

	RValue<UShort8> operator&(RValue<UShort8> lhs, RValue<UShort8> rhs)
	{
		return RValue<UShort8>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return As<UShort8>(x86::psllw(As<Short8>(lhs), rhs));
#else
		return As<UShort8>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
	}

	RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psrlw(lhs, rhs);   // FIXME: Fallback required
#else
		return As<UShort8>(V(lowerVectorLShr(V(lhs.value), rhs)));
#endif
	}

	RValue<UShort8> operator+(RValue<UShort8> lhs, RValue<UShort8> rhs)
	{
		return RValue<UShort8>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<UShort8> operator*(RValue<UShort8> lhs, RValue<UShort8> rhs)
	{
		return RValue<UShort8>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<UShort8> operator+=(UShort8 &lhs, RValue<UShort8> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<UShort8> operator~(RValue<UShort8> val)
	{
		return RValue<UShort8>(Nucleus::createNot(val.value));
	}

	RValue<UShort8> Swizzle(RValue<UShort8> x, char select0, char select1, char select2, char select3, char select4, char select5, char select6, char select7)
	{
		int pshufb[16] =
		{
			select0 + 0,
			select0 + 1,
			select1 + 0,
			select1 + 1,
			select2 + 0,
			select2 + 1,
			select3 + 0,
			select3 + 1,
			select4 + 0,
			select4 + 1,
			select5 + 0,
			select5 + 1,
			select6 + 0,
			select6 + 1,
			select7 + 0,
			select7 + 1,
		};

		Value *byte16 = Nucleus::createBitCast(x.value, Byte16::getType());
		Value *shuffle = Nucleus::createShuffleVector(byte16, byte16, pshufb);
		Value *short8 = Nucleus::createBitCast(shuffle, UShort8::getType());

		return RValue<UShort8>(short8);
	}

	RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pmulhuw(x, y);
#else
		return As<UShort8>(V(lowerMulHigh(V(x.value), V(y.value), false)));
#endif
	}

	Type *UShort8::getType()
	{
		return T(llvm::VectorType::get(T(UShort::getType()), 8));
	}

	Int::Int(Argument<Int> argument)
	{
		storeValue(argument.value);
	}

	Int::Int(RValue<Byte> cast)
	{
		Value *integer = Nucleus::createZExt(cast.value, Int::getType());

		storeValue(integer);
	}

	Int::Int(RValue<SByte> cast)
	{
		Value *integer = Nucleus::createSExt(cast.value, Int::getType());

		storeValue(integer);
	}

	Int::Int(RValue<Short> cast)
	{
		Value *integer = Nucleus::createSExt(cast.value, Int::getType());

		storeValue(integer);
	}

	Int::Int(RValue<UShort> cast)
	{
		Value *integer = Nucleus::createZExt(cast.value, Int::getType());

		storeValue(integer);
	}

	Int::Int(RValue<Int2> cast)
	{
		*this = Extract(cast, 0);
	}

	Int::Int(RValue<Long> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, Int::getType());

		storeValue(integer);
	}

	Int::Int(RValue<Float> cast)
	{
		Value *integer = Nucleus::createFPToSI(cast.value, Int::getType());

		storeValue(integer);
	}

	Int::Int(int x)
	{
		storeValue(Nucleus::createConstantInt(x));
	}

	Int::Int(RValue<Int> rhs)
	{
		storeValue(rhs.value);
	}

	Int::Int(RValue<UInt> rhs)
	{
		storeValue(rhs.value);
	}

	Int::Int(const Int &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int::Int(const Reference<Int> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int::Int(const UInt &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int::Int(const Reference<UInt> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<Int> Int::operator=(int rhs)
	{
		return RValue<Int>(storeValue(Nucleus::createConstantInt(rhs)));
	}

	RValue<Int> Int::operator=(RValue<Int> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Int> Int::operator=(RValue<UInt> rhs)
	{
		storeValue(rhs.value);

		return RValue<Int>(rhs);
	}

	RValue<Int> Int::operator=(const Int &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Int>(value);
	}

	RValue<Int> Int::operator=(const Reference<Int> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Int>(value);
	}

	RValue<Int> Int::operator=(const UInt &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Int>(value);
	}

	RValue<Int> Int::operator=(const Reference<UInt> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Int>(value);
	}

	RValue<Int> operator+(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Int> operator-(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<Int> operator*(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<Int> operator/(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createSDiv(lhs.value, rhs.value));
	}

	RValue<Int> operator%(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createSRem(lhs.value, rhs.value));
	}

	RValue<Int> operator&(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Int> operator|(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<Int> operator^(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<Int> operator<<(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createShl(lhs.value, rhs.value));
	}

	RValue<Int> operator>>(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Int>(Nucleus::createAShr(lhs.value, rhs.value));
	}

	RValue<Int> operator+=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Int> operator-=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<Int> operator*=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs * rhs;
	}

	RValue<Int> operator/=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs / rhs;
	}

	RValue<Int> operator%=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs % rhs;
	}

	RValue<Int> operator&=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<Int> operator|=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<Int> operator^=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<Int> operator<<=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<Int> operator>>=(Int &lhs, RValue<Int> rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<Int> operator+(RValue<Int> val)
	{
		return val;
	}

	RValue<Int> operator-(RValue<Int> val)
	{
		return RValue<Int>(Nucleus::createNeg(val.value));
	}

	RValue<Int> operator~(RValue<Int> val)
	{
		return RValue<Int>(Nucleus::createNot(val.value));
	}

	RValue<Int> operator++(Int &val, int)   // Post-increment
	{
		RValue<Int> res = val;

		Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantInt(1));
		val.storeValue(inc);

		return res;
	}

	const Int &operator++(Int &val)   // Pre-increment
	{
		Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1));
		val.storeValue(inc);

		return val;
	}

	RValue<Int> operator--(Int &val, int)   // Post-decrement
	{
		RValue<Int> res = val;

		Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantInt(1));
		val.storeValue(inc);

		return res;
	}

	const Int &operator--(Int &val)   // Pre-decrement
	{
		Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1));
		val.storeValue(inc);

		return val;
	}

	RValue<Bool> operator<(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value));
	}

	RValue<Bool> operator<=(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value));
	}

	RValue<Bool> operator>(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value));
	}

	RValue<Bool> operator>=(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value));
	}

	RValue<Bool> operator!=(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
	}

	RValue<Bool> operator==(RValue<Int> lhs, RValue<Int> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
	}

	RValue<Int> Max(RValue<Int> x, RValue<Int> y)
	{
		return IfThenElse(x > y, x, y);
	}

	RValue<Int> Min(RValue<Int> x, RValue<Int> y)
	{
		return IfThenElse(x < y, x, y);
	}

	RValue<Int> Clamp(RValue<Int> x, RValue<Int> min, RValue<Int> max)
	{
		return Min(Max(x, min), max);
	}

	RValue<Int> RoundInt(RValue<Float> cast)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::cvtss2si(cast);
#else
		return RValue<Int>(V(lowerRoundInt(V(cast.value), T(Int::getType()))));
#endif
	}

	Type *Int::getType()
	{
		return T(llvm::Type::getInt32Ty(*::context));
	}

	Long::Long(RValue<Int> cast)
	{
		Value *integer = Nucleus::createSExt(cast.value, Long::getType());

		storeValue(integer);
	}

	Long::Long(RValue<UInt> cast)
	{
		Value *integer = Nucleus::createZExt(cast.value, Long::getType());

		storeValue(integer);
	}

	Long::Long(RValue<Long> rhs)
	{
		storeValue(rhs.value);
	}

	RValue<Long> Long::operator=(int64_t rhs)
	{
		return RValue<Long>(storeValue(Nucleus::createConstantLong(rhs)));
	}

	RValue<Long> Long::operator=(RValue<Long> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Long> Long::operator=(const Long &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Long>(value);
	}

	RValue<Long> Long::operator=(const Reference<Long> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Long>(value);
	}

	RValue<Long> operator+(RValue<Long> lhs, RValue<Long> rhs)
	{
		return RValue<Long>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Long> operator-(RValue<Long> lhs, RValue<Long> rhs)
	{
		return RValue<Long>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<Long> operator+=(Long &lhs, RValue<Long> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Long> operator-=(Long &lhs, RValue<Long> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<Long> AddAtomic(RValue<Pointer<Long> > x, RValue<Long> y)
	{
		return RValue<Long>(Nucleus::createAtomicAdd(x.value, y.value));
	}

	Type *Long::getType()
	{
		return T(llvm::Type::getInt64Ty(*::context));
	}

	UInt::UInt(Argument<UInt> argument)
	{
		storeValue(argument.value);
	}

	UInt::UInt(RValue<UShort> cast)
	{
		Value *integer = Nucleus::createZExt(cast.value, UInt::getType());

		storeValue(integer);
	}

	UInt::UInt(RValue<Long> cast)
	{
		Value *integer = Nucleus::createTrunc(cast.value, UInt::getType());

		storeValue(integer);
	}

	UInt::UInt(RValue<Float> cast)
	{
		// Note: createFPToUI is broken, must perform conversion using createFPtoSI
		// Value *integer = Nucleus::createFPToUI(cast.value, UInt::getType());

		// Smallest positive value representable in UInt, but not in Int
		const unsigned int ustart = 0x80000000u;
		const float ustartf = float(ustart);

		// If the value is negative, store 0, otherwise store the result of the conversion
		storeValue((~(As<Int>(cast) >> 31) &
		// Check if the value can be represented as an Int
			IfThenElse(cast >= ustartf,
		// If the value is too large, subtract ustart and re-add it after conversion.
				As<Int>(As<UInt>(Int(cast - Float(ustartf))) + UInt(ustart)),
		// Otherwise, just convert normally
				Int(cast))).value);
	}

	UInt::UInt(int x)
	{
		storeValue(Nucleus::createConstantInt(x));
	}

	UInt::UInt(unsigned int x)
	{
		storeValue(Nucleus::createConstantInt(x));
	}

	UInt::UInt(RValue<UInt> rhs)
	{
		storeValue(rhs.value);
	}

	UInt::UInt(RValue<Int> rhs)
	{
		storeValue(rhs.value);
	}

	UInt::UInt(const UInt &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UInt::UInt(const Reference<UInt> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UInt::UInt(const Int &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UInt::UInt(const Reference<Int> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<UInt> UInt::operator=(unsigned int rhs)
	{
		return RValue<UInt>(storeValue(Nucleus::createConstantInt(rhs)));
	}

	RValue<UInt> UInt::operator=(RValue<UInt> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<UInt> UInt::operator=(RValue<Int> rhs)
	{
		storeValue(rhs.value);

		return RValue<UInt>(rhs);
	}

	RValue<UInt> UInt::operator=(const UInt &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UInt>(value);
	}

	RValue<UInt> UInt::operator=(const Reference<UInt> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UInt>(value);
	}

	RValue<UInt> UInt::operator=(const Int &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UInt>(value);
	}

	RValue<UInt> UInt::operator=(const Reference<Int> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UInt>(value);
	}

	RValue<UInt> operator+(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<UInt> operator-(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<UInt> operator*(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<UInt> operator/(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createUDiv(lhs.value, rhs.value));
	}

	RValue<UInt> operator%(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createURem(lhs.value, rhs.value));
	}

	RValue<UInt> operator&(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<UInt> operator|(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<UInt> operator^(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<UInt> operator<<(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createShl(lhs.value, rhs.value));
	}

	RValue<UInt> operator>>(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<UInt>(Nucleus::createLShr(lhs.value, rhs.value));
	}

	RValue<UInt> operator+=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<UInt> operator-=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<UInt> operator*=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs * rhs;
	}

	RValue<UInt> operator/=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs / rhs;
	}

	RValue<UInt> operator%=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs % rhs;
	}

	RValue<UInt> operator&=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<UInt> operator|=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<UInt> operator^=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<UInt> operator<<=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<UInt> operator>>=(UInt &lhs, RValue<UInt> rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<UInt> operator+(RValue<UInt> val)
	{
		return val;
	}

	RValue<UInt> operator-(RValue<UInt> val)
	{
		return RValue<UInt>(Nucleus::createNeg(val.value));
	}

	RValue<UInt> operator~(RValue<UInt> val)
	{
		return RValue<UInt>(Nucleus::createNot(val.value));
	}

	RValue<UInt> operator++(UInt &val, int)   // Post-increment
	{
		RValue<UInt> res = val;

		Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantInt(1));
		val.storeValue(inc);

		return res;
	}

	const UInt &operator++(UInt &val)   // Pre-increment
	{
		Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1));
		val.storeValue(inc);

		return val;
	}

	RValue<UInt> operator--(UInt &val, int)   // Post-decrement
	{
		RValue<UInt> res = val;

		Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantInt(1));
		val.storeValue(inc);

		return res;
	}

	const UInt &operator--(UInt &val)   // Pre-decrement
	{
		Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1));
		val.storeValue(inc);

		return val;
	}

	RValue<UInt> Max(RValue<UInt> x, RValue<UInt> y)
	{
		return IfThenElse(x > y, x, y);
	}

	RValue<UInt> Min(RValue<UInt> x, RValue<UInt> y)
	{
		return IfThenElse(x < y, x, y);
	}

	RValue<UInt> Clamp(RValue<UInt> x, RValue<UInt> min, RValue<UInt> max)
	{
		return Min(Max(x, min), max);
	}

	RValue<Bool> operator<(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value));
	}

	RValue<Bool> operator<=(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value));
	}

	RValue<Bool> operator>(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value));
	}

	RValue<Bool> operator>=(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value));
	}

	RValue<Bool> operator!=(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value));
	}

	RValue<Bool> operator==(RValue<UInt> lhs, RValue<UInt> rhs)
	{
		return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value));
	}

//	RValue<UInt> RoundUInt(RValue<Float> cast)
//	{
//#if defined(__i386__) || defined(__x86_64__)
//		return x86::cvtss2si(val);   // FIXME: Unsigned
//#else
//		return IfThenElse(cast > 0.0f, Int(cast + 0.5f), Int(cast - 0.5f));
//#endif
//	}

	Type *UInt::getType()
	{
		return T(llvm::Type::getInt32Ty(*::context));
	}

//	Int2::Int2(RValue<Int> cast)
//	{
//		Value *extend = Nucleus::createZExt(cast.value, Long::getType());
//		Value *vector = Nucleus::createBitCast(extend, Int2::getType());
//
//		int shuffle[2] = {0, 0};
//		Value *replicate = Nucleus::createShuffleVector(vector, vector, shuffle);
//
//		storeValue(replicate);
//	}

	Int2::Int2(RValue<Int4> cast)
	{
		storeValue(Nucleus::createBitCast(cast.value, getType()));
	}

	Int2::Int2(int x, int y)
	{
		int64_t constantVector[2] = {x, y};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	Int2::Int2(RValue<Int2> rhs)
	{
		storeValue(rhs.value);
	}

	Int2::Int2(const Int2 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int2::Int2(const Reference<Int2> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int2::Int2(RValue<Int> lo, RValue<Int> hi)
	{
		int shuffle[4] = {0, 4, 1, 5};
		Value *packed = Nucleus::createShuffleVector(Int4(lo).loadValue(), Int4(hi).loadValue(), shuffle);

		storeValue(Nucleus::createBitCast(packed, Int2::getType()));
	}

	RValue<Int2> Int2::operator=(RValue<Int2> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Int2> Int2::operator=(const Int2 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Int2>(value);
	}

	RValue<Int2> Int2::operator=(const Reference<Int2> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Int2>(value);
	}

	RValue<Int2> operator+(RValue<Int2> lhs, RValue<Int2> rhs)
	{
		return RValue<Int2>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Int2> operator-(RValue<Int2> lhs, RValue<Int2> rhs)
	{
		return RValue<Int2>(Nucleus::createSub(lhs.value, rhs.value));
	}

//	RValue<Int2> operator*(RValue<Int2> lhs, RValue<Int2> rhs)
//	{
//		return RValue<Int2>(Nucleus::createMul(lhs.value, rhs.value));
//	}

//	RValue<Int2> operator/(RValue<Int2> lhs, RValue<Int2> rhs)
//	{
//		return RValue<Int2>(Nucleus::createSDiv(lhs.value, rhs.value));
//	}

//	RValue<Int2> operator%(RValue<Int2> lhs, RValue<Int2> rhs)
//	{
//		return RValue<Int2>(Nucleus::createSRem(lhs.value, rhs.value));
//	}

	RValue<Int2> operator&(RValue<Int2> lhs, RValue<Int2> rhs)
	{
		return RValue<Int2>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Int2> operator|(RValue<Int2> lhs, RValue<Int2> rhs)
	{
		return RValue<Int2>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<Int2> operator^(RValue<Int2> lhs, RValue<Int2> rhs)
	{
		return RValue<Int2>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
	//	return RValue<Int2>(Nucleus::createShl(lhs.value, rhs.value));

		return x86::pslld(lhs, rhs);
#else
		return As<Int2>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
	}

	RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
	//	return RValue<Int2>(Nucleus::createAShr(lhs.value, rhs.value));

		return x86::psrad(lhs, rhs);
#else
		return As<Int2>(V(lowerVectorAShr(V(lhs.value), rhs)));
#endif
	}

	RValue<Int2> operator+=(Int2 &lhs, RValue<Int2> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Int2> operator-=(Int2 &lhs, RValue<Int2> rhs)
	{
		return lhs = lhs - rhs;
	}

//	RValue<Int2> operator*=(Int2 &lhs, RValue<Int2> rhs)
//	{
//		return lhs = lhs * rhs;
//	}

//	RValue<Int2> operator/=(Int2 &lhs, RValue<Int2> rhs)
//	{
//		return lhs = lhs / rhs;
//	}

//	RValue<Int2> operator%=(Int2 &lhs, RValue<Int2> rhs)
//	{
//		return lhs = lhs % rhs;
//	}

	RValue<Int2> operator&=(Int2 &lhs, RValue<Int2> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<Int2> operator|=(Int2 &lhs, RValue<Int2> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<Int2> operator^=(Int2 &lhs, RValue<Int2> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<Int2> operator<<=(Int2 &lhs, unsigned char rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<Int2> operator>>=(Int2 &lhs, unsigned char rhs)
	{
		return lhs = lhs >> rhs;
	}

//	RValue<Int2> operator+(RValue<Int2> val)
//	{
//		return val;
//	}

//	RValue<Int2> operator-(RValue<Int2> val)
//	{
//		return RValue<Int2>(Nucleus::createNeg(val.value));
//	}

	RValue<Int2> operator~(RValue<Int2> val)
	{
		return RValue<Int2>(Nucleus::createNot(val.value));
	}

	RValue<Short4> UnpackLow(RValue<Int2> x, RValue<Int2> y)
	{
		int shuffle[4] = {0, 4, 1, 5};   // Real type is v4i32
		return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
	}

	RValue<Short4> UnpackHigh(RValue<Int2> x, RValue<Int2> y)
	{
		int shuffle[4] = {0, 4, 1, 5};   // Real type is v4i32
		auto lowHigh = RValue<Int4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
		return As<Short4>(Swizzle(lowHigh, 0xEE));
	}

	RValue<Int> Extract(RValue<Int2> val, int i)
	{
		return RValue<Int>(Nucleus::createExtractElement(val.value, Int::getType(), i));
	}

	RValue<Int2> Insert(RValue<Int2> val, RValue<Int> element, int i)
	{
		return RValue<Int2>(Nucleus::createInsertElement(val.value, element.value, i));
	}

	Type *Int2::getType()
	{
		return T(Type_v2i32);
	}

	UInt2::UInt2(unsigned int x, unsigned int y)
	{
		int64_t constantVector[2] = {x, y};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	UInt2::UInt2(RValue<UInt2> rhs)
	{
		storeValue(rhs.value);
	}

	UInt2::UInt2(const UInt2 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UInt2::UInt2(const Reference<UInt2> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<UInt2> UInt2::operator=(RValue<UInt2> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<UInt2> UInt2::operator=(const UInt2 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UInt2>(value);
	}

	RValue<UInt2> UInt2::operator=(const Reference<UInt2> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UInt2>(value);
	}

	RValue<UInt2> operator+(RValue<UInt2> lhs, RValue<UInt2> rhs)
	{
		return RValue<UInt2>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<UInt2> operator-(RValue<UInt2> lhs, RValue<UInt2> rhs)
	{
		return RValue<UInt2>(Nucleus::createSub(lhs.value, rhs.value));
	}

//	RValue<UInt2> operator*(RValue<UInt2> lhs, RValue<UInt2> rhs)
//	{
//		return RValue<UInt2>(Nucleus::createMul(lhs.value, rhs.value));
//	}

//	RValue<UInt2> operator/(RValue<UInt2> lhs, RValue<UInt2> rhs)
//	{
//		return RValue<UInt2>(Nucleus::createUDiv(lhs.value, rhs.value));
//	}

//	RValue<UInt2> operator%(RValue<UInt2> lhs, RValue<UInt2> rhs)
//	{
//		return RValue<UInt2>(Nucleus::createURem(lhs.value, rhs.value));
//	}

	RValue<UInt2> operator&(RValue<UInt2> lhs, RValue<UInt2> rhs)
	{
		return RValue<UInt2>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<UInt2> operator|(RValue<UInt2> lhs, RValue<UInt2> rhs)
	{
		return RValue<UInt2>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<UInt2> operator^(RValue<UInt2> lhs, RValue<UInt2> rhs)
	{
		return RValue<UInt2>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
	//	return RValue<UInt2>(Nucleus::createShl(lhs.value, rhs.value));

		return As<UInt2>(x86::pslld(As<Int2>(lhs), rhs));
#else
		return As<UInt2>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
	}

	RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
	//	return RValue<UInt2>(Nucleus::createLShr(lhs.value, rhs.value));

		return x86::psrld(lhs, rhs);
#else
		return As<UInt2>(V(lowerVectorLShr(V(lhs.value), rhs)));
#endif
	}

	RValue<UInt2> operator+=(UInt2 &lhs, RValue<UInt2> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<UInt2> operator-=(UInt2 &lhs, RValue<UInt2> rhs)
	{
		return lhs = lhs - rhs;
	}

//	RValue<UInt2> operator*=(UInt2 &lhs, RValue<UInt2> rhs)
//	{
//		return lhs = lhs * rhs;
//	}

//	RValue<UInt2> operator/=(UInt2 &lhs, RValue<UInt2> rhs)
//	{
//		return lhs = lhs / rhs;
//	}

//	RValue<UInt2> operator%=(UInt2 &lhs, RValue<UInt2> rhs)
//	{
//		return lhs = lhs % rhs;
//	}

	RValue<UInt2> operator&=(UInt2 &lhs, RValue<UInt2> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<UInt2> operator|=(UInt2 &lhs, RValue<UInt2> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<UInt2> operator^=(UInt2 &lhs, RValue<UInt2> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<UInt2> operator<<=(UInt2 &lhs, unsigned char rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<UInt2> operator>>=(UInt2 &lhs, unsigned char rhs)
	{
		return lhs = lhs >> rhs;
	}

//	RValue<UInt2> operator+(RValue<UInt2> val)
//	{
//		return val;
//	}

//	RValue<UInt2> operator-(RValue<UInt2> val)
//	{
//		return RValue<UInt2>(Nucleus::createNeg(val.value));
//	}

	RValue<UInt2> operator~(RValue<UInt2> val)
	{
		return RValue<UInt2>(Nucleus::createNot(val.value));
	}

	Type *UInt2::getType()
	{
		return T(Type_v2i32);
	}

	Int4::Int4() : XYZW(this)
	{
	}

	Int4::Int4(RValue<Byte4> cast) : XYZW(this)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			*this = x86::pmovzxbd(As<Byte16>(cast));
		}
		else
#endif
		{
			int swizzle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23};
			Value *a = Nucleus::createBitCast(cast.value, Byte16::getType());
			Value *b = Nucleus::createShuffleVector(a, Nucleus::createNullValue(Byte16::getType()), swizzle);

			int swizzle2[8] = {0, 8, 1, 9, 2, 10, 3, 11};
			Value *c = Nucleus::createBitCast(b, Short8::getType());
			Value *d = Nucleus::createShuffleVector(c, Nucleus::createNullValue(Short8::getType()), swizzle2);

			*this = As<Int4>(d);
		}
	}

	Int4::Int4(RValue<SByte4> cast) : XYZW(this)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			*this = x86::pmovsxbd(As<SByte16>(cast));
		}
		else
#endif
		{
			int swizzle[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7};
			Value *a = Nucleus::createBitCast(cast.value, Byte16::getType());
			Value *b = Nucleus::createShuffleVector(a, a, swizzle);

			int swizzle2[8] = {0, 0, 1, 1, 2, 2, 3, 3};
			Value *c = Nucleus::createBitCast(b, Short8::getType());
			Value *d = Nucleus::createShuffleVector(c, c, swizzle2);

			*this = As<Int4>(d) >> 24;
		}
	}

	Int4::Int4(RValue<Float4> cast) : XYZW(this)
	{
		Value *xyzw = Nucleus::createFPToSI(cast.value, Int4::getType());

		storeValue(xyzw);
	}

	Int4::Int4(RValue<Short4> cast) : XYZW(this)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			*this = x86::pmovsxwd(As<Short8>(cast));
		}
		else
#endif
		{
			int swizzle[8] = {0, 0, 1, 1, 2, 2, 3, 3};
			Value *c = Nucleus::createShuffleVector(cast.value, cast.value, swizzle);
			*this = As<Int4>(c) >> 16;
		}
	}

	Int4::Int4(RValue<UShort4> cast) : XYZW(this)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			*this = x86::pmovzxwd(As<UShort8>(cast));
		}
		else
#endif
		{
			int swizzle[8] = {0, 8, 1, 9, 2, 10, 3, 11};
			Value *c = Nucleus::createShuffleVector(cast.value, Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle);
			*this = As<Int4>(c);
		}
	}

	Int4::Int4(int xyzw) : XYZW(this)
	{
		constant(xyzw, xyzw, xyzw, xyzw);
	}

	Int4::Int4(int x, int yzw) : XYZW(this)
	{
		constant(x, yzw, yzw, yzw);
	}

	Int4::Int4(int x, int y, int zw) : XYZW(this)
	{
		constant(x, y, zw, zw);
	}

	Int4::Int4(int x, int y, int z, int w) : XYZW(this)
	{
		constant(x, y, z, w);
	}

	void Int4::constant(int x, int y, int z, int w)
	{
		int64_t constantVector[4] = {x, y, z, w};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	Int4::Int4(RValue<Int4> rhs) : XYZW(this)
	{
		storeValue(rhs.value);
	}

	Int4::Int4(const Int4 &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int4::Int4(const Reference<Int4> &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int4::Int4(RValue<UInt4> rhs) : XYZW(this)
	{
		storeValue(rhs.value);
	}

	Int4::Int4(const UInt4 &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int4::Int4(const Reference<UInt4> &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Int4::Int4(RValue<Int2> lo, RValue<Int2> hi) : XYZW(this)
	{
		int shuffle[4] = {0, 1, 4, 5};   // Real type is v4i32
		Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle);

		storeValue(packed);
	}

	Int4::Int4(RValue<Int> rhs) : XYZW(this)
	{
		Value *vector = loadValue();
		Value *insert = Nucleus::createInsertElement(vector, rhs.value, 0);

		int swizzle[4] = {0, 0, 0, 0};
		Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle);

		storeValue(replicate);
	}

	Int4::Int4(const Int &rhs) : XYZW(this)
	{
		*this = RValue<Int>(rhs.loadValue());
	}

	Int4::Int4(const Reference<Int> &rhs) : XYZW(this)
	{
		*this = RValue<Int>(rhs.loadValue());
	}

	RValue<Int4> Int4::operator=(RValue<Int4> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Int4> Int4::operator=(const Int4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Int4>(value);
	}

	RValue<Int4> Int4::operator=(const Reference<Int4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Int4>(value);
	}

	RValue<Int4> operator+(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<Int4> operator-(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<Int4> operator*(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<Int4> operator/(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createSDiv(lhs.value, rhs.value));
	}

	RValue<Int4> operator%(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createSRem(lhs.value, rhs.value));
	}

	RValue<Int4> operator&(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<Int4> operator|(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<Int4> operator^(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::pslld(lhs, rhs);
#else
		return As<Int4>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
	}

	RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psrad(lhs, rhs);
#else
		return As<Int4>(V(lowerVectorAShr(V(lhs.value), rhs)));
#endif
	}

	RValue<Int4> operator<<(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createShl(lhs.value, rhs.value));
	}

	RValue<Int4> operator>>(RValue<Int4> lhs, RValue<Int4> rhs)
	{
		return RValue<Int4>(Nucleus::createAShr(lhs.value, rhs.value));
	}

	RValue<Int4> operator+=(Int4 &lhs, RValue<Int4> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Int4> operator-=(Int4 &lhs, RValue<Int4> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<Int4> operator*=(Int4 &lhs, RValue<Int4> rhs)
	{
		return lhs = lhs * rhs;
	}

//	RValue<Int4> operator/=(Int4 &lhs, RValue<Int4> rhs)
//	{
//		return lhs = lhs / rhs;
//	}

//	RValue<Int4> operator%=(Int4 &lhs, RValue<Int4> rhs)
//	{
//		return lhs = lhs % rhs;
//	}

	RValue<Int4> operator&=(Int4 &lhs, RValue<Int4> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<Int4> operator|=(Int4 &lhs, RValue<Int4> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<Int4> operator^=(Int4 &lhs, RValue<Int4> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<Int4> operator<<=(Int4 &lhs, unsigned char rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<Int4> operator>>=(Int4 &lhs, unsigned char rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<Int4> operator+(RValue<Int4> val)
	{
		return val;
	}

	RValue<Int4> operator-(RValue<Int4> val)
	{
		return RValue<Int4>(Nucleus::createNeg(val.value));
	}

	RValue<Int4> operator~(RValue<Int4> val)
	{
		return RValue<Int4>(Nucleus::createNot(val.value));
	}

	RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType()));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
	}

	RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLT(x.value, y.value), Int4::getType()));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
	}

	RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLE(x.value, y.value), Int4::getType()));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGT(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
	}

	RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType()));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
	}

	RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGE(x.value, y.value), Int4::getType()));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLT(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
	}

	RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGT(x.value, y.value), Int4::getType()));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF);
	}

	RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::pmaxsd(x, y);
		}
		else
#endif
		{
			RValue<Int4> greater = CmpNLE(x, y);
			return (x & greater) | (y & ~greater);
		}
	}

	RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::pminsd(x, y);
		}
		else
#endif
		{
			RValue<Int4> less = CmpLT(x, y);
			return (x & less) | (y & ~less);
		}
	}

	RValue<Int4> RoundInt(RValue<Float4> cast)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::cvtps2dq(cast);
#else
		return As<Int4>(V(lowerRoundInt(V(cast.value), T(Int4::getType()))));
#endif
	}

	RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::packssdw(x, y);
#else
		return As<Short8>(V(lowerPack(V(x.value), V(y.value), true)));
#endif
	}

	RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::packusdw(x, y);
#else
		return As<UShort8>(V(lowerPack(V(x.value), V(y.value), false)));
#endif
	}

	RValue<Int> Extract(RValue<Int4> x, int i)
	{
		return RValue<Int>(Nucleus::createExtractElement(x.value, Int::getType(), i));
	}

	RValue<Int4> Insert(RValue<Int4> x, RValue<Int> element, int i)
	{
		return RValue<Int4>(Nucleus::createInsertElement(x.value, element.value, i));
	}

	RValue<Int> SignMask(RValue<Int4> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::movmskps(As<Float4>(x));
#else
		return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType()))));
#endif
	}

	RValue<Int4> Swizzle(RValue<Int4> x, unsigned char select)
	{
		return RValue<Int4>(createSwizzle4(x.value, select));
	}

	Type *Int4::getType()
	{
		return T(llvm::VectorType::get(T(Int::getType()), 4));
	}

	UInt4::UInt4() : XYZW(this)
	{
	}

	UInt4::UInt4(RValue<Float4> cast) : XYZW(this)
	{
		// Note: createFPToUI is broken, must perform conversion using createFPtoSI
		// Value *xyzw = Nucleus::createFPToUI(cast.value, UInt4::getType());

		// Smallest positive value representable in UInt, but not in Int
		const unsigned int ustart = 0x80000000u;
		const float ustartf = float(ustart);

		// Check if the value can be represented as an Int
		Int4 uiValue = CmpNLT(cast, Float4(ustartf));
		// If the value is too large, subtract ustart and re-add it after conversion.
		uiValue = (uiValue & As<Int4>(As<UInt4>(Int4(cast - Float4(ustartf))) + UInt4(ustart))) |
		// Otherwise, just convert normally
		          (~uiValue & Int4(cast));
		// If the value is negative, store 0, otherwise store the result of the conversion
		storeValue((~(As<Int4>(cast) >> 31) & uiValue).value);
	}

	UInt4::UInt4(int xyzw) : XYZW(this)
	{
		constant(xyzw, xyzw, xyzw, xyzw);
	}

	UInt4::UInt4(int x, int yzw) : XYZW(this)
	{
		constant(x, yzw, yzw, yzw);
	}

	UInt4::UInt4(int x, int y, int zw) : XYZW(this)
	{
		constant(x, y, zw, zw);
	}

	UInt4::UInt4(int x, int y, int z, int w) : XYZW(this)
	{
		constant(x, y, z, w);
	}

	void UInt4::constant(int x, int y, int z, int w)
	{
		int64_t constantVector[4] = {x, y, z, w};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	UInt4::UInt4(RValue<UInt4> rhs) : XYZW(this)
	{
		storeValue(rhs.value);
	}

	UInt4::UInt4(const UInt4 &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UInt4::UInt4(const Reference<UInt4> &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UInt4::UInt4(RValue<Int4> rhs) : XYZW(this)
	{
		storeValue(rhs.value);
	}

	UInt4::UInt4(const Int4 &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UInt4::UInt4(const Reference<Int4> &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	UInt4::UInt4(RValue<UInt2> lo, RValue<UInt2> hi) : XYZW(this)
	{
		int shuffle[4] = {0, 1, 4, 5};   // Real type is v4i32
		Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle);

		storeValue(packed);
	}

	RValue<UInt4> UInt4::operator=(RValue<UInt4> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<UInt4> UInt4::operator=(const UInt4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UInt4>(value);
	}

	RValue<UInt4> UInt4::operator=(const Reference<UInt4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<UInt4>(value);
	}

	RValue<UInt4> operator+(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createAdd(lhs.value, rhs.value));
	}

	RValue<UInt4> operator-(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createSub(lhs.value, rhs.value));
	}

	RValue<UInt4> operator*(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createMul(lhs.value, rhs.value));
	}

	RValue<UInt4> operator/(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createUDiv(lhs.value, rhs.value));
	}

	RValue<UInt4> operator%(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createURem(lhs.value, rhs.value));
	}

	RValue<UInt4> operator&(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createAnd(lhs.value, rhs.value));
	}

	RValue<UInt4> operator|(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createOr(lhs.value, rhs.value));
	}

	RValue<UInt4> operator^(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createXor(lhs.value, rhs.value));
	}

	RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return As<UInt4>(x86::pslld(As<Int4>(lhs), rhs));
#else
		return As<UInt4>(V(lowerVectorShl(V(lhs.value), rhs)));
#endif
	}

	RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::psrld(lhs, rhs);
#else
		return As<UInt4>(V(lowerVectorLShr(V(lhs.value), rhs)));
#endif
	}

	RValue<UInt4> operator<<(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createShl(lhs.value, rhs.value));
	}

	RValue<UInt4> operator>>(RValue<UInt4> lhs, RValue<UInt4> rhs)
	{
		return RValue<UInt4>(Nucleus::createLShr(lhs.value, rhs.value));
	}

	RValue<UInt4> operator+=(UInt4 &lhs, RValue<UInt4> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<UInt4> operator-=(UInt4 &lhs, RValue<UInt4> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<UInt4> operator*=(UInt4 &lhs, RValue<UInt4> rhs)
	{
		return lhs = lhs * rhs;
	}

//	RValue<UInt4> operator/=(UInt4 &lhs, RValue<UInt4> rhs)
//	{
//		return lhs = lhs / rhs;
//	}

//	RValue<UInt4> operator%=(UInt4 &lhs, RValue<UInt4> rhs)
//	{
//		return lhs = lhs % rhs;
//	}

	RValue<UInt4> operator&=(UInt4 &lhs, RValue<UInt4> rhs)
	{
		return lhs = lhs & rhs;
	}

	RValue<UInt4> operator|=(UInt4 &lhs, RValue<UInt4> rhs)
	{
		return lhs = lhs | rhs;
	}

	RValue<UInt4> operator^=(UInt4 &lhs, RValue<UInt4> rhs)
	{
		return lhs = lhs ^ rhs;
	}

	RValue<UInt4> operator<<=(UInt4 &lhs, unsigned char rhs)
	{
		return lhs = lhs << rhs;
	}

	RValue<UInt4> operator>>=(UInt4 &lhs, unsigned char rhs)
	{
		return lhs = lhs >> rhs;
	}

	RValue<UInt4> operator+(RValue<UInt4> val)
	{
		return val;
	}

	RValue<UInt4> operator-(RValue<UInt4> val)
	{
		return RValue<UInt4>(Nucleus::createNeg(val.value));
	}

	RValue<UInt4> operator~(RValue<UInt4> val)
	{
		return RValue<UInt4>(Nucleus::createNot(val.value));
	}

	RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType()));
		return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF);
	}

	RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y)
	{
		return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULT(x.value, y.value), Int4::getType()));
	}

	RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULE(x.value, y.value), Int4::getType()));
		return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGT(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF);
	}

	RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y)
	{
		return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType()));
	}

	RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y)
	{
		// FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0
		//        Restore the following line when LLVM is updated to a version where this issue is fixed.
		// return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGE(x.value, y.value), Int4::getType()));
		return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULT(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF);
	}

	RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y)
	{
		return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGT(x.value, y.value), Int4::getType()));
	}

	RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::pmaxud(x, y);
		}
		else
#endif
		{
			RValue<UInt4> greater = CmpNLE(x, y);
			return (x & greater) | (y & ~greater);
		}
	}

	RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::pminud(x, y);
		}
		else
#endif
		{
			RValue<UInt4> less = CmpLT(x, y);
			return (x & less) | (y & ~less);
		}
	}

	Type *UInt4::getType()
	{
		return T(llvm::VectorType::get(T(UInt::getType()), 4));
	}

	Half::Half(RValue<Float> cast)
	{
		UInt fp32i = As<UInt>(cast);
		UInt abs = fp32i & 0x7FFFFFFF;
		UShort fp16i((fp32i & 0x80000000) >> 16); // sign

		If(abs > 0x47FFEFFF) // Infinity
		{
			fp16i |= UShort(0x7FFF);
		}
		Else
		{
			If(abs < 0x38800000) // Denormal
			{
				Int mantissa = (abs & 0x007FFFFF) | 0x00800000;
				Int e = 113 - (abs >> 23);
				abs = IfThenElse(e < 24, mantissa >> e, Int(0));
				fp16i |= UShort((abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
			}
			Else
			{
				fp16i |= UShort((abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13);
			}
		}

		storeValue(fp16i.loadValue());
	}

	Type *Half::getType()
	{
		return T(llvm::Type::getInt16Ty(*::context));
	}

	Float::Float(RValue<Int> cast)
	{
		Value *integer = Nucleus::createSIToFP(cast.value, Float::getType());

		storeValue(integer);
	}

	Float::Float(RValue<UInt> cast)
	{
		RValue<Float> result = Float(Int(cast & UInt(0x7FFFFFFF))) +
		                       As<Float>((As<Int>(cast) >> 31) & As<Int>(Float(0x80000000u)));

		storeValue(result.value);
	}

	Float::Float(RValue<Half> cast)
	{
		Int fp16i(As<UShort>(cast));

		Int s = (fp16i >> 15) & 0x00000001;
		Int e = (fp16i >> 10) & 0x0000001F;
		Int m = fp16i & 0x000003FF;

		UInt fp32i(s << 31);
		If(e == 0)
		{
			If(m != 0)
			{
				While((m & 0x00000400) == 0)
				{
					m <<= 1;
					e -= 1;
				}

				fp32i |= As<UInt>(((e + (127 - 15) + 1) << 23) | ((m & ~0x00000400) << 13));
			}
		}
		Else
		{
			fp32i |= As<UInt>(((e + (127 - 15)) << 23) | (m << 13));
		}

		storeValue(As<Float>(fp32i).value);
	}

	Float::Float(float x)
	{
		storeValue(Nucleus::createConstantFloat(x));
	}

	Float::Float(RValue<Float> rhs)
	{
		storeValue(rhs.value);
	}

	Float::Float(const Float &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Float::Float(const Reference<Float> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	RValue<Float> Float::operator=(RValue<Float> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Float> Float::operator=(const Float &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Float>(value);
	}

	RValue<Float> Float::operator=(const Reference<Float> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Float>(value);
	}

	RValue<Float> operator+(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Float>(Nucleus::createFAdd(lhs.value, rhs.value));
	}

	RValue<Float> operator-(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Float>(Nucleus::createFSub(lhs.value, rhs.value));
	}

	RValue<Float> operator*(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Float>(Nucleus::createFMul(lhs.value, rhs.value));
	}

	RValue<Float> operator/(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Float>(Nucleus::createFDiv(lhs.value, rhs.value));
	}

	RValue<Float> operator+=(Float &lhs, RValue<Float> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Float> operator-=(Float &lhs, RValue<Float> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<Float> operator*=(Float &lhs, RValue<Float> rhs)
	{
		return lhs = lhs * rhs;
	}

	RValue<Float> operator/=(Float &lhs, RValue<Float> rhs)
	{
		return lhs = lhs / rhs;
	}

	RValue<Float> operator+(RValue<Float> val)
	{
		return val;
	}

	RValue<Float> operator-(RValue<Float> val)
	{
		return RValue<Float>(Nucleus::createFNeg(val.value));
	}

	RValue<Bool> operator<(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Bool>(Nucleus::createFCmpOLT(lhs.value, rhs.value));
	}

	RValue<Bool> operator<=(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Bool>(Nucleus::createFCmpOLE(lhs.value, rhs.value));
	}

	RValue<Bool> operator>(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Bool>(Nucleus::createFCmpOGT(lhs.value, rhs.value));
	}

	RValue<Bool> operator>=(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Bool>(Nucleus::createFCmpOGE(lhs.value, rhs.value));
	}

	RValue<Bool> operator!=(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Bool>(Nucleus::createFCmpONE(lhs.value, rhs.value));
	}

	RValue<Bool> operator==(RValue<Float> lhs, RValue<Float> rhs)
	{
		return RValue<Bool>(Nucleus::createFCmpOEQ(lhs.value, rhs.value));
	}

	RValue<Float> Abs(RValue<Float> x)
	{
		return IfThenElse(x > 0.0f, x, -x);
	}

	RValue<Float> Max(RValue<Float> x, RValue<Float> y)
	{
		return IfThenElse(x > y, x, y);
	}

	RValue<Float> Min(RValue<Float> x, RValue<Float> y)
	{
		return IfThenElse(x < y, x, y);
	}

	RValue<Float> Rcp_pp(RValue<Float> x, bool exactAtPow2)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(exactAtPow2)
		{
			// rcpss uses a piecewise-linear approximation which minimizes the relative error
			// but is not exact at power-of-two values. Rectify by multiplying by the inverse.
			return x86::rcpss(x) * Float(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f))));
		}
		return x86::rcpss(x);
#else
		return As<Float>(V(lowerRCP(V(x.value))));
#endif
	}

	RValue<Float> RcpSqrt_pp(RValue<Float> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::rsqrtss(x);
#else
		return As<Float>(V(lowerRSQRT(V(x.value))));
#endif
	}

	RValue<Float> Sqrt(RValue<Float> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::sqrtss(x);
#else
		return As<Float>(V(lowerSQRT(V(x.value))));
#endif
	}

	RValue<Float> Round(RValue<Float> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::roundss(x, 0);
		}
		else
		{
			return Float4(Round(Float4(x))).x;
		}
#else
		return RValue<Float>(V(lowerRound(V(x.value))));
#endif
	}

	RValue<Float> Trunc(RValue<Float> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::roundss(x, 3);
		}
		else
		{
			return Float(Int(x));   // Rounded toward zero
		}
#else
		return RValue<Float>(V(lowerTrunc(V(x.value))));
#endif
	}

	RValue<Float> Frac(RValue<Float> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x - x86::floorss(x);
		}
		else
		{
			return Float4(Frac(Float4(x))).x;
		}
#else
		// x - floor(x) can be 1.0 for very small negative x.
		// Clamp against the value just below 1.0.
		return Min(x - Floor(x), As<Float>(Int(0x3F7FFFFF)));
#endif
	}

	RValue<Float> Floor(RValue<Float> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::floorss(x);
		}
		else
		{
			return Float4(Floor(Float4(x))).x;
		}
#else
		return RValue<Float>(V(lowerFloor(V(x.value))));
#endif
	}

	RValue<Float> Ceil(RValue<Float> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::ceilss(x);
		}
		else
#endif
		{
			return Float4(Ceil(Float4(x))).x;
		}
	}

	Type *Float::getType()
	{
		return T(llvm::Type::getFloatTy(*::context));
	}

	Float2::Float2(RValue<Float4> cast)
	{
		storeValue(Nucleus::createBitCast(cast.value, getType()));
	}

	Type *Float2::getType()
	{
		return T(Type_v2f32);
	}

	Float4::Float4(RValue<Byte4> cast) : XYZW(this)
	{
		Value *a = Int4(cast).loadValue();
		Value *xyzw = Nucleus::createSIToFP(a, Float4::getType());

		storeValue(xyzw);
	}

	Float4::Float4(RValue<SByte4> cast) : XYZW(this)
	{
		Value *a = Int4(cast).loadValue();
		Value *xyzw = Nucleus::createSIToFP(a, Float4::getType());

		storeValue(xyzw);
	}

	Float4::Float4(RValue<Short4> cast) : XYZW(this)
	{
		Int4 c(cast);
		storeValue(Nucleus::createSIToFP(RValue<Int4>(c).value, Float4::getType()));
	}

	Float4::Float4(RValue<UShort4> cast) : XYZW(this)
	{
		Int4 c(cast);
		storeValue(Nucleus::createSIToFP(RValue<Int4>(c).value, Float4::getType()));
	}

	Float4::Float4(RValue<Int4> cast) : XYZW(this)
	{
		Value *xyzw = Nucleus::createSIToFP(cast.value, Float4::getType());

		storeValue(xyzw);
	}

	Float4::Float4(RValue<UInt4> cast) : XYZW(this)
	{
		RValue<Float4> result = Float4(Int4(cast & UInt4(0x7FFFFFFF))) +
		                        As<Float4>((As<Int4>(cast) >> 31) & As<Int4>(Float4(0x80000000u)));

		storeValue(result.value);
	}

	Float4::Float4() : XYZW(this)
	{
	}

	Float4::Float4(float xyzw) : XYZW(this)
	{
		constant(xyzw, xyzw, xyzw, xyzw);
	}

	Float4::Float4(float x, float yzw) : XYZW(this)
	{
		constant(x, yzw, yzw, yzw);
	}

	Float4::Float4(float x, float y, float zw) : XYZW(this)
	{
		constant(x, y, zw, zw);
	}

	Float4::Float4(float x, float y, float z, float w) : XYZW(this)
	{
		constant(x, y, z, w);
	}

	void Float4::constant(float x, float y, float z, float w)
	{
		double constantVector[4] = {x, y, z, w};
		storeValue(Nucleus::createConstantVector(constantVector, getType()));
	}

	Float4::Float4(RValue<Float4> rhs) : XYZW(this)
	{
		storeValue(rhs.value);
	}

	Float4::Float4(const Float4 &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Float4::Float4(const Reference<Float4> &rhs) : XYZW(this)
	{
		Value *value = rhs.loadValue();
		storeValue(value);
	}

	Float4::Float4(RValue<Float> rhs) : XYZW(this)
	{
		Value *vector = loadValue();
		Value *insert = Nucleus::createInsertElement(vector, rhs.value, 0);

		int swizzle[4] = {0, 0, 0, 0};
		Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle);

		storeValue(replicate);
	}

	Float4::Float4(const Float &rhs) : XYZW(this)
	{
		*this = RValue<Float>(rhs.loadValue());
	}

	Float4::Float4(const Reference<Float> &rhs) : XYZW(this)
	{
		*this = RValue<Float>(rhs.loadValue());
	}

	RValue<Float4> Float4::operator=(float x)
	{
		return *this = Float4(x, x, x, x);
	}

	RValue<Float4> Float4::operator=(RValue<Float4> rhs)
	{
		storeValue(rhs.value);

		return rhs;
	}

	RValue<Float4> Float4::operator=(const Float4 &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Float4>(value);
	}

	RValue<Float4> Float4::operator=(const Reference<Float4> &rhs)
	{
		Value *value = rhs.loadValue();
		storeValue(value);

		return RValue<Float4>(value);
	}

	RValue<Float4> Float4::operator=(RValue<Float> rhs)
	{
		return *this = Float4(rhs);
	}

	RValue<Float4> Float4::operator=(const Float &rhs)
	{
		return *this = Float4(rhs);
	}

	RValue<Float4> Float4::operator=(const Reference<Float> &rhs)
	{
		return *this = Float4(rhs);
	}

	RValue<Float4> operator+(RValue<Float4> lhs, RValue<Float4> rhs)
	{
		return RValue<Float4>(Nucleus::createFAdd(lhs.value, rhs.value));
	}

	RValue<Float4> operator-(RValue<Float4> lhs, RValue<Float4> rhs)
	{
		return RValue<Float4>(Nucleus::createFSub(lhs.value, rhs.value));
	}

	RValue<Float4> operator*(RValue<Float4> lhs, RValue<Float4> rhs)
	{
		return RValue<Float4>(Nucleus::createFMul(lhs.value, rhs.value));
	}

	RValue<Float4> operator/(RValue<Float4> lhs, RValue<Float4> rhs)
	{
		return RValue<Float4>(Nucleus::createFDiv(lhs.value, rhs.value));
	}

	RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs)
	{
		return RValue<Float4>(Nucleus::createFRem(lhs.value, rhs.value));
	}

	RValue<Float4> operator+=(Float4 &lhs, RValue<Float4> rhs)
	{
		return lhs = lhs + rhs;
	}

	RValue<Float4> operator-=(Float4 &lhs, RValue<Float4> rhs)
	{
		return lhs = lhs - rhs;
	}

	RValue<Float4> operator*=(Float4 &lhs, RValue<Float4> rhs)
	{
		return lhs = lhs * rhs;
	}

	RValue<Float4> operator/=(Float4 &lhs, RValue<Float4> rhs)
	{
		return lhs = lhs / rhs;
	}

	RValue<Float4> operator%=(Float4 &lhs, RValue<Float4> rhs)
	{
		return lhs = lhs % rhs;
	}

	RValue<Float4> operator+(RValue<Float4> val)
	{
		return val;
	}

	RValue<Float4> operator-(RValue<Float4> val)
	{
		return RValue<Float4>(Nucleus::createFNeg(val.value));
	}

	RValue<Float4> Abs(RValue<Float4> x)
	{
		Value *vector = Nucleus::createBitCast(x.value, Int4::getType());
		int64_t constantVector[4] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
		Value *result = Nucleus::createAnd(vector, Nucleus::createConstantVector(constantVector, Int4::getType()));

		return As<Float4>(result);
	}

	RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::maxps(x, y);
#else
		return As<Float4>(V(lowerPFMINMAX(V(x.value), V(y.value), llvm::FCmpInst::FCMP_OGT)));
#endif
	}

	RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::minps(x, y);
#else
		return As<Float4>(V(lowerPFMINMAX(V(x.value), V(y.value), llvm::FCmpInst::FCMP_OLT)));
#endif
	}

	RValue<Float4> Rcp_pp(RValue<Float4> x, bool exactAtPow2)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(exactAtPow2)
		{
			// rcpps uses a piecewise-linear approximation which minimizes the relative error
			// but is not exact at power-of-two values. Rectify by multiplying by the inverse.
			return x86::rcpps(x) * Float4(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f))));
		}
		return x86::rcpps(x);
#else
		return As<Float4>(V(lowerRCP(V(x.value))));
#endif
	}

	RValue<Float4> RcpSqrt_pp(RValue<Float4> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::rsqrtps(x);
#else
		return As<Float4>(V(lowerRSQRT(V(x.value))));
#endif
	}

	RValue<Float4> Sqrt(RValue<Float4> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::sqrtps(x);
#else
		return As<Float4>(V(lowerSQRT(V(x.value))));
#endif
	}

	RValue<Float4> Insert(RValue<Float4> x, RValue<Float> element, int i)
	{
		return RValue<Float4>(Nucleus::createInsertElement(x.value, element.value, i));
	}

	RValue<Float> Extract(RValue<Float4> x, int i)
	{
		return RValue<Float>(Nucleus::createExtractElement(x.value, Float::getType(), i));
	}

	RValue<Float4> Swizzle(RValue<Float4> x, unsigned char select)
	{
		return RValue<Float4>(createSwizzle4(x.value, select));
	}

	RValue<Float4> ShuffleLowHigh(RValue<Float4> x, RValue<Float4> y, unsigned char imm)
	{
		int shuffle[4] =
		{
			((imm >> 0) & 0x03) + 0,
			((imm >> 2) & 0x03) + 0,
			((imm >> 4) & 0x03) + 4,
			((imm >> 6) & 0x03) + 4,
		};

		return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
	}

	RValue<Float4> UnpackLow(RValue<Float4> x, RValue<Float4> y)
	{
		int shuffle[4] = {0, 4, 1, 5};
		return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
	}

	RValue<Float4> UnpackHigh(RValue<Float4> x, RValue<Float4> y)
	{
		int shuffle[4] = {2, 6, 3, 7};
		return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle));
	}

	RValue<Float4> Mask(Float4 &lhs, RValue<Float4> rhs, unsigned char select)
	{
		Value *vector = lhs.loadValue();
		Value *result = createMask4(vector, rhs.value, select);
		lhs.storeValue(result);

		return RValue<Float4>(result);
	}

	RValue<Int> SignMask(RValue<Float4> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		return x86::movmskps(x);
#else
		return As<Int>(V(lowerFPSignMask(V(x.value), T(Int::getType()))));
#endif
	}

	RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y)
	{
	//	return As<Int4>(x86::cmpeqps(x, y));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOEQ(x.value, y.value), Int4::getType()));
	}

	RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y)
	{
	//	return As<Int4>(x86::cmpltps(x, y));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLT(x.value, y.value), Int4::getType()));
	}

	RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y)
	{
	//	return As<Int4>(x86::cmpleps(x, y));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLE(x.value, y.value), Int4::getType()));
	}

	RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y)
	{
	//	return As<Int4>(x86::cmpneqps(x, y));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpONE(x.value, y.value), Int4::getType()));
	}

	RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y)
	{
	//	return As<Int4>(x86::cmpnltps(x, y));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGE(x.value, y.value), Int4::getType()));
	}

	RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y)
	{
	//	return As<Int4>(x86::cmpnleps(x, y));
		return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGT(x.value, y.value), Int4::getType()));
	}

	RValue<Int4> IsInf(RValue<Float4> x)
	{
		return CmpEQ(As<Int4>(x) & Int4(0x7FFFFFFF), Int4(0x7F800000));
	}

	RValue<Int4> IsNan(RValue<Float4> x)
	{
		return ~CmpEQ(x, x);
	}

	RValue<Float4> Round(RValue<Float4> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::roundps(x, 0);
		}
		else
		{
			return Float4(RoundInt(x));
		}
#else
		return RValue<Float4>(V(lowerRound(V(x.value))));
#endif
	}

	RValue<Float4> Trunc(RValue<Float4> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::roundps(x, 3);
		}
		else
		{
			return Float4(Int4(x));
		}
#else
		return RValue<Float4>(V(lowerTrunc(V(x.value))));
#endif
	}

	RValue<Float4> Frac(RValue<Float4> x)
	{
		Float4 frc;

#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			frc = x - Floor(x);
		}
		else
		{
			frc = x - Float4(Int4(x));   // Signed fractional part.

			frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1.0f)));   // Add 1.0 if negative.
		}
#else
		frc = x - Floor(x);
#endif

		// x - floor(x) can be 1.0 for very small negative x.
		// Clamp against the value just below 1.0.
		return Min(frc, As<Float4>(Int4(0x3F7FFFFF)));
	}

	RValue<Float4> Floor(RValue<Float4> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::floorps(x);
		}
		else
		{
			return x - Frac(x);
		}
#else
		return RValue<Float4>(V(lowerFloor(V(x.value))));
#endif
	}

	RValue<Float4> Ceil(RValue<Float4> x)
	{
#if defined(__i386__) || defined(__x86_64__)
		if(CPUID::supportsSSE4_1())
		{
			return x86::ceilps(x);
		}
		else
#endif
		{
			return -Floor(-x);
		}
	}

	Type *Float4::getType()
	{
		return T(llvm::VectorType::get(T(Float::getType()), 4));
	}

	RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, int offset)
	{
		return lhs + RValue<Int>(Nucleus::createConstantInt(offset));
	}

	RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, RValue<Int> offset)
	{
		return RValue<Pointer<Byte>>(Nucleus::createGEP(lhs.value, Byte::getType(), offset.value, false));
	}

	RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, RValue<UInt> offset)
	{
		return RValue<Pointer<Byte>>(Nucleus::createGEP(lhs.value, Byte::getType(), offset.value, true));
	}

	RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, int offset)
	{
		return lhs = lhs + offset;
	}

	RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, RValue<Int> offset)
	{
		return lhs = lhs + offset;
	}

	RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, RValue<UInt> offset)
	{
		return lhs = lhs + offset;
	}

	RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, int offset)
	{
		return lhs + -offset;
	}

	RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, RValue<Int> offset)
	{
		return lhs + -offset;
	}

	RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, RValue<UInt> offset)
	{
		return lhs + -offset;
	}

	RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, int offset)
	{
		return lhs = lhs - offset;
	}

	RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, RValue<Int> offset)
	{
		return lhs = lhs - offset;
	}

	RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, RValue<UInt> offset)
	{
		return lhs = lhs - offset;
	}

	void Return()
	{
		Nucleus::createRetVoid();
		Nucleus::setInsertBlock(Nucleus::createBasicBlock());
		Nucleus::createUnreachable();
	}

	void Return(RValue<Int> ret)
	{
		Nucleus::createRet(ret.value);
		Nucleus::setInsertBlock(Nucleus::createBasicBlock());
		Nucleus::createUnreachable();
	}

	void branch(RValue<Bool> cmp, BasicBlock *bodyBB, BasicBlock *endBB)
	{
		Nucleus::createCondBr(cmp.value, bodyBB, endBB);
		Nucleus::setInsertBlock(bodyBB);
	}

	RValue<Long> Ticks()
	{
		llvm::Function *rdtsc = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::readcyclecounter);

		return RValue<Long>(V(::builder->CreateCall(rdtsc)));
	}
}

namespace rr
{
#if defined(__i386__) || defined(__x86_64__)
	namespace x86
	{
		RValue<Int> cvtss2si(RValue<Float> val)
		{
			llvm::Function *cvtss2si = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_cvtss2si);

			Float4 vector;
			vector.x = val;

			return RValue<Int>(V(::builder->CreateCall(cvtss2si, ARGS(V(RValue<Float4>(vector).value)))));
		}

		RValue<Int4> cvtps2dq(RValue<Float4> val)
		{
			llvm::Function *cvtps2dq = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_cvtps2dq);

			return RValue<Int4>(V(::builder->CreateCall(cvtps2dq, ARGS(V(val.value)))));
		}

		RValue<Float> rcpss(RValue<Float> val)
		{
			llvm::Function *rcpss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rcp_ss);

			Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0);

			return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(rcpss, ARGS(V(vector)))), Float::getType(), 0));
		}

		RValue<Float> sqrtss(RValue<Float> val)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *sqrtss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_sqrt_ss);
			Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0);

			return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(sqrtss, ARGS(V(vector)))), Float::getType(), 0));
#else
			llvm::Function *sqrt = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::sqrt, {V(val.value)->getType()});
			return RValue<Float>(V(::builder->CreateCall(sqrt, ARGS(V(val.value)))));
#endif
		}

		RValue<Float> rsqrtss(RValue<Float> val)
		{
			llvm::Function *rsqrtss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rsqrt_ss);

			Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0);

			return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(rsqrtss, ARGS(V(vector)))), Float::getType(), 0));
		}

		RValue<Float4> rcpps(RValue<Float4> val)
		{
			llvm::Function *rcpps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rcp_ps);

			return RValue<Float4>(V(::builder->CreateCall(rcpps, ARGS(V(val.value)))));
		}

		RValue<Float4> sqrtps(RValue<Float4> val)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *sqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_sqrt_ps);
#else
			llvm::Function *sqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::sqrt, {V(val.value)->getType()});
#endif

			return RValue<Float4>(V(::builder->CreateCall(sqrtps, ARGS(V(val.value)))));
		}

		RValue<Float4> rsqrtps(RValue<Float4> val)
		{
			llvm::Function *rsqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rsqrt_ps);

			return RValue<Float4>(V(::builder->CreateCall(rsqrtps, ARGS(V(val.value)))));
		}

		RValue<Float4> maxps(RValue<Float4> x, RValue<Float4> y)
		{
			llvm::Function *maxps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_max_ps);

			return RValue<Float4>(V(::builder->CreateCall2(maxps, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Float4> minps(RValue<Float4> x, RValue<Float4> y)
		{
			llvm::Function *minps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_min_ps);

			return RValue<Float4>(V(::builder->CreateCall2(minps, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Float> roundss(RValue<Float> val, unsigned char imm)
		{
			llvm::Function *roundss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_round_ss);

			Value *undef = V(llvm::UndefValue::get(T(Float4::getType())));
			Value *vector = Nucleus::createInsertElement(undef, val.value, 0);

			return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall3(roundss, ARGS(V(undef), V(vector), V(Nucleus::createConstantInt(imm))))), Float::getType(), 0));
		}

		RValue<Float> floorss(RValue<Float> val)
		{
			return roundss(val, 1);
		}

		RValue<Float> ceilss(RValue<Float> val)
		{
			return roundss(val, 2);
		}

		RValue<Float4> roundps(RValue<Float4> val, unsigned char imm)
		{
			llvm::Function *roundps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_round_ps);

			return RValue<Float4>(V(::builder->CreateCall2(roundps, ARGS(V(val.value), V(Nucleus::createConstantInt(imm))))));
		}

		RValue<Float4> floorps(RValue<Float4> val)
		{
			return roundps(val, 1);
		}

		RValue<Float4> ceilps(RValue<Float4> val)
		{
			return roundps(val, 2);
		}

		RValue<Int4> pabsd(RValue<Int4> x)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pabsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_ssse3_pabs_d_128);

			return RValue<Int4>(V(::builder->CreateCall(pabsd, ARGS(V(x.value)))));
#else
			return RValue<Int4>(V(lowerPABS(V(x.value))));
#endif
		}

		RValue<Short4> paddsw(RValue<Short4> x, RValue<Short4> y)
		{
			llvm::Function *paddsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_padds_w);

			return As<Short4>(V(::builder->CreateCall2(paddsw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Short4> psubsw(RValue<Short4> x, RValue<Short4> y)
		{
			llvm::Function *psubsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubs_w);

			return As<Short4>(V(::builder->CreateCall2(psubsw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<UShort4> paddusw(RValue<UShort4> x, RValue<UShort4> y)
		{
			llvm::Function *paddusw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_paddus_w);

			return As<UShort4>(V(::builder->CreateCall2(paddusw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<UShort4> psubusw(RValue<UShort4> x, RValue<UShort4> y)
		{
			llvm::Function *psubusw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubus_w);

			return As<UShort4>(V(::builder->CreateCall2(psubusw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<SByte8> paddsb(RValue<SByte8> x, RValue<SByte8> y)
		{
			llvm::Function *paddsb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_padds_b);

			return As<SByte8>(V(::builder->CreateCall2(paddsb, ARGS(V(x.value), V(y.value)))));
		}

		RValue<SByte8> psubsb(RValue<SByte8> x, RValue<SByte8> y)
		{
			llvm::Function *psubsb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubs_b);

			return As<SByte8>(V(::builder->CreateCall2(psubsb, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Byte8> paddusb(RValue<Byte8> x, RValue<Byte8> y)
		{
			llvm::Function *paddusb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_paddus_b);

			return As<Byte8>(V(::builder->CreateCall2(paddusb, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Byte8> psubusb(RValue<Byte8> x, RValue<Byte8> y)
		{
			llvm::Function *psubusb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubus_b);

			return As<Byte8>(V(::builder->CreateCall2(psubusb, ARGS(V(x.value), V(y.value)))));
		}

		RValue<UShort4> pavgw(RValue<UShort4> x, RValue<UShort4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pavgw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pavg_w);

			return As<UShort4>(V(::builder->CreateCall2(pavgw, ARGS(V(x.value), V(y.value)))));
#else
			return As<UShort4>(V(lowerPAVG(V(x.value), V(y.value))));
#endif
		}

		RValue<Short4> pmaxsw(RValue<Short4> x, RValue<Short4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pmaxsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmaxs_w);

			return As<Short4>(V(::builder->CreateCall2(pmaxsw, ARGS(V(x.value), V(y.value)))));
#else
			return As<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT)));
#endif
		}

		RValue<Short4> pminsw(RValue<Short4> x, RValue<Short4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pminsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmins_w);

			return As<Short4>(V(::builder->CreateCall2(pminsw, ARGS(V(x.value), V(y.value)))));
#else
			return As<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT)));
#endif
		}

		RValue<Short4> pcmpgtw(RValue<Short4> x, RValue<Short4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pcmpgtw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpgt_w);

			return As<Short4>(V(::builder->CreateCall2(pcmpgtw, ARGS(V(x.value), V(y.value)))));
#else
			return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Short4::getType()))));
#endif
		}

		RValue<Short4> pcmpeqw(RValue<Short4> x, RValue<Short4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pcmpeqw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpeq_w);

			return As<Short4>(V(::builder->CreateCall2(pcmpeqw, ARGS(V(x.value), V(y.value)))));
#else
			return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Short4::getType()))));
#endif
		}

		RValue<Byte8> pcmpgtb(RValue<SByte8> x, RValue<SByte8> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pcmpgtb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpgt_b);

			return As<Byte8>(V(::builder->CreateCall2(pcmpgtb, ARGS(V(x.value), V(y.value)))));
#else
			return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
		}

		RValue<Byte8> pcmpeqb(RValue<Byte8> x, RValue<Byte8> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pcmpeqb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpeq_b);

			return As<Byte8>(V(::builder->CreateCall2(pcmpeqb, ARGS(V(x.value), V(y.value)))));
#else
			return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType()))));
#endif
		}

		RValue<Short4> packssdw(RValue<Int2> x, RValue<Int2> y)
		{
			llvm::Function *packssdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packssdw_128);

			return As<Short4>(V(::builder->CreateCall2(packssdw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Short8> packssdw(RValue<Int4> x, RValue<Int4> y)
		{
			llvm::Function *packssdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packssdw_128);

			return RValue<Short8>(V(::builder->CreateCall2(packssdw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<SByte8> packsswb(RValue<Short4> x, RValue<Short4> y)
		{
			llvm::Function *packsswb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packsswb_128);

			return As<SByte8>(V(::builder->CreateCall2(packsswb, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Byte8> packuswb(RValue<Short4> x, RValue<Short4> y)
		{
			llvm::Function *packuswb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packuswb_128);

			return As<Byte8>(V(::builder->CreateCall2(packuswb, ARGS(V(x.value), V(y.value)))));
		}

		RValue<UShort8> packusdw(RValue<Int4> x, RValue<Int4> y)
		{
			if(CPUID::supportsSSE4_1())
			{
				llvm::Function *packusdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_packusdw);

				return RValue<UShort8>(V(::builder->CreateCall2(packusdw, ARGS(V(x.value), V(y.value)))));
			}
			else
			{
				RValue<Int4> bx = (x & ~(x >> 31)) - Int4(0x8000);
				RValue<Int4> by = (y & ~(y >> 31)) - Int4(0x8000);

				return As<UShort8>(packssdw(bx, by) + Short8(0x8000u));
			}
		}

		RValue<UShort4> psrlw(RValue<UShort4> x, unsigned char y)
		{
			llvm::Function *psrlw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_w);

			return As<UShort4>(V(::builder->CreateCall2(psrlw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<UShort8> psrlw(RValue<UShort8> x, unsigned char y)
		{
			llvm::Function *psrlw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_w);

			return RValue<UShort8>(V(::builder->CreateCall2(psrlw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Short4> psraw(RValue<Short4> x, unsigned char y)
		{
			llvm::Function *psraw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_w);

			return As<Short4>(V(::builder->CreateCall2(psraw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Short8> psraw(RValue<Short8> x, unsigned char y)
		{
			llvm::Function *psraw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_w);

			return RValue<Short8>(V(::builder->CreateCall2(psraw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Short4> psllw(RValue<Short4> x, unsigned char y)
		{
			llvm::Function *psllw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_w);

			return As<Short4>(V(::builder->CreateCall2(psllw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Short8> psllw(RValue<Short8> x, unsigned char y)
		{
			llvm::Function *psllw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_w);

			return RValue<Short8>(V(::builder->CreateCall2(psllw, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Int2> pslld(RValue<Int2> x, unsigned char y)
		{
			llvm::Function *pslld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_d);

			return As<Int2>(V(::builder->CreateCall2(pslld, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Int4> pslld(RValue<Int4> x, unsigned char y)
		{
			llvm::Function *pslld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_d);

			return RValue<Int4>(V(::builder->CreateCall2(pslld, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Int2> psrad(RValue<Int2> x, unsigned char y)
		{
			llvm::Function *psrad = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_d);

			return As<Int2>(V(::builder->CreateCall2(psrad, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Int4> psrad(RValue<Int4> x, unsigned char y)
		{
			llvm::Function *psrad = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_d);

			return RValue<Int4>(V(::builder->CreateCall2(psrad, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<UInt2> psrld(RValue<UInt2> x, unsigned char y)
		{
			llvm::Function *psrld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_d);

			return As<UInt2>(V(::builder->CreateCall2(psrld, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<UInt4> psrld(RValue<UInt4> x, unsigned char y)
		{
			llvm::Function *psrld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_d);

			return RValue<UInt4>(V(::builder->CreateCall2(psrld, ARGS(V(x.value), V(Nucleus::createConstantInt(y))))));
		}

		RValue<Int4> pmaxsd(RValue<Int4> x, RValue<Int4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pmaxsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmaxsd);

			return RValue<Int4>(V(::builder->CreateCall2(pmaxsd, ARGS(V(x.value), V(y.value)))));
#else
			return RValue<Int4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT)));
#endif
		}

		RValue<Int4> pminsd(RValue<Int4> x, RValue<Int4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pminsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pminsd);

			return RValue<Int4>(V(::builder->CreateCall2(pminsd, ARGS(V(x.value), V(y.value)))));
#else
			return RValue<Int4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT)));
#endif
		}

		RValue<UInt4> pmaxud(RValue<UInt4> x, RValue<UInt4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pmaxud = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmaxud);

			return RValue<UInt4>(V(::builder->CreateCall2(pmaxud, ARGS(V(x.value), V(y.value)))));
#else
			return RValue<UInt4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_UGT)));
#endif
		}

		RValue<UInt4> pminud(RValue<UInt4> x, RValue<UInt4> y)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pminud = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pminud);

			return RValue<UInt4>(V(::builder->CreateCall2(pminud, ARGS(V(x.value), V(y.value)))));
#else
			return RValue<UInt4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_ULT)));
#endif
		}

		RValue<Short4> pmulhw(RValue<Short4> x, RValue<Short4> y)
		{
			llvm::Function *pmulhw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulh_w);

			return As<Short4>(V(::builder->CreateCall2(pmulhw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<UShort4> pmulhuw(RValue<UShort4> x, RValue<UShort4> y)
		{
			llvm::Function *pmulhuw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulhu_w);

			return As<UShort4>(V(::builder->CreateCall2(pmulhuw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Int2> pmaddwd(RValue<Short4> x, RValue<Short4> y)
		{
			llvm::Function *pmaddwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmadd_wd);

			return As<Int2>(V(::builder->CreateCall2(pmaddwd, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Short8> pmulhw(RValue<Short8> x, RValue<Short8> y)
		{
			llvm::Function *pmulhw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulh_w);

			return RValue<Short8>(V(::builder->CreateCall2(pmulhw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<UShort8> pmulhuw(RValue<UShort8> x, RValue<UShort8> y)
		{
			llvm::Function *pmulhuw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulhu_w);

			return RValue<UShort8>(V(::builder->CreateCall2(pmulhuw, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Int4> pmaddwd(RValue<Short8> x, RValue<Short8> y)
		{
			llvm::Function *pmaddwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmadd_wd);

			return RValue<Int4>(V(::builder->CreateCall2(pmaddwd, ARGS(V(x.value), V(y.value)))));
		}

		RValue<Int> movmskps(RValue<Float4> x)
		{
			llvm::Function *movmskps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_movmsk_ps);

			return RValue<Int>(V(::builder->CreateCall(movmskps, ARGS(V(x.value)))));
		}

		RValue<Int> pmovmskb(RValue<Byte8> x)
		{
			llvm::Function *pmovmskb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmovmskb_128);

			return RValue<Int>(V(::builder->CreateCall(pmovmskb, ARGS(V(x.value))))) & 0xFF;
		}

		RValue<Int4> pmovzxbd(RValue<Byte16> x)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pmovzxbd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovzxbd);

			return RValue<Int4>(V(::builder->CreateCall(pmovzxbd, ARGS(V(x.value)))));
#else
			return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), false)));
#endif
		}

		RValue<Int4> pmovsxbd(RValue<SByte16> x)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pmovsxbd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovsxbd);

			return RValue<Int4>(V(::builder->CreateCall(pmovsxbd, ARGS(V(x.value)))));
#else
			return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), true)));
#endif
		}

		RValue<Int4> pmovzxwd(RValue<UShort8> x)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pmovzxwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovzxwd);

			return RValue<Int4>(V(::builder->CreateCall(pmovzxwd, ARGS(V(x.value)))));
#else
			return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), false)));
#endif
		}

		RValue<Int4> pmovsxwd(RValue<Short8> x)
		{
#if REACTOR_LLVM_VERSION < 7
			llvm::Function *pmovsxwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovsxwd);

			return RValue<Int4>(V(::builder->CreateCall(pmovsxwd, ARGS(V(x.value)))));
#else
			return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), true)));
#endif
		}
	}
#endif  // defined(__i386__) || defined(__x86_64__)
}