// Copyright 2016 The SwiftShader Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "Reactor.hpp" #include "x86.hpp" #include "CPUID.hpp" #include "Thread.hpp" #include "ExecutableMemory.hpp" #include "MutexLock.hpp" #undef min #undef max #if REACTOR_LLVM_VERSION < 7 #include "llvm/Analysis/LoopPass.h" #include "llvm/Constants.h" #include "llvm/Function.h" #include "llvm/GlobalVariable.h" #include "llvm/Intrinsics.h" #include "llvm/LLVMContext.h" #include "llvm/Module.h" #include "llvm/PassManager.h" #include "llvm/Support/IRBuilder.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Target/TargetData.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/Scalar.h" #include "../lib/ExecutionEngine/JIT/JIT.h" #include "LLVMRoutine.hpp" #include "LLVMRoutineManager.hpp" #define ARGS(...) __VA_ARGS__ #else #include "llvm/Analysis/LoopPass.h" #include "llvm/ExecutionEngine/ExecutionEngine.h" #include "llvm/ExecutionEngine/JITSymbol.h" #include "llvm/ExecutionEngine/Orc/CompileUtils.h" #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h" #include "llvm/ExecutionEngine/Orc/LambdaResolver.h" #include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h" #include "llvm/ExecutionEngine/RTDyldMemoryManager.h" #include "llvm/ExecutionEngine/SectionMemoryManager.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/LegacyPassManager.h" #include "llvm/IR/Mangler.h" #include "llvm/IR/Module.h" #include "llvm/Support/Error.h" #include "llvm/Support/TargetSelect.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/InstCombine/InstCombine.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Scalar/GVN.h" #include "LLVMRoutine.hpp" #define ARGS(...) {__VA_ARGS__} #define CreateCall2 CreateCall #define CreateCall3 CreateCall #include <unordered_map> #endif #include <numeric> #include <fstream> #if defined(__i386__) || defined(__x86_64__) #include <xmmintrin.h> #endif #include <math.h> #if defined(__x86_64__) && defined(_WIN32) extern "C" void X86CompilationCallback() { assert(false); // UNIMPLEMENTED } #endif #if REACTOR_LLVM_VERSION < 7 namespace llvm { extern bool JITEmitDebugInfo; } #endif namespace rr { class LLVMReactorJIT; } namespace { rr::LLVMReactorJIT *reactorJIT = nullptr; llvm::IRBuilder<> *builder = nullptr; llvm::LLVMContext *context = nullptr; llvm::Module *module = nullptr; llvm::Function *function = nullptr; rr::MutexLock codegenMutex; #if REACTOR_LLVM_VERSION >= 7 llvm::Value *lowerPAVG(llvm::Value *x, llvm::Value *y) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty); x = ::builder->CreateZExt(x, extTy); y = ::builder->CreateZExt(y, extTy); // (x + y + 1) >> 1 llvm::Constant *one = llvm::ConstantInt::get(extTy, 1); llvm::Value *res = ::builder->CreateAdd(x, y); res = ::builder->CreateAdd(res, one); res = ::builder->CreateLShr(res, one); return ::builder->CreateTrunc(res, ty); } llvm::Value *lowerPMINMAX(llvm::Value *x, llvm::Value *y, llvm::ICmpInst::Predicate pred) { return ::builder->CreateSelect(::builder->CreateICmp(pred, x, y), x, y); } llvm::Value *lowerPCMP(llvm::ICmpInst::Predicate pred, llvm::Value *x, llvm::Value *y, llvm::Type *dstTy) { return ::builder->CreateSExt(::builder->CreateICmp(pred, x, y), dstTy, ""); } #if defined(__i386__) || defined(__x86_64__) llvm::Value *lowerPMOV(llvm::Value *op, llvm::Type *dstType, bool sext) { llvm::VectorType *srcTy = llvm::cast<llvm::VectorType>(op->getType()); llvm::VectorType *dstTy = llvm::cast<llvm::VectorType>(dstType); llvm::Value *undef = llvm::UndefValue::get(srcTy); llvm::SmallVector<uint32_t, 16> mask(dstTy->getNumElements()); std::iota(mask.begin(), mask.end(), 0); llvm::Value *v = ::builder->CreateShuffleVector(op, undef, mask); return sext ? ::builder->CreateSExt(v, dstTy) : ::builder->CreateZExt(v, dstTy); } llvm::Value *lowerPABS(llvm::Value *v) { llvm::Value *zero = llvm::Constant::getNullValue(v->getType()); llvm::Value *cmp = ::builder->CreateICmp(llvm::ICmpInst::ICMP_SGT, v, zero); llvm::Value *neg = ::builder->CreateNeg(v); return ::builder->CreateSelect(cmp, v, neg); } #endif // defined(__i386__) || defined(__x86_64__) #if !defined(__i386__) && !defined(__x86_64__) llvm::Value *lowerPFMINMAX(llvm::Value *x, llvm::Value *y, llvm::FCmpInst::Predicate pred) { return ::builder->CreateSelect(::builder->CreateFCmp(pred, x, y), x, y); } llvm::Value *lowerRound(llvm::Value *x) { llvm::Function *nearbyint = llvm::Intrinsic::getDeclaration( ::module, llvm::Intrinsic::nearbyint, {x->getType()}); return ::builder->CreateCall(nearbyint, ARGS(x)); } llvm::Value *lowerRoundInt(llvm::Value *x, llvm::Type *ty) { return ::builder->CreateFPToSI(lowerRound(x), ty); } llvm::Value *lowerFloor(llvm::Value *x) { llvm::Function *floor = llvm::Intrinsic::getDeclaration( ::module, llvm::Intrinsic::floor, {x->getType()}); return ::builder->CreateCall(floor, ARGS(x)); } llvm::Value *lowerTrunc(llvm::Value *x) { llvm::Function *trunc = llvm::Intrinsic::getDeclaration( ::module, llvm::Intrinsic::trunc, {x->getType()}); return ::builder->CreateCall(trunc, ARGS(x)); } // Packed add/sub saturatation llvm::Value *lowerPSAT(llvm::Value *x, llvm::Value *y, bool isAdd, bool isSigned) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty); unsigned numBits = ty->getScalarSizeInBits(); llvm::Value *max, *min, *extX, *extY; if (isSigned) { max = llvm::ConstantInt::get(extTy, (1LL << (numBits - 1)) - 1, true); min = llvm::ConstantInt::get(extTy, (-1LL << (numBits - 1)), true); extX = ::builder->CreateSExt(x, extTy); extY = ::builder->CreateSExt(y, extTy); } else { assert(numBits <= 64); uint64_t maxVal = (numBits == 64) ? ~0ULL : (1ULL << numBits) - 1; max = llvm::ConstantInt::get(extTy, maxVal, false); min = llvm::ConstantInt::get(extTy, 0, false); extX = ::builder->CreateZExt(x, extTy); extY = ::builder->CreateZExt(y, extTy); } llvm::Value *res = isAdd ? ::builder->CreateAdd(extX, extY) : ::builder->CreateSub(extX, extY); res = lowerPMINMAX(res, min, llvm::ICmpInst::ICMP_SGT); res = lowerPMINMAX(res, max, llvm::ICmpInst::ICMP_SLT); return ::builder->CreateTrunc(res, ty); } llvm::Value *lowerPUADDSAT(llvm::Value *x, llvm::Value *y) { return lowerPSAT(x, y, true, false); } llvm::Value *lowerPSADDSAT(llvm::Value *x, llvm::Value *y) { return lowerPSAT(x, y, true, true); } llvm::Value *lowerPUSUBSAT(llvm::Value *x, llvm::Value *y) { return lowerPSAT(x, y, false, false); } llvm::Value *lowerPSSUBSAT(llvm::Value *x, llvm::Value *y) { return lowerPSAT(x, y, false, true); } llvm::Value *lowerSQRT(llvm::Value *x) { llvm::Function *sqrt = llvm::Intrinsic::getDeclaration( ::module, llvm::Intrinsic::sqrt, {x->getType()}); return ::builder->CreateCall(sqrt, ARGS(x)); } llvm::Value *lowerRCP(llvm::Value *x) { llvm::Type *ty = x->getType(); llvm::Constant *one; if (llvm::VectorType *vectorTy = llvm::dyn_cast<llvm::VectorType>(ty)) { one = llvm::ConstantVector::getSplat( vectorTy->getNumElements(), llvm::ConstantFP::get(vectorTy->getElementType(), 1)); } else { one = llvm::ConstantFP::get(ty, 1); } return ::builder->CreateFDiv(one, x); } llvm::Value *lowerRSQRT(llvm::Value *x) { return lowerRCP(lowerSQRT(x)); } llvm::Value *lowerVectorShl(llvm::Value *x, uint64_t scalarY) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::Value *y = llvm::ConstantVector::getSplat( ty->getNumElements(), llvm::ConstantInt::get(ty->getElementType(), scalarY)); return ::builder->CreateShl(x, y); } llvm::Value *lowerVectorAShr(llvm::Value *x, uint64_t scalarY) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::Value *y = llvm::ConstantVector::getSplat( ty->getNumElements(), llvm::ConstantInt::get(ty->getElementType(), scalarY)); return ::builder->CreateAShr(x, y); } llvm::Value *lowerVectorLShr(llvm::Value *x, uint64_t scalarY) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::Value *y = llvm::ConstantVector::getSplat( ty->getNumElements(), llvm::ConstantInt::get(ty->getElementType(), scalarY)); return ::builder->CreateLShr(x, y); } llvm::Value *lowerMulAdd(llvm::Value *x, llvm::Value *y) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty); llvm::Value *extX = ::builder->CreateSExt(x, extTy); llvm::Value *extY = ::builder->CreateSExt(y, extTy); llvm::Value *mult = ::builder->CreateMul(extX, extY); llvm::Value *undef = llvm::UndefValue::get(extTy); llvm::SmallVector<uint32_t, 16> evenIdx; llvm::SmallVector<uint32_t, 16> oddIdx; for (uint64_t i = 0, n = ty->getNumElements(); i < n; i += 2) { evenIdx.push_back(i); oddIdx.push_back(i + 1); } llvm::Value *lhs = ::builder->CreateShuffleVector(mult, undef, evenIdx); llvm::Value *rhs = ::builder->CreateShuffleVector(mult, undef, oddIdx); return ::builder->CreateAdd(lhs, rhs); } llvm::Value *lowerMulHigh(llvm::Value *x, llvm::Value *y, bool sext) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::VectorType *extTy = llvm::VectorType::getExtendedElementVectorType(ty); llvm::Value *extX, *extY; if (sext) { extX = ::builder->CreateSExt(x, extTy); extY = ::builder->CreateSExt(y, extTy); } else { extX = ::builder->CreateZExt(x, extTy); extY = ::builder->CreateZExt(y, extTy); } llvm::Value *mult = ::builder->CreateMul(extX, extY); llvm::IntegerType *intTy = llvm::cast<llvm::IntegerType>(ty->getElementType()); llvm::Value *mulh = ::builder->CreateAShr(mult, intTy->getIntegerBitWidth()); return ::builder->CreateTrunc(mulh, ty); } llvm::Value *lowerPack(llvm::Value *x, llvm::Value *y, bool isSigned) { llvm::VectorType *srcTy = llvm::cast<llvm::VectorType>(x->getType()); llvm::VectorType *dstTy = llvm::VectorType::getTruncatedElementVectorType(srcTy); llvm::IntegerType *dstElemTy = llvm::cast<llvm::IntegerType>(dstTy->getElementType()); uint64_t truncNumBits = dstElemTy->getIntegerBitWidth(); assert(truncNumBits < 64 && "shift 64 must be handled separately"); llvm::Constant *max, *min; if (isSigned) { max = llvm::ConstantInt::get(srcTy, (1LL << (truncNumBits - 1)) - 1, true); min = llvm::ConstantInt::get(srcTy, (-1LL << (truncNumBits - 1)), true); } else { max = llvm::ConstantInt::get(srcTy, (1ULL << truncNumBits) - 1, false); min = llvm::ConstantInt::get(srcTy, 0, false); } x = lowerPMINMAX(x, min, llvm::ICmpInst::ICMP_SGT); x = lowerPMINMAX(x, max, llvm::ICmpInst::ICMP_SLT); y = lowerPMINMAX(y, min, llvm::ICmpInst::ICMP_SGT); y = lowerPMINMAX(y, max, llvm::ICmpInst::ICMP_SLT); x = ::builder->CreateTrunc(x, dstTy); y = ::builder->CreateTrunc(y, dstTy); llvm::SmallVector<uint32_t, 16> index(srcTy->getNumElements() * 2); std::iota(index.begin(), index.end(), 0); return ::builder->CreateShuffleVector(x, y, index); } llvm::Value *lowerSignMask(llvm::Value *x, llvm::Type *retTy) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::Constant *zero = llvm::ConstantInt::get(ty, 0); llvm::Value *cmp = ::builder->CreateICmpSLT(x, zero); llvm::Value *ret = ::builder->CreateZExt( ::builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy); for (uint64_t i = 1, n = ty->getNumElements(); i < n; ++i) { llvm::Value *elem = ::builder->CreateZExt( ::builder->CreateExtractElement(cmp, i), retTy); ret = ::builder->CreateOr(ret, ::builder->CreateShl(elem, i)); } return ret; } llvm::Value *lowerFPSignMask(llvm::Value *x, llvm::Type *retTy) { llvm::VectorType *ty = llvm::cast<llvm::VectorType>(x->getType()); llvm::Constant *zero = llvm::ConstantFP::get(ty, 0); llvm::Value *cmp = ::builder->CreateFCmpULT(x, zero); llvm::Value *ret = ::builder->CreateZExt( ::builder->CreateExtractElement(cmp, static_cast<uint64_t>(0)), retTy); for (uint64_t i = 1, n = ty->getNumElements(); i < n; ++i) { llvm::Value *elem = ::builder->CreateZExt( ::builder->CreateExtractElement(cmp, i), retTy); ret = ::builder->CreateOr(ret, ::builder->CreateShl(elem, i)); } return ret; } #endif // !defined(__i386__) && !defined(__x86_64__) #endif // REACTOR_LLVM_VERSION >= 7 } namespace rr { #if REACTOR_LLVM_VERSION < 7 class LLVMReactorJIT { private: std::string arch; llvm::SmallVector<std::string, 16> mattrs; llvm::ExecutionEngine *executionEngine; LLVMRoutineManager *routineManager; public: LLVMReactorJIT(const std::string &arch_, const llvm::SmallVectorImpl<std::string> &mattrs_) : arch(arch_), mattrs(mattrs_.begin(), mattrs_.end()), executionEngine(nullptr), routineManager(nullptr) { } void startSession() { std::string error; ::module = new llvm::Module("", *::context); routineManager = new LLVMRoutineManager(); llvm::TargetMachine *targetMachine = llvm::EngineBuilder::selectTarget( ::module, arch, "", mattrs, llvm::Reloc::Default, llvm::CodeModel::JITDefault, &error); executionEngine = llvm::JIT::createJIT( ::module, &error, routineManager, llvm::CodeGenOpt::Aggressive, true, targetMachine); } void endSession() { delete executionEngine; executionEngine = nullptr; routineManager = nullptr; ::function = nullptr; ::module = nullptr; } LLVMRoutine *acquireRoutine(llvm::Function *func) { void *entry = executionEngine->getPointerToFunction(::function); return routineManager->acquireRoutine(entry); } void optimize(llvm::Module *module) { static llvm::PassManager *passManager = nullptr; if(!passManager) { passManager = new llvm::PassManager(); passManager->add(new llvm::TargetData(*executionEngine->getTargetData())); passManager->add(llvm::createScalarReplAggregatesPass()); for(int pass = 0; pass < 10 && optimization[pass] != Disabled; pass++) { switch(optimization[pass]) { case Disabled: break; case CFGSimplification: passManager->add(llvm::createCFGSimplificationPass()); break; case LICM: passManager->add(llvm::createLICMPass()); break; case AggressiveDCE: passManager->add(llvm::createAggressiveDCEPass()); break; case GVN: passManager->add(llvm::createGVNPass()); break; case InstructionCombining: passManager->add(llvm::createInstructionCombiningPass()); break; case Reassociate: passManager->add(llvm::createReassociatePass()); break; case DeadStoreElimination: passManager->add(llvm::createDeadStoreEliminationPass()); break; case SCCP: passManager->add(llvm::createSCCPPass()); break; case ScalarReplAggregates: passManager->add(llvm::createScalarReplAggregatesPass()); break; default: assert(false); } } } passManager->run(*::module); } }; #else class ExternalFunctionSymbolResolver { private: using FunctionMap = std::unordered_map<std::string, void *>; FunctionMap func_; public: ExternalFunctionSymbolResolver() { func_.emplace("floorf", reinterpret_cast<void*>(floorf)); func_.emplace("nearbyintf", reinterpret_cast<void*>(nearbyintf)); func_.emplace("truncf", reinterpret_cast<void*>(truncf)); } void *findSymbol(const std::string &name) const { FunctionMap::const_iterator it = func_.find(name); return (it != func_.end()) ? it->second : nullptr; } }; class LLVMReactorJIT { private: using ObjLayer = llvm::orc::RTDyldObjectLinkingLayer; using CompileLayer = llvm::orc::IRCompileLayer<ObjLayer, llvm::orc::SimpleCompiler>; llvm::orc::ExecutionSession session; ExternalFunctionSymbolResolver externalSymbolResolver; std::shared_ptr<llvm::orc::SymbolResolver> resolver; std::unique_ptr<llvm::TargetMachine> targetMachine; const llvm::DataLayout dataLayout; ObjLayer objLayer; CompileLayer compileLayer; size_t emittedFunctionsNum; public: LLVMReactorJIT(const char *arch, const llvm::SmallVectorImpl<std::string>& mattrs, const llvm::TargetOptions &targetOpts): resolver(createLegacyLookupResolver( session, [this](const std::string &name) { void *func = externalSymbolResolver.findSymbol(name); if (func != nullptr) { return llvm::JITSymbol( reinterpret_cast<uintptr_t>(func), llvm::JITSymbolFlags::Absolute); } return objLayer.findSymbol(name, true); }, [](llvm::Error err) { if (err) { // TODO: Log the symbol resolution errors. return; } })), targetMachine(llvm::EngineBuilder() .setMArch(arch) .setMAttrs(mattrs) .setTargetOptions(targetOpts) .selectTarget()), dataLayout(targetMachine->createDataLayout()), objLayer( session, [this](llvm::orc::VModuleKey) { return ObjLayer::Resources{ std::make_shared<llvm::SectionMemoryManager>(), resolver}; }), compileLayer(objLayer, llvm::orc::SimpleCompiler(*targetMachine)), emittedFunctionsNum(0) { } void startSession() { ::module = new llvm::Module("", *::context); } void endSession() { ::function = nullptr; ::module = nullptr; } LLVMRoutine *acquireRoutine(llvm::Function *func) { std::string name = "f" + llvm::Twine(emittedFunctionsNum++).str(); func->setName(name); func->setLinkage(llvm::GlobalValue::ExternalLinkage); func->setDoesNotThrow(); std::unique_ptr<llvm::Module> mod(::module); ::module = nullptr; mod->setDataLayout(dataLayout); auto moduleKey = session.allocateVModule(); llvm::cantFail(compileLayer.addModule(moduleKey, std::move(mod))); std::string mangledName; { llvm::raw_string_ostream mangledNameStream(mangledName); llvm::Mangler::getNameWithPrefix(mangledNameStream, name, dataLayout); } llvm::JITSymbol symbol = compileLayer.findSymbolIn(moduleKey, mangledName, false); llvm::Expected<llvm::JITTargetAddress> expectAddr = symbol.getAddress(); if(!expectAddr) { return nullptr; } void *addr = reinterpret_cast<void *>(static_cast<intptr_t>(expectAddr.get())); return new LLVMRoutine(addr, releaseRoutineCallback, this, moduleKey); } void optimize(llvm::Module *module) { std::unique_ptr<llvm::legacy::PassManager> passManager( new llvm::legacy::PassManager()); passManager->add(llvm::createSROAPass()); for(int pass = 0; pass < 10 && optimization[pass] != Disabled; pass++) { switch(optimization[pass]) { case Disabled: break; case CFGSimplification: passManager->add(llvm::createCFGSimplificationPass()); break; case LICM: passManager->add(llvm::createLICMPass()); break; case AggressiveDCE: passManager->add(llvm::createAggressiveDCEPass()); break; case GVN: passManager->add(llvm::createGVNPass()); break; case InstructionCombining: passManager->add(llvm::createInstructionCombiningPass()); break; case Reassociate: passManager->add(llvm::createReassociatePass()); break; case DeadStoreElimination: passManager->add(llvm::createDeadStoreEliminationPass()); break; case SCCP: passManager->add(llvm::createSCCPPass()); break; case ScalarReplAggregates: passManager->add(llvm::createSROAPass()); break; default: assert(false); } } passManager->run(*::module); } private: void releaseRoutineModule(llvm::orc::VModuleKey moduleKey) { llvm::cantFail(compileLayer.removeModule(moduleKey)); } static void releaseRoutineCallback(LLVMReactorJIT *jit, uint64_t moduleKey) { jit->releaseRoutineModule(moduleKey); } }; #endif Optimization optimization[10] = {InstructionCombining, Disabled}; enum EmulatedType { Type_v2i32, Type_v4i16, Type_v2i16, Type_v8i8, Type_v4i8, Type_v2f32, EmulatedTypeCount }; llvm::Type *T(Type *t) { uintptr_t type = reinterpret_cast<uintptr_t>(t); if(type < EmulatedTypeCount) { // Use 128-bit vectors to implement logically shorter ones. switch(type) { case Type_v2i32: return T(Int4::getType()); case Type_v4i16: return T(Short8::getType()); case Type_v2i16: return T(Short8::getType()); case Type_v8i8: return T(Byte16::getType()); case Type_v4i8: return T(Byte16::getType()); case Type_v2f32: return T(Float4::getType()); default: assert(false); } } return reinterpret_cast<llvm::Type*>(t); } inline Type *T(llvm::Type *t) { return reinterpret_cast<Type*>(t); } Type *T(EmulatedType t) { return reinterpret_cast<Type*>(t); } inline llvm::Value *V(Value *t) { return reinterpret_cast<llvm::Value*>(t); } inline Value *V(llvm::Value *t) { return reinterpret_cast<Value*>(t); } inline std::vector<llvm::Type*> &T(std::vector<Type*> &t) { return reinterpret_cast<std::vector<llvm::Type*>&>(t); } inline llvm::BasicBlock *B(BasicBlock *t) { return reinterpret_cast<llvm::BasicBlock*>(t); } inline BasicBlock *B(llvm::BasicBlock *t) { return reinterpret_cast<BasicBlock*>(t); } static size_t typeSize(Type *type) { uintptr_t t = reinterpret_cast<uintptr_t>(type); if(t < EmulatedTypeCount) { switch(t) { case Type_v2i32: return 8; case Type_v4i16: return 8; case Type_v2i16: return 4; case Type_v8i8: return 8; case Type_v4i8: return 4; case Type_v2f32: return 8; default: assert(false); } } return T(type)->getPrimitiveSizeInBits() / 8; } static unsigned int elementCount(Type *type) { uintptr_t t = reinterpret_cast<uintptr_t>(type); if(t < EmulatedTypeCount) { switch(t) { case Type_v2i32: return 2; case Type_v4i16: return 4; case Type_v2i16: return 2; case Type_v8i8: return 8; case Type_v4i8: return 4; case Type_v2f32: return 2; default: assert(false); } } return llvm::cast<llvm::VectorType>(T(type))->getNumElements(); } Nucleus::Nucleus() { ::codegenMutex.lock(); // Reactor and LLVM are currently not thread safe llvm::InitializeNativeTarget(); #if REACTOR_LLVM_VERSION >= 7 llvm::InitializeNativeTargetAsmPrinter(); llvm::InitializeNativeTargetAsmParser(); #endif if(!::context) { ::context = new llvm::LLVMContext(); } #if defined(__x86_64__) static const char arch[] = "x86-64"; #elif defined(__i386__) static const char arch[] = "x86"; #elif defined(__aarch64__) static const char arch[] = "arm64"; #elif defined(__arm__) static const char arch[] = "arm"; #elif defined(__mips__) #if defined(__mips64) static const char arch[] = "mips64el"; #else static const char arch[] = "mipsel"; #endif #else #error "unknown architecture" #endif llvm::SmallVector<std::string, 1> mattrs; #if defined(__i386__) || defined(__x86_64__) mattrs.push_back(CPUID::supportsMMX() ? "+mmx" : "-mmx"); mattrs.push_back(CPUID::supportsCMOV() ? "+cmov" : "-cmov"); mattrs.push_back(CPUID::supportsSSE() ? "+sse" : "-sse"); mattrs.push_back(CPUID::supportsSSE2() ? "+sse2" : "-sse2"); mattrs.push_back(CPUID::supportsSSE3() ? "+sse3" : "-sse3"); mattrs.push_back(CPUID::supportsSSSE3() ? "+ssse3" : "-ssse3"); #if REACTOR_LLVM_VERSION < 7 mattrs.push_back(CPUID::supportsSSE4_1() ? "+sse41" : "-sse41"); #else mattrs.push_back(CPUID::supportsSSE4_1() ? "+sse4.1" : "-sse4.1"); #endif #elif defined(__arm__) #if __ARM_ARCH >= 8 mattrs.push_back("+armv8-a"); #else // armv7-a requires compiler-rt routines; otherwise, compiled kernel // might fail to link. #endif #endif #if REACTOR_LLVM_VERSION < 7 llvm::JITEmitDebugInfo = false; llvm::UnsafeFPMath = true; // llvm::NoInfsFPMath = true; // llvm::NoNaNsFPMath = true; #else llvm::TargetOptions targetOpts; targetOpts.UnsafeFPMath = false; // targetOpts.NoInfsFPMath = true; // targetOpts.NoNaNsFPMath = true; #endif if(!::reactorJIT) { #if REACTOR_LLVM_VERSION < 7 ::reactorJIT = new LLVMReactorJIT(arch, mattrs); #else ::reactorJIT = new LLVMReactorJIT(arch, mattrs, targetOpts); #endif } ::reactorJIT->startSession(); if(!::builder) { ::builder = new llvm::IRBuilder<>(*::context); } } Nucleus::~Nucleus() { ::reactorJIT->endSession(); ::codegenMutex.unlock(); } Routine *Nucleus::acquireRoutine(const char *name, bool runOptimizations) { if(::builder->GetInsertBlock()->empty() || !::builder->GetInsertBlock()->back().isTerminator()) { llvm::Type *type = ::function->getReturnType(); if(type->isVoidTy()) { createRetVoid(); } else { createRet(V(llvm::UndefValue::get(type))); } } if(false) { #if REACTOR_LLVM_VERSION < 7 std::string error; llvm::raw_fd_ostream file((std::string(name) + "-llvm-dump-unopt.txt").c_str(), error); #else std::error_code error; llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-unopt.txt", error); #endif ::module->print(file, 0); } if(runOptimizations) { optimize(); } if(false) { #if REACTOR_LLVM_VERSION < 7 std::string error; llvm::raw_fd_ostream file((std::string(name) + "-llvm-dump-opt.txt").c_str(), error); #else std::error_code error; llvm::raw_fd_ostream file(std::string(name) + "-llvm-dump-opt.txt", error); #endif ::module->print(file, 0); } LLVMRoutine *routine = ::reactorJIT->acquireRoutine(::function); return routine; } void Nucleus::optimize() { ::reactorJIT->optimize(::module); } Value *Nucleus::allocateStackVariable(Type *type, int arraySize) { // Need to allocate it in the entry block for mem2reg to work llvm::BasicBlock &entryBlock = ::function->getEntryBlock(); llvm::Instruction *declaration; if(arraySize) { #if REACTOR_LLVM_VERSION < 7 declaration = new llvm::AllocaInst(T(type), V(Nucleus::createConstantInt(arraySize))); #else declaration = new llvm::AllocaInst(T(type), 0, V(Nucleus::createConstantInt(arraySize))); #endif } else { #if REACTOR_LLVM_VERSION < 7 declaration = new llvm::AllocaInst(T(type), (llvm::Value*)nullptr); #else declaration = new llvm::AllocaInst(T(type), 0, (llvm::Value*)nullptr); #endif } entryBlock.getInstList().push_front(declaration); return V(declaration); } BasicBlock *Nucleus::createBasicBlock() { return B(llvm::BasicBlock::Create(*::context, "", ::function)); } BasicBlock *Nucleus::getInsertBlock() { return B(::builder->GetInsertBlock()); } void Nucleus::setInsertBlock(BasicBlock *basicBlock) { // assert(::builder->GetInsertBlock()->back().isTerminator()); ::builder->SetInsertPoint(B(basicBlock)); } void Nucleus::createFunction(Type *ReturnType, std::vector<Type*> &Params) { llvm::FunctionType *functionType = llvm::FunctionType::get(T(ReturnType), T(Params), false); ::function = llvm::Function::Create(functionType, llvm::GlobalValue::InternalLinkage, "", ::module); ::function->setCallingConv(llvm::CallingConv::C); #if defined(_WIN32) && REACTOR_LLVM_VERSION >= 7 // FIXME(capn): // On Windows, stack memory is committed in increments of 4 kB pages, with the last page // having a trap which allows the OS to grow the stack. For functions with a stack frame // larger than 4 kB this can cause an issue when a variable is accessed beyond the guard // page. Therefore the compiler emits a call to __chkstk in the function prolog to probe // the stack and ensure all pages have been committed. This is currently broken in LLVM // JIT, but we can prevent emitting the stack probe call: ::function->addFnAttr("stack-probe-size", "1048576"); #endif ::builder->SetInsertPoint(llvm::BasicBlock::Create(*::context, "", ::function)); } Value *Nucleus::getArgument(unsigned int index) { llvm::Function::arg_iterator args = ::function->arg_begin(); while(index) { args++; index--; } return V(&*args); } void Nucleus::createRetVoid() { ::builder->CreateRetVoid(); } void Nucleus::createRet(Value *v) { ::builder->CreateRet(V(v)); } void Nucleus::createBr(BasicBlock *dest) { ::builder->CreateBr(B(dest)); } void Nucleus::createCondBr(Value *cond, BasicBlock *ifTrue, BasicBlock *ifFalse) { ::builder->CreateCondBr(V(cond), B(ifTrue), B(ifFalse)); } Value *Nucleus::createAdd(Value *lhs, Value *rhs) { return V(::builder->CreateAdd(V(lhs), V(rhs))); } Value *Nucleus::createSub(Value *lhs, Value *rhs) { return V(::builder->CreateSub(V(lhs), V(rhs))); } Value *Nucleus::createMul(Value *lhs, Value *rhs) { return V(::builder->CreateMul(V(lhs), V(rhs))); } Value *Nucleus::createUDiv(Value *lhs, Value *rhs) { return V(::builder->CreateUDiv(V(lhs), V(rhs))); } Value *Nucleus::createSDiv(Value *lhs, Value *rhs) { return V(::builder->CreateSDiv(V(lhs), V(rhs))); } Value *Nucleus::createFAdd(Value *lhs, Value *rhs) { return V(::builder->CreateFAdd(V(lhs), V(rhs))); } Value *Nucleus::createFSub(Value *lhs, Value *rhs) { return V(::builder->CreateFSub(V(lhs), V(rhs))); } Value *Nucleus::createFMul(Value *lhs, Value *rhs) { return V(::builder->CreateFMul(V(lhs), V(rhs))); } Value *Nucleus::createFDiv(Value *lhs, Value *rhs) { return V(::builder->CreateFDiv(V(lhs), V(rhs))); } Value *Nucleus::createURem(Value *lhs, Value *rhs) { return V(::builder->CreateURem(V(lhs), V(rhs))); } Value *Nucleus::createSRem(Value *lhs, Value *rhs) { return V(::builder->CreateSRem(V(lhs), V(rhs))); } Value *Nucleus::createFRem(Value *lhs, Value *rhs) { return V(::builder->CreateFRem(V(lhs), V(rhs))); } Value *Nucleus::createShl(Value *lhs, Value *rhs) { return V(::builder->CreateShl(V(lhs), V(rhs))); } Value *Nucleus::createLShr(Value *lhs, Value *rhs) { return V(::builder->CreateLShr(V(lhs), V(rhs))); } Value *Nucleus::createAShr(Value *lhs, Value *rhs) { return V(::builder->CreateAShr(V(lhs), V(rhs))); } Value *Nucleus::createAnd(Value *lhs, Value *rhs) { return V(::builder->CreateAnd(V(lhs), V(rhs))); } Value *Nucleus::createOr(Value *lhs, Value *rhs) { return V(::builder->CreateOr(V(lhs), V(rhs))); } Value *Nucleus::createXor(Value *lhs, Value *rhs) { return V(::builder->CreateXor(V(lhs), V(rhs))); } Value *Nucleus::createNeg(Value *v) { return V(::builder->CreateNeg(V(v))); } Value *Nucleus::createFNeg(Value *v) { return V(::builder->CreateFNeg(V(v))); } Value *Nucleus::createNot(Value *v) { return V(::builder->CreateNot(V(v))); } Value *Nucleus::createLoad(Value *ptr, Type *type, bool isVolatile, unsigned int alignment) { uintptr_t t = reinterpret_cast<uintptr_t>(type); if(t < EmulatedTypeCount) { switch(t) { case Type_v2i32: case Type_v4i16: case Type_v8i8: case Type_v2f32: return createBitCast( createInsertElement( V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::getType()), 2))), createLoad(createBitCast(ptr, Pointer<Long>::getType()), Long::getType(), isVolatile, alignment), 0), type); case Type_v2i16: case Type_v4i8: if(alignment != 0) // Not a local variable (all vectors are 128-bit). { Value *u = V(llvm::UndefValue::get(llvm::VectorType::get(T(Long::getType()), 2))); Value *i = createLoad(createBitCast(ptr, Pointer<Int>::getType()), Int::getType(), isVolatile, alignment); i = createZExt(i, Long::getType()); Value *v = createInsertElement(u, i, 0); return createBitCast(v, type); } break; default: assert(false); } } assert(V(ptr)->getType()->getContainedType(0) == T(type)); return V(::builder->Insert(new llvm::LoadInst(V(ptr), "", isVolatile, alignment))); } Value *Nucleus::createStore(Value *value, Value *ptr, Type *type, bool isVolatile, unsigned int alignment) { uintptr_t t = reinterpret_cast<uintptr_t>(type); if(t < EmulatedTypeCount) { switch(t) { case Type_v2i32: case Type_v4i16: case Type_v8i8: case Type_v2f32: createStore( createExtractElement( createBitCast(value, T(llvm::VectorType::get(T(Long::getType()), 2))), Long::getType(), 0), createBitCast(ptr, Pointer<Long>::getType()), Long::getType(), isVolatile, alignment); return value; case Type_v2i16: case Type_v4i8: if(alignment != 0) // Not a local variable (all vectors are 128-bit). { createStore( createExtractElement(createBitCast(value, Int4::getType()), Int::getType(), 0), createBitCast(ptr, Pointer<Int>::getType()), Int::getType(), isVolatile, alignment); return value; } break; default: assert(false); } } assert(V(ptr)->getType()->getContainedType(0) == T(type)); ::builder->Insert(new llvm::StoreInst(V(value), V(ptr), isVolatile, alignment)); return value; } Value *Nucleus::createGEP(Value *ptr, Type *type, Value *index, bool unsignedIndex) { if(sizeof(void*) == 8) { if(unsignedIndex) { index = createZExt(index, Long::getType()); } else { index = createSExt(index, Long::getType()); } index = createMul(index, createConstantLong((int64_t)typeSize(type))); } else { index = createMul(index, createConstantInt((int)typeSize(type))); } assert(V(ptr)->getType()->getContainedType(0) == T(type)); return createBitCast( V(::builder->CreateGEP(V(createBitCast(ptr, T(llvm::PointerType::get(T(Byte::getType()), 0)))), V(index))), T(llvm::PointerType::get(T(type), 0))); } Value *Nucleus::createAtomicAdd(Value *ptr, Value *value) { return V(::builder->CreateAtomicRMW(llvm::AtomicRMWInst::Add, V(ptr), V(value), llvm::AtomicOrdering::SequentiallyConsistent)); } Value *Nucleus::createTrunc(Value *v, Type *destType) { return V(::builder->CreateTrunc(V(v), T(destType))); } Value *Nucleus::createZExt(Value *v, Type *destType) { return V(::builder->CreateZExt(V(v), T(destType))); } Value *Nucleus::createSExt(Value *v, Type *destType) { return V(::builder->CreateSExt(V(v), T(destType))); } Value *Nucleus::createFPToSI(Value *v, Type *destType) { return V(::builder->CreateFPToSI(V(v), T(destType))); } Value *Nucleus::createSIToFP(Value *v, Type *destType) { return V(::builder->CreateSIToFP(V(v), T(destType))); } Value *Nucleus::createFPTrunc(Value *v, Type *destType) { return V(::builder->CreateFPTrunc(V(v), T(destType))); } Value *Nucleus::createFPExt(Value *v, Type *destType) { return V(::builder->CreateFPExt(V(v), T(destType))); } Value *Nucleus::createBitCast(Value *v, Type *destType) { // Bitcasts must be between types of the same logical size. But with emulated narrow vectors we need // support for casting between scalars and wide vectors. Emulate them by writing to the stack and // reading back as the destination type. if(!V(v)->getType()->isVectorTy() && T(destType)->isVectorTy()) { Value *readAddress = allocateStackVariable(destType); Value *writeAddress = createBitCast(readAddress, T(llvm::PointerType::get(V(v)->getType(), 0))); createStore(v, writeAddress, T(V(v)->getType())); return createLoad(readAddress, destType); } else if(V(v)->getType()->isVectorTy() && !T(destType)->isVectorTy()) { Value *writeAddress = allocateStackVariable(T(V(v)->getType())); createStore(v, writeAddress, T(V(v)->getType())); Value *readAddress = createBitCast(writeAddress, T(llvm::PointerType::get(T(destType), 0))); return createLoad(readAddress, destType); } return V(::builder->CreateBitCast(V(v), T(destType))); } Value *Nucleus::createICmpEQ(Value *lhs, Value *rhs) { return V(::builder->CreateICmpEQ(V(lhs), V(rhs))); } Value *Nucleus::createICmpNE(Value *lhs, Value *rhs) { return V(::builder->CreateICmpNE(V(lhs), V(rhs))); } Value *Nucleus::createICmpUGT(Value *lhs, Value *rhs) { return V(::builder->CreateICmpUGT(V(lhs), V(rhs))); } Value *Nucleus::createICmpUGE(Value *lhs, Value *rhs) { return V(::builder->CreateICmpUGE(V(lhs), V(rhs))); } Value *Nucleus::createICmpULT(Value *lhs, Value *rhs) { return V(::builder->CreateICmpULT(V(lhs), V(rhs))); } Value *Nucleus::createICmpULE(Value *lhs, Value *rhs) { return V(::builder->CreateICmpULE(V(lhs), V(rhs))); } Value *Nucleus::createICmpSGT(Value *lhs, Value *rhs) { return V(::builder->CreateICmpSGT(V(lhs), V(rhs))); } Value *Nucleus::createICmpSGE(Value *lhs, Value *rhs) { return V(::builder->CreateICmpSGE(V(lhs), V(rhs))); } Value *Nucleus::createICmpSLT(Value *lhs, Value *rhs) { return V(::builder->CreateICmpSLT(V(lhs), V(rhs))); } Value *Nucleus::createICmpSLE(Value *lhs, Value *rhs) { return V(::builder->CreateICmpSLE(V(lhs), V(rhs))); } Value *Nucleus::createFCmpOEQ(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpOEQ(V(lhs), V(rhs))); } Value *Nucleus::createFCmpOGT(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpOGT(V(lhs), V(rhs))); } Value *Nucleus::createFCmpOGE(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpOGE(V(lhs), V(rhs))); } Value *Nucleus::createFCmpOLT(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpOLT(V(lhs), V(rhs))); } Value *Nucleus::createFCmpOLE(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpOLE(V(lhs), V(rhs))); } Value *Nucleus::createFCmpONE(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpONE(V(lhs), V(rhs))); } Value *Nucleus::createFCmpORD(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpORD(V(lhs), V(rhs))); } Value *Nucleus::createFCmpUNO(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpUNO(V(lhs), V(rhs))); } Value *Nucleus::createFCmpUEQ(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpUEQ(V(lhs), V(rhs))); } Value *Nucleus::createFCmpUGT(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpUGT(V(lhs), V(rhs))); } Value *Nucleus::createFCmpUGE(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpUGE(V(lhs), V(rhs))); } Value *Nucleus::createFCmpULT(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpULT(V(lhs), V(rhs))); } Value *Nucleus::createFCmpULE(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpULE(V(lhs), V(rhs))); } Value *Nucleus::createFCmpUNE(Value *lhs, Value *rhs) { return V(::builder->CreateFCmpULE(V(lhs), V(rhs))); } Value *Nucleus::createExtractElement(Value *vector, Type *type, int index) { assert(V(vector)->getType()->getContainedType(0) == T(type)); return V(::builder->CreateExtractElement(V(vector), V(createConstantInt(index)))); } Value *Nucleus::createInsertElement(Value *vector, Value *element, int index) { return V(::builder->CreateInsertElement(V(vector), V(element), V(createConstantInt(index)))); } Value *Nucleus::createShuffleVector(Value *v1, Value *v2, const int *select) { int size = llvm::cast<llvm::VectorType>(V(v1)->getType())->getNumElements(); const int maxSize = 16; llvm::Constant *swizzle[maxSize]; assert(size <= maxSize); for(int i = 0; i < size; i++) { swizzle[i] = llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), select[i]); } llvm::Value *shuffle = llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(swizzle, size)); return V(::builder->CreateShuffleVector(V(v1), V(v2), shuffle)); } Value *Nucleus::createSelect(Value *c, Value *ifTrue, Value *ifFalse) { return V(::builder->CreateSelect(V(c), V(ifTrue), V(ifFalse))); } SwitchCases *Nucleus::createSwitch(Value *control, BasicBlock *defaultBranch, unsigned numCases) { return reinterpret_cast<SwitchCases*>(::builder->CreateSwitch(V(control), B(defaultBranch), numCases)); } void Nucleus::addSwitchCase(SwitchCases *switchCases, int label, BasicBlock *branch) { llvm::SwitchInst *sw = reinterpret_cast<llvm::SwitchInst *>(switchCases); sw->addCase(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), label, true), B(branch)); } void Nucleus::createUnreachable() { ::builder->CreateUnreachable(); } static Value *createSwizzle4(Value *val, unsigned char select) { int swizzle[4] = { (select >> 0) & 0x03, (select >> 2) & 0x03, (select >> 4) & 0x03, (select >> 6) & 0x03, }; return Nucleus::createShuffleVector(val, val, swizzle); } static Value *createMask4(Value *lhs, Value *rhs, unsigned char select) { bool mask[4] = {false, false, false, false}; mask[(select >> 0) & 0x03] = true; mask[(select >> 2) & 0x03] = true; mask[(select >> 4) & 0x03] = true; mask[(select >> 6) & 0x03] = true; int swizzle[4] = { mask[0] ? 4 : 0, mask[1] ? 5 : 1, mask[2] ? 6 : 2, mask[3] ? 7 : 3, }; return Nucleus::createShuffleVector(lhs, rhs, swizzle); } Type *Nucleus::getPointerType(Type *ElementType) { return T(llvm::PointerType::get(T(ElementType), 0)); } Value *Nucleus::createNullValue(Type *Ty) { return V(llvm::Constant::getNullValue(T(Ty))); } Value *Nucleus::createConstantLong(int64_t i) { return V(llvm::ConstantInt::get(llvm::Type::getInt64Ty(*::context), i, true)); } Value *Nucleus::createConstantInt(int i) { return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), i, true)); } Value *Nucleus::createConstantInt(unsigned int i) { return V(llvm::ConstantInt::get(llvm::Type::getInt32Ty(*::context), i, false)); } Value *Nucleus::createConstantBool(bool b) { return V(llvm::ConstantInt::get(llvm::Type::getInt1Ty(*::context), b)); } Value *Nucleus::createConstantByte(signed char i) { return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*::context), i, true)); } Value *Nucleus::createConstantByte(unsigned char i) { return V(llvm::ConstantInt::get(llvm::Type::getInt8Ty(*::context), i, false)); } Value *Nucleus::createConstantShort(short i) { return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*::context), i, true)); } Value *Nucleus::createConstantShort(unsigned short i) { return V(llvm::ConstantInt::get(llvm::Type::getInt16Ty(*::context), i, false)); } Value *Nucleus::createConstantFloat(float x) { return V(llvm::ConstantFP::get(T(Float::getType()), x)); } Value *Nucleus::createNullPointer(Type *Ty) { return V(llvm::ConstantPointerNull::get(llvm::PointerType::get(T(Ty), 0))); } Value *Nucleus::createConstantVector(const int64_t *constants, Type *type) { assert(llvm::isa<llvm::VectorType>(T(type))); const int numConstants = elementCount(type); // Number of provided constants for the (emulated) type. const int numElements = llvm::cast<llvm::VectorType>(T(type))->getNumElements(); // Number of elements of the underlying vector type. assert(numElements <= 16 && numConstants <= numElements); llvm::Constant *constantVector[16]; for(int i = 0; i < numElements; i++) { constantVector[i] = llvm::ConstantInt::get(T(type)->getContainedType(0), constants[i % numConstants]); } return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(constantVector, numElements))); } Value *Nucleus::createConstantVector(const double *constants, Type *type) { assert(llvm::isa<llvm::VectorType>(T(type))); const int numConstants = elementCount(type); // Number of provided constants for the (emulated) type. const int numElements = llvm::cast<llvm::VectorType>(T(type))->getNumElements(); // Number of elements of the underlying vector type. assert(numElements <= 8 && numConstants <= numElements); llvm::Constant *constantVector[8]; for(int i = 0; i < numElements; i++) { constantVector[i] = llvm::ConstantFP::get(T(type)->getContainedType(0), constants[i % numConstants]); } return V(llvm::ConstantVector::get(llvm::ArrayRef<llvm::Constant*>(constantVector, numElements))); } Type *Void::getType() { return T(llvm::Type::getVoidTy(*::context)); } Bool::Bool(Argument<Bool> argument) { storeValue(argument.value); } Bool::Bool(bool x) { storeValue(Nucleus::createConstantBool(x)); } Bool::Bool(RValue<Bool> rhs) { storeValue(rhs.value); } Bool::Bool(const Bool &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Bool::Bool(const Reference<Bool> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Bool> Bool::operator=(RValue<Bool> rhs) { storeValue(rhs.value); return rhs; } RValue<Bool> Bool::operator=(const Bool &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Bool>(value); } RValue<Bool> Bool::operator=(const Reference<Bool> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Bool>(value); } RValue<Bool> operator!(RValue<Bool> val) { return RValue<Bool>(Nucleus::createNot(val.value)); } RValue<Bool> operator&&(RValue<Bool> lhs, RValue<Bool> rhs) { return RValue<Bool>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Bool> operator||(RValue<Bool> lhs, RValue<Bool> rhs) { return RValue<Bool>(Nucleus::createOr(lhs.value, rhs.value)); } Type *Bool::getType() { return T(llvm::Type::getInt1Ty(*::context)); } Byte::Byte(Argument<Byte> argument) { storeValue(argument.value); } Byte::Byte(RValue<Int> cast) { Value *integer = Nucleus::createTrunc(cast.value, Byte::getType()); storeValue(integer); } Byte::Byte(RValue<UInt> cast) { Value *integer = Nucleus::createTrunc(cast.value, Byte::getType()); storeValue(integer); } Byte::Byte(RValue<UShort> cast) { Value *integer = Nucleus::createTrunc(cast.value, Byte::getType()); storeValue(integer); } Byte::Byte(int x) { storeValue(Nucleus::createConstantByte((unsigned char)x)); } Byte::Byte(unsigned char x) { storeValue(Nucleus::createConstantByte(x)); } Byte::Byte(RValue<Byte> rhs) { storeValue(rhs.value); } Byte::Byte(const Byte &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Byte::Byte(const Reference<Byte> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Byte> Byte::operator=(RValue<Byte> rhs) { storeValue(rhs.value); return rhs; } RValue<Byte> Byte::operator=(const Byte &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte>(value); } RValue<Byte> Byte::operator=(const Reference<Byte> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte>(value); } RValue<Byte> operator+(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Byte> operator-(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Byte> operator*(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<Byte> operator/(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createUDiv(lhs.value, rhs.value)); } RValue<Byte> operator%(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createURem(lhs.value, rhs.value)); } RValue<Byte> operator&(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Byte> operator|(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Byte> operator^(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Byte> operator<<(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<Byte> operator>>(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Byte>(Nucleus::createLShr(lhs.value, rhs.value)); } RValue<Byte> operator+=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs + rhs; } RValue<Byte> operator-=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs - rhs; } RValue<Byte> operator*=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs * rhs; } RValue<Byte> operator/=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs / rhs; } RValue<Byte> operator%=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs % rhs; } RValue<Byte> operator&=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs & rhs; } RValue<Byte> operator|=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs | rhs; } RValue<Byte> operator^=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs ^ rhs; } RValue<Byte> operator<<=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs << rhs; } RValue<Byte> operator>>=(Byte &lhs, RValue<Byte> rhs) { return lhs = lhs >> rhs; } RValue<Byte> operator+(RValue<Byte> val) { return val; } RValue<Byte> operator-(RValue<Byte> val) { return RValue<Byte>(Nucleus::createNeg(val.value)); } RValue<Byte> operator~(RValue<Byte> val) { return RValue<Byte>(Nucleus::createNot(val.value)); } RValue<Byte> operator++(Byte &val, int) // Post-increment { RValue<Byte> res = val; Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantByte((unsigned char)1)); val.storeValue(inc); return res; } const Byte &operator++(Byte &val) // Pre-increment { Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantByte((unsigned char)1)); val.storeValue(inc); return val; } RValue<Byte> operator--(Byte &val, int) // Post-decrement { RValue<Byte> res = val; Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantByte((unsigned char)1)); val.storeValue(inc); return res; } const Byte &operator--(Byte &val) // Pre-decrement { Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantByte((unsigned char)1)); val.storeValue(inc); return val; } RValue<Bool> operator<(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<Byte> lhs, RValue<Byte> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } Type *Byte::getType() { return T(llvm::Type::getInt8Ty(*::context)); } SByte::SByte(Argument<SByte> argument) { storeValue(argument.value); } SByte::SByte(RValue<Int> cast) { Value *integer = Nucleus::createTrunc(cast.value, SByte::getType()); storeValue(integer); } SByte::SByte(RValue<Short> cast) { Value *integer = Nucleus::createTrunc(cast.value, SByte::getType()); storeValue(integer); } SByte::SByte(signed char x) { storeValue(Nucleus::createConstantByte(x)); } SByte::SByte(RValue<SByte> rhs) { storeValue(rhs.value); } SByte::SByte(const SByte &rhs) { Value *value = rhs.loadValue(); storeValue(value); } SByte::SByte(const Reference<SByte> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<SByte> SByte::operator=(RValue<SByte> rhs) { storeValue(rhs.value); return rhs; } RValue<SByte> SByte::operator=(const SByte &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<SByte>(value); } RValue<SByte> SByte::operator=(const Reference<SByte> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<SByte>(value); } RValue<SByte> operator+(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<SByte> operator-(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<SByte> operator*(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<SByte> operator/(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createSDiv(lhs.value, rhs.value)); } RValue<SByte> operator%(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createSRem(lhs.value, rhs.value)); } RValue<SByte> operator&(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<SByte> operator|(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<SByte> operator^(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<SByte> operator<<(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<SByte> operator>>(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<SByte>(Nucleus::createAShr(lhs.value, rhs.value)); } RValue<SByte> operator+=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs + rhs; } RValue<SByte> operator-=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs - rhs; } RValue<SByte> operator*=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs * rhs; } RValue<SByte> operator/=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs / rhs; } RValue<SByte> operator%=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs % rhs; } RValue<SByte> operator&=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs & rhs; } RValue<SByte> operator|=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs | rhs; } RValue<SByte> operator^=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs ^ rhs; } RValue<SByte> operator<<=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs << rhs; } RValue<SByte> operator>>=(SByte &lhs, RValue<SByte> rhs) { return lhs = lhs >> rhs; } RValue<SByte> operator+(RValue<SByte> val) { return val; } RValue<SByte> operator-(RValue<SByte> val) { return RValue<SByte>(Nucleus::createNeg(val.value)); } RValue<SByte> operator~(RValue<SByte> val) { return RValue<SByte>(Nucleus::createNot(val.value)); } RValue<SByte> operator++(SByte &val, int) // Post-increment { RValue<SByte> res = val; Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantByte((signed char)1)); val.storeValue(inc); return res; } const SByte &operator++(SByte &val) // Pre-increment { Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantByte((signed char)1)); val.storeValue(inc); return val; } RValue<SByte> operator--(SByte &val, int) // Post-decrement { RValue<SByte> res = val; Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantByte((signed char)1)); val.storeValue(inc); return res; } const SByte &operator--(SByte &val) // Pre-decrement { Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantByte((signed char)1)); val.storeValue(inc); return val; } RValue<Bool> operator<(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<SByte> lhs, RValue<SByte> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } Type *SByte::getType() { return T(llvm::Type::getInt8Ty(*::context)); } Short::Short(Argument<Short> argument) { storeValue(argument.value); } Short::Short(RValue<Int> cast) { Value *integer = Nucleus::createTrunc(cast.value, Short::getType()); storeValue(integer); } Short::Short(short x) { storeValue(Nucleus::createConstantShort(x)); } Short::Short(RValue<Short> rhs) { storeValue(rhs.value); } Short::Short(const Short &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Short::Short(const Reference<Short> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Short> Short::operator=(RValue<Short> rhs) { storeValue(rhs.value); return rhs; } RValue<Short> Short::operator=(const Short &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short>(value); } RValue<Short> Short::operator=(const Reference<Short> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short>(value); } RValue<Short> operator+(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Short> operator-(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Short> operator*(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<Short> operator/(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createSDiv(lhs.value, rhs.value)); } RValue<Short> operator%(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createSRem(lhs.value, rhs.value)); } RValue<Short> operator&(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Short> operator|(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Short> operator^(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Short> operator<<(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<Short> operator>>(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Short>(Nucleus::createAShr(lhs.value, rhs.value)); } RValue<Short> operator+=(Short &lhs, RValue<Short> rhs) { return lhs = lhs + rhs; } RValue<Short> operator-=(Short &lhs, RValue<Short> rhs) { return lhs = lhs - rhs; } RValue<Short> operator*=(Short &lhs, RValue<Short> rhs) { return lhs = lhs * rhs; } RValue<Short> operator/=(Short &lhs, RValue<Short> rhs) { return lhs = lhs / rhs; } RValue<Short> operator%=(Short &lhs, RValue<Short> rhs) { return lhs = lhs % rhs; } RValue<Short> operator&=(Short &lhs, RValue<Short> rhs) { return lhs = lhs & rhs; } RValue<Short> operator|=(Short &lhs, RValue<Short> rhs) { return lhs = lhs | rhs; } RValue<Short> operator^=(Short &lhs, RValue<Short> rhs) { return lhs = lhs ^ rhs; } RValue<Short> operator<<=(Short &lhs, RValue<Short> rhs) { return lhs = lhs << rhs; } RValue<Short> operator>>=(Short &lhs, RValue<Short> rhs) { return lhs = lhs >> rhs; } RValue<Short> operator+(RValue<Short> val) { return val; } RValue<Short> operator-(RValue<Short> val) { return RValue<Short>(Nucleus::createNeg(val.value)); } RValue<Short> operator~(RValue<Short> val) { return RValue<Short>(Nucleus::createNot(val.value)); } RValue<Short> operator++(Short &val, int) // Post-increment { RValue<Short> res = val; Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantShort((short)1)); val.storeValue(inc); return res; } const Short &operator++(Short &val) // Pre-increment { Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantShort((short)1)); val.storeValue(inc); return val; } RValue<Short> operator--(Short &val, int) // Post-decrement { RValue<Short> res = val; Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantShort((short)1)); val.storeValue(inc); return res; } const Short &operator--(Short &val) // Pre-decrement { Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantShort((short)1)); val.storeValue(inc); return val; } RValue<Bool> operator<(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<Short> lhs, RValue<Short> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } Type *Short::getType() { return T(llvm::Type::getInt16Ty(*::context)); } UShort::UShort(Argument<UShort> argument) { storeValue(argument.value); } UShort::UShort(RValue<UInt> cast) { Value *integer = Nucleus::createTrunc(cast.value, UShort::getType()); storeValue(integer); } UShort::UShort(RValue<Int> cast) { Value *integer = Nucleus::createTrunc(cast.value, UShort::getType()); storeValue(integer); } UShort::UShort(unsigned short x) { storeValue(Nucleus::createConstantShort(x)); } UShort::UShort(RValue<UShort> rhs) { storeValue(rhs.value); } UShort::UShort(const UShort &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort::UShort(const Reference<UShort> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<UShort> UShort::operator=(RValue<UShort> rhs) { storeValue(rhs.value); return rhs; } RValue<UShort> UShort::operator=(const UShort &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort>(value); } RValue<UShort> UShort::operator=(const Reference<UShort> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort>(value); } RValue<UShort> operator+(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UShort> operator-(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<UShort> operator*(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UShort> operator/(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createUDiv(lhs.value, rhs.value)); } RValue<UShort> operator%(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createURem(lhs.value, rhs.value)); } RValue<UShort> operator&(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UShort> operator|(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UShort> operator^(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UShort> operator<<(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<UShort> operator>>(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<UShort>(Nucleus::createLShr(lhs.value, rhs.value)); } RValue<UShort> operator+=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs + rhs; } RValue<UShort> operator-=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs - rhs; } RValue<UShort> operator*=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs * rhs; } RValue<UShort> operator/=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs / rhs; } RValue<UShort> operator%=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs % rhs; } RValue<UShort> operator&=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs & rhs; } RValue<UShort> operator|=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs | rhs; } RValue<UShort> operator^=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs ^ rhs; } RValue<UShort> operator<<=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs << rhs; } RValue<UShort> operator>>=(UShort &lhs, RValue<UShort> rhs) { return lhs = lhs >> rhs; } RValue<UShort> operator+(RValue<UShort> val) { return val; } RValue<UShort> operator-(RValue<UShort> val) { return RValue<UShort>(Nucleus::createNeg(val.value)); } RValue<UShort> operator~(RValue<UShort> val) { return RValue<UShort>(Nucleus::createNot(val.value)); } RValue<UShort> operator++(UShort &val, int) // Post-increment { RValue<UShort> res = val; Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantShort((unsigned short)1)); val.storeValue(inc); return res; } const UShort &operator++(UShort &val) // Pre-increment { Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantShort((unsigned short)1)); val.storeValue(inc); return val; } RValue<UShort> operator--(UShort &val, int) // Post-decrement { RValue<UShort> res = val; Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantShort((unsigned short)1)); val.storeValue(inc); return res; } const UShort &operator--(UShort &val) // Pre-decrement { Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantShort((unsigned short)1)); val.storeValue(inc); return val; } RValue<Bool> operator<(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<UShort> lhs, RValue<UShort> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } Type *UShort::getType() { return T(llvm::Type::getInt16Ty(*::context)); } Byte4::Byte4(RValue<Byte8> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Byte4::Byte4(const Reference<Byte4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Type *Byte4::getType() { return T(Type_v4i8); } Type *SByte4::getType() { return T(Type_v4i8); } Byte8::Byte8(uint8_t x0, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4, uint8_t x5, uint8_t x6, uint8_t x7) { int64_t constantVector[8] = {x0, x1, x2, x3, x4, x5, x6, x7}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Byte8::Byte8(RValue<Byte8> rhs) { storeValue(rhs.value); } Byte8::Byte8(const Byte8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Byte8::Byte8(const Reference<Byte8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Byte8> Byte8::operator=(RValue<Byte8> rhs) { storeValue(rhs.value); return rhs; } RValue<Byte8> Byte8::operator=(const Byte8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte8>(value); } RValue<Byte8> Byte8::operator=(const Reference<Byte8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte8>(value); } RValue<Byte8> operator+(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Byte8> operator-(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createSub(lhs.value, rhs.value)); } // RValue<Byte8> operator*(RValue<Byte8> lhs, RValue<Byte8> rhs) // { // return RValue<Byte8>(Nucleus::createMul(lhs.value, rhs.value)); // } // RValue<Byte8> operator/(RValue<Byte8> lhs, RValue<Byte8> rhs) // { // return RValue<Byte8>(Nucleus::createUDiv(lhs.value, rhs.value)); // } // RValue<Byte8> operator%(RValue<Byte8> lhs, RValue<Byte8> rhs) // { // return RValue<Byte8>(Nucleus::createURem(lhs.value, rhs.value)); // } RValue<Byte8> operator&(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Byte8> operator|(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Byte8> operator^(RValue<Byte8> lhs, RValue<Byte8> rhs) { return RValue<Byte8>(Nucleus::createXor(lhs.value, rhs.value)); } // RValue<Byte8> operator<<(RValue<Byte8> lhs, unsigned char rhs) // { // return RValue<Byte8>(Nucleus::createShl(lhs.value, rhs.value)); // } // RValue<Byte8> operator>>(RValue<Byte8> lhs, unsigned char rhs) // { // return RValue<Byte8>(Nucleus::createLShr(lhs.value, rhs.value)); // } RValue<Byte8> operator+=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs + rhs; } RValue<Byte8> operator-=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs - rhs; } // RValue<Byte8> operator*=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs * rhs; // } // RValue<Byte8> operator/=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs / rhs; // } // RValue<Byte8> operator%=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs % rhs; // } RValue<Byte8> operator&=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs & rhs; } RValue<Byte8> operator|=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs | rhs; } RValue<Byte8> operator^=(Byte8 &lhs, RValue<Byte8> rhs) { return lhs = lhs ^ rhs; } // RValue<Byte8> operator<<=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs << rhs; // } // RValue<Byte8> operator>>=(Byte8 &lhs, RValue<Byte8> rhs) // { // return lhs = lhs >> rhs; // } // RValue<Byte8> operator+(RValue<Byte8> val) // { // return val; // } // RValue<Byte8> operator-(RValue<Byte8> val) // { // return RValue<Byte8>(Nucleus::createNeg(val.value)); // } RValue<Byte8> operator~(RValue<Byte8> val) { return RValue<Byte8>(Nucleus::createNot(val.value)); } RValue<Byte8> AddSat(RValue<Byte8> x, RValue<Byte8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::paddusb(x, y); #else return As<Byte8>(V(lowerPUADDSAT(V(x.value), V(y.value)))); #endif } RValue<Byte8> SubSat(RValue<Byte8> x, RValue<Byte8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::psubusb(x, y); #else return As<Byte8>(V(lowerPUSUBSAT(V(x.value), V(y.value)))); #endif } RValue<Short4> Unpack(RValue<Byte4> x) { int shuffle[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}; // Real type is v16i8 return As<Short4>(Nucleus::createShuffleVector(x.value, x.value, shuffle)); } RValue<Short4> Unpack(RValue<Byte4> x, RValue<Byte4> y) { return UnpackLow(As<Byte8>(x), As<Byte8>(y)); } RValue<Short4> UnpackLow(RValue<Byte8> x, RValue<Byte8> y) { int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8 return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Short4> UnpackHigh(RValue<Byte8> x, RValue<Byte8> y) { int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8 auto lowHigh = RValue<Byte16>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); return As<Short4>(Swizzle(As<Int4>(lowHigh), 0xEE)); } RValue<Int> SignMask(RValue<Byte8> x) { #if defined(__i386__) || defined(__x86_64__) return x86::pmovmskb(x); #else return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType())))); #endif } // RValue<Byte8> CmpGT(RValue<Byte8> x, RValue<Byte8> y) // { //#if defined(__i386__) || defined(__x86_64__) // return x86::pcmpgtb(x, y); // FIXME: Signedness //#else // return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType())))); //#endif // } RValue<Byte8> CmpEQ(RValue<Byte8> x, RValue<Byte8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pcmpeqb(x, y); #else return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType())))); #endif } Type *Byte8::getType() { return T(Type_v8i8); } SByte8::SByte8(uint8_t x0, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t x4, uint8_t x5, uint8_t x6, uint8_t x7) { int64_t constantVector[8] = {x0, x1, x2, x3, x4, x5, x6, x7}; Value *vector = Nucleus::createConstantVector(constantVector, getType()); storeValue(Nucleus::createBitCast(vector, getType())); } SByte8::SByte8(RValue<SByte8> rhs) { storeValue(rhs.value); } SByte8::SByte8(const SByte8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } SByte8::SByte8(const Reference<SByte8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<SByte8> SByte8::operator=(RValue<SByte8> rhs) { storeValue(rhs.value); return rhs; } RValue<SByte8> SByte8::operator=(const SByte8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<SByte8>(value); } RValue<SByte8> SByte8::operator=(const Reference<SByte8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<SByte8>(value); } RValue<SByte8> operator+(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<SByte8> operator-(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createSub(lhs.value, rhs.value)); } // RValue<SByte8> operator*(RValue<SByte8> lhs, RValue<SByte8> rhs) // { // return RValue<SByte8>(Nucleus::createMul(lhs.value, rhs.value)); // } // RValue<SByte8> operator/(RValue<SByte8> lhs, RValue<SByte8> rhs) // { // return RValue<SByte8>(Nucleus::createSDiv(lhs.value, rhs.value)); // } // RValue<SByte8> operator%(RValue<SByte8> lhs, RValue<SByte8> rhs) // { // return RValue<SByte8>(Nucleus::createSRem(lhs.value, rhs.value)); // } RValue<SByte8> operator&(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<SByte8> operator|(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<SByte8> operator^(RValue<SByte8> lhs, RValue<SByte8> rhs) { return RValue<SByte8>(Nucleus::createXor(lhs.value, rhs.value)); } // RValue<SByte8> operator<<(RValue<SByte8> lhs, unsigned char rhs) // { // return RValue<SByte8>(Nucleus::createShl(lhs.value, rhs.value)); // } // RValue<SByte8> operator>>(RValue<SByte8> lhs, unsigned char rhs) // { // return RValue<SByte8>(Nucleus::createAShr(lhs.value, rhs.value)); // } RValue<SByte8> operator+=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs + rhs; } RValue<SByte8> operator-=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs - rhs; } // RValue<SByte8> operator*=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs * rhs; // } // RValue<SByte8> operator/=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs / rhs; // } // RValue<SByte8> operator%=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs % rhs; // } RValue<SByte8> operator&=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs & rhs; } RValue<SByte8> operator|=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs | rhs; } RValue<SByte8> operator^=(SByte8 &lhs, RValue<SByte8> rhs) { return lhs = lhs ^ rhs; } // RValue<SByte8> operator<<=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs << rhs; // } // RValue<SByte8> operator>>=(SByte8 &lhs, RValue<SByte8> rhs) // { // return lhs = lhs >> rhs; // } // RValue<SByte8> operator+(RValue<SByte8> val) // { // return val; // } // RValue<SByte8> operator-(RValue<SByte8> val) // { // return RValue<SByte8>(Nucleus::createNeg(val.value)); // } RValue<SByte8> operator~(RValue<SByte8> val) { return RValue<SByte8>(Nucleus::createNot(val.value)); } RValue<SByte8> AddSat(RValue<SByte8> x, RValue<SByte8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::paddsb(x, y); #else return As<SByte8>(V(lowerPSADDSAT(V(x.value), V(y.value)))); #endif } RValue<SByte8> SubSat(RValue<SByte8> x, RValue<SByte8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::psubsb(x, y); #else return As<SByte8>(V(lowerPSSUBSAT(V(x.value), V(y.value)))); #endif } RValue<Short4> UnpackLow(RValue<SByte8> x, RValue<SByte8> y) { int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8 return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Short4> UnpackHigh(RValue<SByte8> x, RValue<SByte8> y) { int shuffle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; // Real type is v16i8 auto lowHigh = RValue<Byte16>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); return As<Short4>(Swizzle(As<Int4>(lowHigh), 0xEE)); } RValue<Int> SignMask(RValue<SByte8> x) { #if defined(__i386__) || defined(__x86_64__) return x86::pmovmskb(As<Byte8>(x)); #else return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType())))); #endif } RValue<Byte8> CmpGT(RValue<SByte8> x, RValue<SByte8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pcmpgtb(x, y); #else return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType())))); #endif } RValue<Byte8> CmpEQ(RValue<SByte8> x, RValue<SByte8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pcmpeqb(As<Byte8>(x), As<Byte8>(y)); #else return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType())))); #endif } Type *SByte8::getType() { return T(Type_v8i8); } Byte16::Byte16(RValue<Byte16> rhs) { storeValue(rhs.value); } Byte16::Byte16(const Byte16 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Byte16::Byte16(const Reference<Byte16> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Byte16> Byte16::operator=(RValue<Byte16> rhs) { storeValue(rhs.value); return rhs; } RValue<Byte16> Byte16::operator=(const Byte16 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte16>(value); } RValue<Byte16> Byte16::operator=(const Reference<Byte16> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Byte16>(value); } Type *Byte16::getType() { return T(llvm::VectorType::get(T(Byte::getType()), 16)); } Type *SByte16::getType() { return T(llvm::VectorType::get(T(SByte::getType()), 16)); } Short2::Short2(RValue<Short4> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Type *Short2::getType() { return T(Type_v2i16); } UShort2::UShort2(RValue<UShort4> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Type *UShort2::getType() { return T(Type_v2i16); } Short4::Short4(RValue<Int> cast) { Value *vector = loadValue(); Value *element = Nucleus::createTrunc(cast.value, Short::getType()); Value *insert = Nucleus::createInsertElement(vector, element, 0); Value *swizzle = Swizzle(RValue<Short4>(insert), 0x00).value; storeValue(swizzle); } Short4::Short4(RValue<Int4> cast) { int select[8] = {0, 2, 4, 6, 0, 2, 4, 6}; Value *short8 = Nucleus::createBitCast(cast.value, Short8::getType()); Value *packed = Nucleus::createShuffleVector(short8, short8, select); Value *short4 = As<Short4>(Int2(As<Int4>(packed))).value; storeValue(short4); } // Short4::Short4(RValue<Float> cast) // { // } Short4::Short4(RValue<Float4> cast) { Int4 v4i32 = Int4(cast); #if defined(__i386__) || defined(__x86_64__) v4i32 = As<Int4>(x86::packssdw(v4i32, v4i32)); #else Value *v = v4i32.loadValue(); v4i32 = As<Int4>(V(lowerPack(V(v), V(v), true))); #endif storeValue(As<Short4>(Int2(v4i32)).value); } Short4::Short4(short xyzw) { int64_t constantVector[4] = {xyzw, xyzw, xyzw, xyzw}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Short4::Short4(short x, short y, short z, short w) { int64_t constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Short4::Short4(RValue<Short4> rhs) { storeValue(rhs.value); } Short4::Short4(const Short4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Short4::Short4(const Reference<Short4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Short4::Short4(RValue<UShort4> rhs) { storeValue(rhs.value); } Short4::Short4(const UShort4 &rhs) { storeValue(rhs.loadValue()); } Short4::Short4(const Reference<UShort4> &rhs) { storeValue(rhs.loadValue()); } RValue<Short4> Short4::operator=(RValue<Short4> rhs) { storeValue(rhs.value); return rhs; } RValue<Short4> Short4::operator=(const Short4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short4>(value); } RValue<Short4> Short4::operator=(const Reference<Short4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short4>(value); } RValue<Short4> Short4::operator=(RValue<UShort4> rhs) { storeValue(rhs.value); return RValue<Short4>(rhs); } RValue<Short4> Short4::operator=(const UShort4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short4>(value); } RValue<Short4> Short4::operator=(const Reference<UShort4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Short4>(value); } RValue<Short4> operator+(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Short4> operator-(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Short4> operator*(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createMul(lhs.value, rhs.value)); } // RValue<Short4> operator/(RValue<Short4> lhs, RValue<Short4> rhs) // { // return RValue<Short4>(Nucleus::createSDiv(lhs.value, rhs.value)); // } // RValue<Short4> operator%(RValue<Short4> lhs, RValue<Short4> rhs) // { // return RValue<Short4>(Nucleus::createSRem(lhs.value, rhs.value)); // } RValue<Short4> operator&(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Short4> operator|(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Short4> operator^(RValue<Short4> lhs, RValue<Short4> rhs) { return RValue<Short4>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Short4> operator<<(RValue<Short4> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) // return RValue<Short4>(Nucleus::createShl(lhs.value, rhs.value)); return x86::psllw(lhs, rhs); #else return As<Short4>(V(lowerVectorShl(V(lhs.value), rhs))); #endif } RValue<Short4> operator>>(RValue<Short4> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return x86::psraw(lhs, rhs); #else return As<Short4>(V(lowerVectorAShr(V(lhs.value), rhs))); #endif } RValue<Short4> operator+=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs + rhs; } RValue<Short4> operator-=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs - rhs; } RValue<Short4> operator*=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs * rhs; } // RValue<Short4> operator/=(Short4 &lhs, RValue<Short4> rhs) // { // return lhs = lhs / rhs; // } // RValue<Short4> operator%=(Short4 &lhs, RValue<Short4> rhs) // { // return lhs = lhs % rhs; // } RValue<Short4> operator&=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs & rhs; } RValue<Short4> operator|=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs | rhs; } RValue<Short4> operator^=(Short4 &lhs, RValue<Short4> rhs) { return lhs = lhs ^ rhs; } RValue<Short4> operator<<=(Short4 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<Short4> operator>>=(Short4 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } // RValue<Short4> operator+(RValue<Short4> val) // { // return val; // } RValue<Short4> operator-(RValue<Short4> val) { return RValue<Short4>(Nucleus::createNeg(val.value)); } RValue<Short4> operator~(RValue<Short4> val) { return RValue<Short4>(Nucleus::createNot(val.value)); } RValue<Short4> RoundShort4(RValue<Float4> cast) { RValue<Int4> int4 = RoundInt(cast); return As<Short4>(PackSigned(int4, int4)); } RValue<Short4> Max(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pmaxsw(x, y); #else return RValue<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT))); #endif } RValue<Short4> Min(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pminsw(x, y); #else return RValue<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT))); #endif } RValue<Short4> AddSat(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::paddsw(x, y); #else return As<Short4>(V(lowerPSADDSAT(V(x.value), V(y.value)))); #endif } RValue<Short4> SubSat(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::psubsw(x, y); #else return As<Short4>(V(lowerPSSUBSAT(V(x.value), V(y.value)))); #endif } RValue<Short4> MulHigh(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pmulhw(x, y); #else return As<Short4>(V(lowerMulHigh(V(x.value), V(y.value), true))); #endif } RValue<Int2> MulAdd(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pmaddwd(x, y); #else return As<Int2>(V(lowerMulAdd(V(x.value), V(y.value)))); #endif } RValue<SByte8> PackSigned(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) auto result = x86::packsswb(x, y); #else auto result = V(lowerPack(V(x.value), V(y.value), true)); #endif return As<SByte8>(Swizzle(As<Int4>(result), 0x88)); } RValue<Byte8> PackUnsigned(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) auto result = x86::packuswb(x, y); #else auto result = V(lowerPack(V(x.value), V(y.value), false)); #endif return As<Byte8>(Swizzle(As<Int4>(result), 0x88)); } RValue<Int2> UnpackLow(RValue<Short4> x, RValue<Short4> y) { int shuffle[8] = {0, 8, 1, 9, 2, 10, 3, 11}; // Real type is v8i16 return As<Int2>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Int2> UnpackHigh(RValue<Short4> x, RValue<Short4> y) { int shuffle[8] = {0, 8, 1, 9, 2, 10, 3, 11}; // Real type is v8i16 auto lowHigh = RValue<Short8>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); return As<Int2>(Swizzle(As<Int4>(lowHigh), 0xEE)); } RValue<Short4> Swizzle(RValue<Short4> x, unsigned char select) { // Real type is v8i16 int shuffle[8] = { (select >> 0) & 0x03, (select >> 2) & 0x03, (select >> 4) & 0x03, (select >> 6) & 0x03, (select >> 0) & 0x03, (select >> 2) & 0x03, (select >> 4) & 0x03, (select >> 6) & 0x03, }; return As<Short4>(Nucleus::createShuffleVector(x.value, x.value, shuffle)); } RValue<Short4> Insert(RValue<Short4> val, RValue<Short> element, int i) { return RValue<Short4>(Nucleus::createInsertElement(val.value, element.value, i)); } RValue<Short> Extract(RValue<Short4> val, int i) { return RValue<Short>(Nucleus::createExtractElement(val.value, Short::getType(), i)); } RValue<Short4> CmpGT(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pcmpgtw(x, y); #else return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Short4::getType())))); #endif } RValue<Short4> CmpEQ(RValue<Short4> x, RValue<Short4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pcmpeqw(x, y); #else return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Short4::getType())))); #endif } Type *Short4::getType() { return T(Type_v4i16); } UShort4::UShort4(RValue<Int4> cast) { *this = Short4(cast); } UShort4::UShort4(RValue<Float4> cast, bool saturate) { if(saturate) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { Int4 int4(Min(cast, Float4(0xFFFF))); // packusdw takes care of 0x0000 saturation *this = As<Short4>(PackUnsigned(int4, int4)); } else #endif { *this = Short4(Int4(Max(Min(cast, Float4(0xFFFF)), Float4(0x0000)))); } } else { *this = Short4(Int4(cast)); } } UShort4::UShort4(unsigned short xyzw) { int64_t constantVector[4] = {xyzw, xyzw, xyzw, xyzw}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UShort4::UShort4(unsigned short x, unsigned short y, unsigned short z, unsigned short w) { int64_t constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UShort4::UShort4(RValue<UShort4> rhs) { storeValue(rhs.value); } UShort4::UShort4(const UShort4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort4::UShort4(const Reference<UShort4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort4::UShort4(RValue<Short4> rhs) { storeValue(rhs.value); } UShort4::UShort4(const Short4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort4::UShort4(const Reference<Short4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<UShort4> UShort4::operator=(RValue<UShort4> rhs) { storeValue(rhs.value); return rhs; } RValue<UShort4> UShort4::operator=(const UShort4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort4>(value); } RValue<UShort4> UShort4::operator=(const Reference<UShort4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort4>(value); } RValue<UShort4> UShort4::operator=(RValue<Short4> rhs) { storeValue(rhs.value); return RValue<UShort4>(rhs); } RValue<UShort4> UShort4::operator=(const Short4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort4>(value); } RValue<UShort4> UShort4::operator=(const Reference<Short4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort4>(value); } RValue<UShort4> operator+(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UShort4> operator-(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<UShort4> operator*(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UShort4> operator&(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UShort4> operator|(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UShort4> operator^(RValue<UShort4> lhs, RValue<UShort4> rhs) { return RValue<UShort4>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UShort4> operator<<(RValue<UShort4> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) // return RValue<Short4>(Nucleus::createShl(lhs.value, rhs.value)); return As<UShort4>(x86::psllw(As<Short4>(lhs), rhs)); #else return As<UShort4>(V(lowerVectorShl(V(lhs.value), rhs))); #endif } RValue<UShort4> operator>>(RValue<UShort4> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) // return RValue<Short4>(Nucleus::createLShr(lhs.value, rhs.value)); return x86::psrlw(lhs, rhs); #else return As<UShort4>(V(lowerVectorLShr(V(lhs.value), rhs))); #endif } RValue<UShort4> operator<<=(UShort4 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<UShort4> operator>>=(UShort4 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } RValue<UShort4> operator~(RValue<UShort4> val) { return RValue<UShort4>(Nucleus::createNot(val.value)); } RValue<UShort4> Max(RValue<UShort4> x, RValue<UShort4> y) { return RValue<UShort4>(Max(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)); } RValue<UShort4> Min(RValue<UShort4> x, RValue<UShort4> y) { return RValue<UShort4>(Min(As<Short4>(x) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u), As<Short4>(y) - Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)) + Short4(0x8000u, 0x8000u, 0x8000u, 0x8000u)); } RValue<UShort4> AddSat(RValue<UShort4> x, RValue<UShort4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::paddusw(x, y); #else return As<UShort4>(V(lowerPUADDSAT(V(x.value), V(y.value)))); #endif } RValue<UShort4> SubSat(RValue<UShort4> x, RValue<UShort4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::psubusw(x, y); #else return As<UShort4>(V(lowerPUSUBSAT(V(x.value), V(y.value)))); #endif } RValue<UShort4> MulHigh(RValue<UShort4> x, RValue<UShort4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pmulhuw(x, y); #else return As<UShort4>(V(lowerMulHigh(V(x.value), V(y.value), false))); #endif } RValue<UShort4> Average(RValue<UShort4> x, RValue<UShort4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pavgw(x, y); #else return As<UShort4>(V(lowerPAVG(V(x.value), V(y.value)))); #endif } Type *UShort4::getType() { return T(Type_v4i16); } Short8::Short8(short c) { int64_t constantVector[8] = {c, c, c, c, c, c, c, c}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Short8::Short8(short c0, short c1, short c2, short c3, short c4, short c5, short c6, short c7) { int64_t constantVector[8] = {c0, c1, c2, c3, c4, c5, c6, c7}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Short8::Short8(RValue<Short8> rhs) { storeValue(rhs.value); } Short8::Short8(const Reference<Short8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Short8::Short8(RValue<Short4> lo, RValue<Short4> hi) { int shuffle[8] = {0, 1, 2, 3, 8, 9, 10, 11}; // Real type is v8i16 Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle); storeValue(packed); } RValue<Short8> operator+(RValue<Short8> lhs, RValue<Short8> rhs) { return RValue<Short8>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Short8> operator&(RValue<Short8> lhs, RValue<Short8> rhs) { return RValue<Short8>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Short8> operator<<(RValue<Short8> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return x86::psllw(lhs, rhs); #else return As<Short8>(V(lowerVectorShl(V(lhs.value), rhs))); #endif } RValue<Short8> operator>>(RValue<Short8> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return x86::psraw(lhs, rhs); #else return As<Short8>(V(lowerVectorAShr(V(lhs.value), rhs))); #endif } RValue<Int4> MulAdd(RValue<Short8> x, RValue<Short8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pmaddwd(x, y); #else return As<Int4>(V(lowerMulAdd(V(x.value), V(y.value)))); #endif } RValue<Int4> Abs(RValue<Int4> x) { auto negative = x >> 31; return (x ^ negative) - negative; } RValue<Short8> MulHigh(RValue<Short8> x, RValue<Short8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pmulhw(x, y); #else return As<Short8>(V(lowerMulHigh(V(x.value), V(y.value), true))); #endif } Type *Short8::getType() { return T(llvm::VectorType::get(T(Short::getType()), 8)); } UShort8::UShort8(unsigned short c) { int64_t constantVector[8] = {c, c, c, c, c, c, c, c}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UShort8::UShort8(unsigned short c0, unsigned short c1, unsigned short c2, unsigned short c3, unsigned short c4, unsigned short c5, unsigned short c6, unsigned short c7) { int64_t constantVector[8] = {c0, c1, c2, c3, c4, c5, c6, c7}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UShort8::UShort8(RValue<UShort8> rhs) { storeValue(rhs.value); } UShort8::UShort8(const Reference<UShort8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UShort8::UShort8(RValue<UShort4> lo, RValue<UShort4> hi) { int shuffle[8] = {0, 1, 2, 3, 8, 9, 10, 11}; // Real type is v8i16 Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle); storeValue(packed); } RValue<UShort8> UShort8::operator=(RValue<UShort8> rhs) { storeValue(rhs.value); return rhs; } RValue<UShort8> UShort8::operator=(const UShort8 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort8>(value); } RValue<UShort8> UShort8::operator=(const Reference<UShort8> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UShort8>(value); } RValue<UShort8> operator&(RValue<UShort8> lhs, RValue<UShort8> rhs) { return RValue<UShort8>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UShort8> operator<<(RValue<UShort8> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return As<UShort8>(x86::psllw(As<Short8>(lhs), rhs)); #else return As<UShort8>(V(lowerVectorShl(V(lhs.value), rhs))); #endif } RValue<UShort8> operator>>(RValue<UShort8> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return x86::psrlw(lhs, rhs); // FIXME: Fallback required #else return As<UShort8>(V(lowerVectorLShr(V(lhs.value), rhs))); #endif } RValue<UShort8> operator+(RValue<UShort8> lhs, RValue<UShort8> rhs) { return RValue<UShort8>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UShort8> operator*(RValue<UShort8> lhs, RValue<UShort8> rhs) { return RValue<UShort8>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UShort8> operator+=(UShort8 &lhs, RValue<UShort8> rhs) { return lhs = lhs + rhs; } RValue<UShort8> operator~(RValue<UShort8> val) { return RValue<UShort8>(Nucleus::createNot(val.value)); } RValue<UShort8> Swizzle(RValue<UShort8> x, char select0, char select1, char select2, char select3, char select4, char select5, char select6, char select7) { int pshufb[16] = { select0 + 0, select0 + 1, select1 + 0, select1 + 1, select2 + 0, select2 + 1, select3 + 0, select3 + 1, select4 + 0, select4 + 1, select5 + 0, select5 + 1, select6 + 0, select6 + 1, select7 + 0, select7 + 1, }; Value *byte16 = Nucleus::createBitCast(x.value, Byte16::getType()); Value *shuffle = Nucleus::createShuffleVector(byte16, byte16, pshufb); Value *short8 = Nucleus::createBitCast(shuffle, UShort8::getType()); return RValue<UShort8>(short8); } RValue<UShort8> MulHigh(RValue<UShort8> x, RValue<UShort8> y) { #if defined(__i386__) || defined(__x86_64__) return x86::pmulhuw(x, y); #else return As<UShort8>(V(lowerMulHigh(V(x.value), V(y.value), false))); #endif } Type *UShort8::getType() { return T(llvm::VectorType::get(T(UShort::getType()), 8)); } Int::Int(Argument<Int> argument) { storeValue(argument.value); } Int::Int(RValue<Byte> cast) { Value *integer = Nucleus::createZExt(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<SByte> cast) { Value *integer = Nucleus::createSExt(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<Short> cast) { Value *integer = Nucleus::createSExt(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<UShort> cast) { Value *integer = Nucleus::createZExt(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<Int2> cast) { *this = Extract(cast, 0); } Int::Int(RValue<Long> cast) { Value *integer = Nucleus::createTrunc(cast.value, Int::getType()); storeValue(integer); } Int::Int(RValue<Float> cast) { Value *integer = Nucleus::createFPToSI(cast.value, Int::getType()); storeValue(integer); } Int::Int(int x) { storeValue(Nucleus::createConstantInt(x)); } Int::Int(RValue<Int> rhs) { storeValue(rhs.value); } Int::Int(RValue<UInt> rhs) { storeValue(rhs.value); } Int::Int(const Int &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int::Int(const Reference<Int> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int::Int(const UInt &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int::Int(const Reference<UInt> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Int> Int::operator=(int rhs) { return RValue<Int>(storeValue(Nucleus::createConstantInt(rhs))); } RValue<Int> Int::operator=(RValue<Int> rhs) { storeValue(rhs.value); return rhs; } RValue<Int> Int::operator=(RValue<UInt> rhs) { storeValue(rhs.value); return RValue<Int>(rhs); } RValue<Int> Int::operator=(const Int &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int>(value); } RValue<Int> Int::operator=(const Reference<Int> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int>(value); } RValue<Int> Int::operator=(const UInt &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int>(value); } RValue<Int> Int::operator=(const Reference<UInt> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int>(value); } RValue<Int> operator+(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Int> operator-(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Int> operator*(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<Int> operator/(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createSDiv(lhs.value, rhs.value)); } RValue<Int> operator%(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createSRem(lhs.value, rhs.value)); } RValue<Int> operator&(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Int> operator|(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Int> operator^(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Int> operator<<(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<Int> operator>>(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Int>(Nucleus::createAShr(lhs.value, rhs.value)); } RValue<Int> operator+=(Int &lhs, RValue<Int> rhs) { return lhs = lhs + rhs; } RValue<Int> operator-=(Int &lhs, RValue<Int> rhs) { return lhs = lhs - rhs; } RValue<Int> operator*=(Int &lhs, RValue<Int> rhs) { return lhs = lhs * rhs; } RValue<Int> operator/=(Int &lhs, RValue<Int> rhs) { return lhs = lhs / rhs; } RValue<Int> operator%=(Int &lhs, RValue<Int> rhs) { return lhs = lhs % rhs; } RValue<Int> operator&=(Int &lhs, RValue<Int> rhs) { return lhs = lhs & rhs; } RValue<Int> operator|=(Int &lhs, RValue<Int> rhs) { return lhs = lhs | rhs; } RValue<Int> operator^=(Int &lhs, RValue<Int> rhs) { return lhs = lhs ^ rhs; } RValue<Int> operator<<=(Int &lhs, RValue<Int> rhs) { return lhs = lhs << rhs; } RValue<Int> operator>>=(Int &lhs, RValue<Int> rhs) { return lhs = lhs >> rhs; } RValue<Int> operator+(RValue<Int> val) { return val; } RValue<Int> operator-(RValue<Int> val) { return RValue<Int>(Nucleus::createNeg(val.value)); } RValue<Int> operator~(RValue<Int> val) { return RValue<Int>(Nucleus::createNot(val.value)); } RValue<Int> operator++(Int &val, int) // Post-increment { RValue<Int> res = val; Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantInt(1)); val.storeValue(inc); return res; } const Int &operator++(Int &val) // Pre-increment { Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1)); val.storeValue(inc); return val; } RValue<Int> operator--(Int &val, int) // Post-decrement { RValue<Int> res = val; Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantInt(1)); val.storeValue(inc); return res; } const Int &operator--(Int &val) // Pre-decrement { Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1)); val.storeValue(inc); return val; } RValue<Bool> operator<(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpSLT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpSLE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpSGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpSGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<Int> lhs, RValue<Int> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } RValue<Int> Max(RValue<Int> x, RValue<Int> y) { return IfThenElse(x > y, x, y); } RValue<Int> Min(RValue<Int> x, RValue<Int> y) { return IfThenElse(x < y, x, y); } RValue<Int> Clamp(RValue<Int> x, RValue<Int> min, RValue<Int> max) { return Min(Max(x, min), max); } RValue<Int> RoundInt(RValue<Float> cast) { #if defined(__i386__) || defined(__x86_64__) return x86::cvtss2si(cast); #else return RValue<Int>(V(lowerRoundInt(V(cast.value), T(Int::getType())))); #endif } Type *Int::getType() { return T(llvm::Type::getInt32Ty(*::context)); } Long::Long(RValue<Int> cast) { Value *integer = Nucleus::createSExt(cast.value, Long::getType()); storeValue(integer); } Long::Long(RValue<UInt> cast) { Value *integer = Nucleus::createZExt(cast.value, Long::getType()); storeValue(integer); } Long::Long(RValue<Long> rhs) { storeValue(rhs.value); } RValue<Long> Long::operator=(int64_t rhs) { return RValue<Long>(storeValue(Nucleus::createConstantLong(rhs))); } RValue<Long> Long::operator=(RValue<Long> rhs) { storeValue(rhs.value); return rhs; } RValue<Long> Long::operator=(const Long &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Long>(value); } RValue<Long> Long::operator=(const Reference<Long> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Long>(value); } RValue<Long> operator+(RValue<Long> lhs, RValue<Long> rhs) { return RValue<Long>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Long> operator-(RValue<Long> lhs, RValue<Long> rhs) { return RValue<Long>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Long> operator+=(Long &lhs, RValue<Long> rhs) { return lhs = lhs + rhs; } RValue<Long> operator-=(Long &lhs, RValue<Long> rhs) { return lhs = lhs - rhs; } RValue<Long> AddAtomic(RValue<Pointer<Long> > x, RValue<Long> y) { return RValue<Long>(Nucleus::createAtomicAdd(x.value, y.value)); } Type *Long::getType() { return T(llvm::Type::getInt64Ty(*::context)); } UInt::UInt(Argument<UInt> argument) { storeValue(argument.value); } UInt::UInt(RValue<UShort> cast) { Value *integer = Nucleus::createZExt(cast.value, UInt::getType()); storeValue(integer); } UInt::UInt(RValue<Long> cast) { Value *integer = Nucleus::createTrunc(cast.value, UInt::getType()); storeValue(integer); } UInt::UInt(RValue<Float> cast) { // Note: createFPToUI is broken, must perform conversion using createFPtoSI // Value *integer = Nucleus::createFPToUI(cast.value, UInt::getType()); // Smallest positive value representable in UInt, but not in Int const unsigned int ustart = 0x80000000u; const float ustartf = float(ustart); // If the value is negative, store 0, otherwise store the result of the conversion storeValue((~(As<Int>(cast) >> 31) & // Check if the value can be represented as an Int IfThenElse(cast >= ustartf, // If the value is too large, subtract ustart and re-add it after conversion. As<Int>(As<UInt>(Int(cast - Float(ustartf))) + UInt(ustart)), // Otherwise, just convert normally Int(cast))).value); } UInt::UInt(int x) { storeValue(Nucleus::createConstantInt(x)); } UInt::UInt(unsigned int x) { storeValue(Nucleus::createConstantInt(x)); } UInt::UInt(RValue<UInt> rhs) { storeValue(rhs.value); } UInt::UInt(RValue<Int> rhs) { storeValue(rhs.value); } UInt::UInt(const UInt &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UInt::UInt(const Reference<UInt> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UInt::UInt(const Int &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UInt::UInt(const Reference<Int> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<UInt> UInt::operator=(unsigned int rhs) { return RValue<UInt>(storeValue(Nucleus::createConstantInt(rhs))); } RValue<UInt> UInt::operator=(RValue<UInt> rhs) { storeValue(rhs.value); return rhs; } RValue<UInt> UInt::operator=(RValue<Int> rhs) { storeValue(rhs.value); return RValue<UInt>(rhs); } RValue<UInt> UInt::operator=(const UInt &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt>(value); } RValue<UInt> UInt::operator=(const Reference<UInt> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt>(value); } RValue<UInt> UInt::operator=(const Int &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt>(value); } RValue<UInt> UInt::operator=(const Reference<Int> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt>(value); } RValue<UInt> operator+(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UInt> operator-(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<UInt> operator*(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UInt> operator/(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createUDiv(lhs.value, rhs.value)); } RValue<UInt> operator%(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createURem(lhs.value, rhs.value)); } RValue<UInt> operator&(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UInt> operator|(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UInt> operator^(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UInt> operator<<(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<UInt> operator>>(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<UInt>(Nucleus::createLShr(lhs.value, rhs.value)); } RValue<UInt> operator+=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs + rhs; } RValue<UInt> operator-=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs - rhs; } RValue<UInt> operator*=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs * rhs; } RValue<UInt> operator/=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs / rhs; } RValue<UInt> operator%=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs % rhs; } RValue<UInt> operator&=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs & rhs; } RValue<UInt> operator|=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs | rhs; } RValue<UInt> operator^=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs ^ rhs; } RValue<UInt> operator<<=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs << rhs; } RValue<UInt> operator>>=(UInt &lhs, RValue<UInt> rhs) { return lhs = lhs >> rhs; } RValue<UInt> operator+(RValue<UInt> val) { return val; } RValue<UInt> operator-(RValue<UInt> val) { return RValue<UInt>(Nucleus::createNeg(val.value)); } RValue<UInt> operator~(RValue<UInt> val) { return RValue<UInt>(Nucleus::createNot(val.value)); } RValue<UInt> operator++(UInt &val, int) // Post-increment { RValue<UInt> res = val; Value *inc = Nucleus::createAdd(res.value, Nucleus::createConstantInt(1)); val.storeValue(inc); return res; } const UInt &operator++(UInt &val) // Pre-increment { Value *inc = Nucleus::createAdd(val.loadValue(), Nucleus::createConstantInt(1)); val.storeValue(inc); return val; } RValue<UInt> operator--(UInt &val, int) // Post-decrement { RValue<UInt> res = val; Value *inc = Nucleus::createSub(res.value, Nucleus::createConstantInt(1)); val.storeValue(inc); return res; } const UInt &operator--(UInt &val) // Pre-decrement { Value *inc = Nucleus::createSub(val.loadValue(), Nucleus::createConstantInt(1)); val.storeValue(inc); return val; } RValue<UInt> Max(RValue<UInt> x, RValue<UInt> y) { return IfThenElse(x > y, x, y); } RValue<UInt> Min(RValue<UInt> x, RValue<UInt> y) { return IfThenElse(x < y, x, y); } RValue<UInt> Clamp(RValue<UInt> x, RValue<UInt> min, RValue<UInt> max) { return Min(Max(x, min), max); } RValue<Bool> operator<(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpULT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpULE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpUGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpUGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpNE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<UInt> lhs, RValue<UInt> rhs) { return RValue<Bool>(Nucleus::createICmpEQ(lhs.value, rhs.value)); } // RValue<UInt> RoundUInt(RValue<Float> cast) // { //#if defined(__i386__) || defined(__x86_64__) // return x86::cvtss2si(val); // FIXME: Unsigned //#else // return IfThenElse(cast > 0.0f, Int(cast + 0.5f), Int(cast - 0.5f)); //#endif // } Type *UInt::getType() { return T(llvm::Type::getInt32Ty(*::context)); } // Int2::Int2(RValue<Int> cast) // { // Value *extend = Nucleus::createZExt(cast.value, Long::getType()); // Value *vector = Nucleus::createBitCast(extend, Int2::getType()); // // int shuffle[2] = {0, 0}; // Value *replicate = Nucleus::createShuffleVector(vector, vector, shuffle); // // storeValue(replicate); // } Int2::Int2(RValue<Int4> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Int2::Int2(int x, int y) { int64_t constantVector[2] = {x, y}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Int2::Int2(RValue<Int2> rhs) { storeValue(rhs.value); } Int2::Int2(const Int2 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int2::Int2(const Reference<Int2> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Int2::Int2(RValue<Int> lo, RValue<Int> hi) { int shuffle[4] = {0, 4, 1, 5}; Value *packed = Nucleus::createShuffleVector(Int4(lo).loadValue(), Int4(hi).loadValue(), shuffle); storeValue(Nucleus::createBitCast(packed, Int2::getType())); } RValue<Int2> Int2::operator=(RValue<Int2> rhs) { storeValue(rhs.value); return rhs; } RValue<Int2> Int2::operator=(const Int2 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int2>(value); } RValue<Int2> Int2::operator=(const Reference<Int2> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int2>(value); } RValue<Int2> operator+(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Int2> operator-(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createSub(lhs.value, rhs.value)); } // RValue<Int2> operator*(RValue<Int2> lhs, RValue<Int2> rhs) // { // return RValue<Int2>(Nucleus::createMul(lhs.value, rhs.value)); // } // RValue<Int2> operator/(RValue<Int2> lhs, RValue<Int2> rhs) // { // return RValue<Int2>(Nucleus::createSDiv(lhs.value, rhs.value)); // } // RValue<Int2> operator%(RValue<Int2> lhs, RValue<Int2> rhs) // { // return RValue<Int2>(Nucleus::createSRem(lhs.value, rhs.value)); // } RValue<Int2> operator&(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Int2> operator|(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Int2> operator^(RValue<Int2> lhs, RValue<Int2> rhs) { return RValue<Int2>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Int2> operator<<(RValue<Int2> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) // return RValue<Int2>(Nucleus::createShl(lhs.value, rhs.value)); return x86::pslld(lhs, rhs); #else return As<Int2>(V(lowerVectorShl(V(lhs.value), rhs))); #endif } RValue<Int2> operator>>(RValue<Int2> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) // return RValue<Int2>(Nucleus::createAShr(lhs.value, rhs.value)); return x86::psrad(lhs, rhs); #else return As<Int2>(V(lowerVectorAShr(V(lhs.value), rhs))); #endif } RValue<Int2> operator+=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs + rhs; } RValue<Int2> operator-=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs - rhs; } // RValue<Int2> operator*=(Int2 &lhs, RValue<Int2> rhs) // { // return lhs = lhs * rhs; // } // RValue<Int2> operator/=(Int2 &lhs, RValue<Int2> rhs) // { // return lhs = lhs / rhs; // } // RValue<Int2> operator%=(Int2 &lhs, RValue<Int2> rhs) // { // return lhs = lhs % rhs; // } RValue<Int2> operator&=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs & rhs; } RValue<Int2> operator|=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs | rhs; } RValue<Int2> operator^=(Int2 &lhs, RValue<Int2> rhs) { return lhs = lhs ^ rhs; } RValue<Int2> operator<<=(Int2 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<Int2> operator>>=(Int2 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } // RValue<Int2> operator+(RValue<Int2> val) // { // return val; // } // RValue<Int2> operator-(RValue<Int2> val) // { // return RValue<Int2>(Nucleus::createNeg(val.value)); // } RValue<Int2> operator~(RValue<Int2> val) { return RValue<Int2>(Nucleus::createNot(val.value)); } RValue<Short4> UnpackLow(RValue<Int2> x, RValue<Int2> y) { int shuffle[4] = {0, 4, 1, 5}; // Real type is v4i32 return As<Short4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Short4> UnpackHigh(RValue<Int2> x, RValue<Int2> y) { int shuffle[4] = {0, 4, 1, 5}; // Real type is v4i32 auto lowHigh = RValue<Int4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); return As<Short4>(Swizzle(lowHigh, 0xEE)); } RValue<Int> Extract(RValue<Int2> val, int i) { return RValue<Int>(Nucleus::createExtractElement(val.value, Int::getType(), i)); } RValue<Int2> Insert(RValue<Int2> val, RValue<Int> element, int i) { return RValue<Int2>(Nucleus::createInsertElement(val.value, element.value, i)); } Type *Int2::getType() { return T(Type_v2i32); } UInt2::UInt2(unsigned int x, unsigned int y) { int64_t constantVector[2] = {x, y}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UInt2::UInt2(RValue<UInt2> rhs) { storeValue(rhs.value); } UInt2::UInt2(const UInt2 &rhs) { Value *value = rhs.loadValue(); storeValue(value); } UInt2::UInt2(const Reference<UInt2> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<UInt2> UInt2::operator=(RValue<UInt2> rhs) { storeValue(rhs.value); return rhs; } RValue<UInt2> UInt2::operator=(const UInt2 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt2>(value); } RValue<UInt2> UInt2::operator=(const Reference<UInt2> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt2>(value); } RValue<UInt2> operator+(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UInt2> operator-(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createSub(lhs.value, rhs.value)); } // RValue<UInt2> operator*(RValue<UInt2> lhs, RValue<UInt2> rhs) // { // return RValue<UInt2>(Nucleus::createMul(lhs.value, rhs.value)); // } // RValue<UInt2> operator/(RValue<UInt2> lhs, RValue<UInt2> rhs) // { // return RValue<UInt2>(Nucleus::createUDiv(lhs.value, rhs.value)); // } // RValue<UInt2> operator%(RValue<UInt2> lhs, RValue<UInt2> rhs) // { // return RValue<UInt2>(Nucleus::createURem(lhs.value, rhs.value)); // } RValue<UInt2> operator&(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UInt2> operator|(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UInt2> operator^(RValue<UInt2> lhs, RValue<UInt2> rhs) { return RValue<UInt2>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UInt2> operator<<(RValue<UInt2> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) // return RValue<UInt2>(Nucleus::createShl(lhs.value, rhs.value)); return As<UInt2>(x86::pslld(As<Int2>(lhs), rhs)); #else return As<UInt2>(V(lowerVectorShl(V(lhs.value), rhs))); #endif } RValue<UInt2> operator>>(RValue<UInt2> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) // return RValue<UInt2>(Nucleus::createLShr(lhs.value, rhs.value)); return x86::psrld(lhs, rhs); #else return As<UInt2>(V(lowerVectorLShr(V(lhs.value), rhs))); #endif } RValue<UInt2> operator+=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs + rhs; } RValue<UInt2> operator-=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs - rhs; } // RValue<UInt2> operator*=(UInt2 &lhs, RValue<UInt2> rhs) // { // return lhs = lhs * rhs; // } // RValue<UInt2> operator/=(UInt2 &lhs, RValue<UInt2> rhs) // { // return lhs = lhs / rhs; // } // RValue<UInt2> operator%=(UInt2 &lhs, RValue<UInt2> rhs) // { // return lhs = lhs % rhs; // } RValue<UInt2> operator&=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs & rhs; } RValue<UInt2> operator|=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs | rhs; } RValue<UInt2> operator^=(UInt2 &lhs, RValue<UInt2> rhs) { return lhs = lhs ^ rhs; } RValue<UInt2> operator<<=(UInt2 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<UInt2> operator>>=(UInt2 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } // RValue<UInt2> operator+(RValue<UInt2> val) // { // return val; // } // RValue<UInt2> operator-(RValue<UInt2> val) // { // return RValue<UInt2>(Nucleus::createNeg(val.value)); // } RValue<UInt2> operator~(RValue<UInt2> val) { return RValue<UInt2>(Nucleus::createNot(val.value)); } Type *UInt2::getType() { return T(Type_v2i32); } Int4::Int4() : XYZW(this) { } Int4::Int4(RValue<Byte4> cast) : XYZW(this) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { *this = x86::pmovzxbd(As<Byte16>(cast)); } else #endif { int swizzle[16] = {0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}; Value *a = Nucleus::createBitCast(cast.value, Byte16::getType()); Value *b = Nucleus::createShuffleVector(a, Nucleus::createNullValue(Byte16::getType()), swizzle); int swizzle2[8] = {0, 8, 1, 9, 2, 10, 3, 11}; Value *c = Nucleus::createBitCast(b, Short8::getType()); Value *d = Nucleus::createShuffleVector(c, Nucleus::createNullValue(Short8::getType()), swizzle2); *this = As<Int4>(d); } } Int4::Int4(RValue<SByte4> cast) : XYZW(this) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { *this = x86::pmovsxbd(As<SByte16>(cast)); } else #endif { int swizzle[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}; Value *a = Nucleus::createBitCast(cast.value, Byte16::getType()); Value *b = Nucleus::createShuffleVector(a, a, swizzle); int swizzle2[8] = {0, 0, 1, 1, 2, 2, 3, 3}; Value *c = Nucleus::createBitCast(b, Short8::getType()); Value *d = Nucleus::createShuffleVector(c, c, swizzle2); *this = As<Int4>(d) >> 24; } } Int4::Int4(RValue<Float4> cast) : XYZW(this) { Value *xyzw = Nucleus::createFPToSI(cast.value, Int4::getType()); storeValue(xyzw); } Int4::Int4(RValue<Short4> cast) : XYZW(this) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { *this = x86::pmovsxwd(As<Short8>(cast)); } else #endif { int swizzle[8] = {0, 0, 1, 1, 2, 2, 3, 3}; Value *c = Nucleus::createShuffleVector(cast.value, cast.value, swizzle); *this = As<Int4>(c) >> 16; } } Int4::Int4(RValue<UShort4> cast) : XYZW(this) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { *this = x86::pmovzxwd(As<UShort8>(cast)); } else #endif { int swizzle[8] = {0, 8, 1, 9, 2, 10, 3, 11}; Value *c = Nucleus::createShuffleVector(cast.value, Short8(0, 0, 0, 0, 0, 0, 0, 0).loadValue(), swizzle); *this = As<Int4>(c); } } Int4::Int4(int xyzw) : XYZW(this) { constant(xyzw, xyzw, xyzw, xyzw); } Int4::Int4(int x, int yzw) : XYZW(this) { constant(x, yzw, yzw, yzw); } Int4::Int4(int x, int y, int zw) : XYZW(this) { constant(x, y, zw, zw); } Int4::Int4(int x, int y, int z, int w) : XYZW(this) { constant(x, y, z, w); } void Int4::constant(int x, int y, int z, int w) { int64_t constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Int4::Int4(RValue<Int4> rhs) : XYZW(this) { storeValue(rhs.value); } Int4::Int4(const Int4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Int4::Int4(const Reference<Int4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Int4::Int4(RValue<UInt4> rhs) : XYZW(this) { storeValue(rhs.value); } Int4::Int4(const UInt4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Int4::Int4(const Reference<UInt4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Int4::Int4(RValue<Int2> lo, RValue<Int2> hi) : XYZW(this) { int shuffle[4] = {0, 1, 4, 5}; // Real type is v4i32 Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle); storeValue(packed); } Int4::Int4(RValue<Int> rhs) : XYZW(this) { Value *vector = loadValue(); Value *insert = Nucleus::createInsertElement(vector, rhs.value, 0); int swizzle[4] = {0, 0, 0, 0}; Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle); storeValue(replicate); } Int4::Int4(const Int &rhs) : XYZW(this) { *this = RValue<Int>(rhs.loadValue()); } Int4::Int4(const Reference<Int> &rhs) : XYZW(this) { *this = RValue<Int>(rhs.loadValue()); } RValue<Int4> Int4::operator=(RValue<Int4> rhs) { storeValue(rhs.value); return rhs; } RValue<Int4> Int4::operator=(const Int4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int4>(value); } RValue<Int4> Int4::operator=(const Reference<Int4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Int4>(value); } RValue<Int4> operator+(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<Int4> operator-(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<Int4> operator*(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<Int4> operator/(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createSDiv(lhs.value, rhs.value)); } RValue<Int4> operator%(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createSRem(lhs.value, rhs.value)); } RValue<Int4> operator&(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<Int4> operator|(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<Int4> operator^(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<Int4> operator<<(RValue<Int4> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return x86::pslld(lhs, rhs); #else return As<Int4>(V(lowerVectorShl(V(lhs.value), rhs))); #endif } RValue<Int4> operator>>(RValue<Int4> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return x86::psrad(lhs, rhs); #else return As<Int4>(V(lowerVectorAShr(V(lhs.value), rhs))); #endif } RValue<Int4> operator<<(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<Int4> operator>>(RValue<Int4> lhs, RValue<Int4> rhs) { return RValue<Int4>(Nucleus::createAShr(lhs.value, rhs.value)); } RValue<Int4> operator+=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs + rhs; } RValue<Int4> operator-=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs - rhs; } RValue<Int4> operator*=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs * rhs; } // RValue<Int4> operator/=(Int4 &lhs, RValue<Int4> rhs) // { // return lhs = lhs / rhs; // } // RValue<Int4> operator%=(Int4 &lhs, RValue<Int4> rhs) // { // return lhs = lhs % rhs; // } RValue<Int4> operator&=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs & rhs; } RValue<Int4> operator|=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs | rhs; } RValue<Int4> operator^=(Int4 &lhs, RValue<Int4> rhs) { return lhs = lhs ^ rhs; } RValue<Int4> operator<<=(Int4 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<Int4> operator>>=(Int4 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } RValue<Int4> operator+(RValue<Int4> val) { return val; } RValue<Int4> operator-(RValue<Int4> val) { return RValue<Int4>(Nucleus::createNeg(val.value)); } RValue<Int4> operator~(RValue<Int4> val) { return RValue<Int4>(Nucleus::createNot(val.value)); } RValue<Int4> CmpEQ(RValue<Int4> x, RValue<Int4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType())); return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF); } RValue<Int4> CmpLT(RValue<Int4> x, RValue<Int4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLT(x.value, y.value), Int4::getType())); return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF); } RValue<Int4> CmpLE(RValue<Int4> x, RValue<Int4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLE(x.value, y.value), Int4::getType())); return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGT(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF); } RValue<Int4> CmpNEQ(RValue<Int4> x, RValue<Int4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType())); return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF); } RValue<Int4> CmpNLT(RValue<Int4> x, RValue<Int4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGE(x.value, y.value), Int4::getType())); return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLT(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF); } RValue<Int4> CmpNLE(RValue<Int4> x, RValue<Int4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSGT(x.value, y.value), Int4::getType())); return RValue<Int4>(Nucleus::createSExt(Nucleus::createICmpSLE(x.value, y.value), Int4::getType())) ^ Int4(0xFFFFFFFF); } RValue<Int4> Max(RValue<Int4> x, RValue<Int4> y) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::pmaxsd(x, y); } else #endif { RValue<Int4> greater = CmpNLE(x, y); return (x & greater) | (y & ~greater); } } RValue<Int4> Min(RValue<Int4> x, RValue<Int4> y) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::pminsd(x, y); } else #endif { RValue<Int4> less = CmpLT(x, y); return (x & less) | (y & ~less); } } RValue<Int4> RoundInt(RValue<Float4> cast) { #if defined(__i386__) || defined(__x86_64__) return x86::cvtps2dq(cast); #else return As<Int4>(V(lowerRoundInt(V(cast.value), T(Int4::getType())))); #endif } RValue<Short8> PackSigned(RValue<Int4> x, RValue<Int4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::packssdw(x, y); #else return As<Short8>(V(lowerPack(V(x.value), V(y.value), true))); #endif } RValue<UShort8> PackUnsigned(RValue<Int4> x, RValue<Int4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::packusdw(x, y); #else return As<UShort8>(V(lowerPack(V(x.value), V(y.value), false))); #endif } RValue<Int> Extract(RValue<Int4> x, int i) { return RValue<Int>(Nucleus::createExtractElement(x.value, Int::getType(), i)); } RValue<Int4> Insert(RValue<Int4> x, RValue<Int> element, int i) { return RValue<Int4>(Nucleus::createInsertElement(x.value, element.value, i)); } RValue<Int> SignMask(RValue<Int4> x) { #if defined(__i386__) || defined(__x86_64__) return x86::movmskps(As<Float4>(x)); #else return As<Int>(V(lowerSignMask(V(x.value), T(Int::getType())))); #endif } RValue<Int4> Swizzle(RValue<Int4> x, unsigned char select) { return RValue<Int4>(createSwizzle4(x.value, select)); } Type *Int4::getType() { return T(llvm::VectorType::get(T(Int::getType()), 4)); } UInt4::UInt4() : XYZW(this) { } UInt4::UInt4(RValue<Float4> cast) : XYZW(this) { // Note: createFPToUI is broken, must perform conversion using createFPtoSI // Value *xyzw = Nucleus::createFPToUI(cast.value, UInt4::getType()); // Smallest positive value representable in UInt, but not in Int const unsigned int ustart = 0x80000000u; const float ustartf = float(ustart); // Check if the value can be represented as an Int Int4 uiValue = CmpNLT(cast, Float4(ustartf)); // If the value is too large, subtract ustart and re-add it after conversion. uiValue = (uiValue & As<Int4>(As<UInt4>(Int4(cast - Float4(ustartf))) + UInt4(ustart))) | // Otherwise, just convert normally (~uiValue & Int4(cast)); // If the value is negative, store 0, otherwise store the result of the conversion storeValue((~(As<Int4>(cast) >> 31) & uiValue).value); } UInt4::UInt4(int xyzw) : XYZW(this) { constant(xyzw, xyzw, xyzw, xyzw); } UInt4::UInt4(int x, int yzw) : XYZW(this) { constant(x, yzw, yzw, yzw); } UInt4::UInt4(int x, int y, int zw) : XYZW(this) { constant(x, y, zw, zw); } UInt4::UInt4(int x, int y, int z, int w) : XYZW(this) { constant(x, y, z, w); } void UInt4::constant(int x, int y, int z, int w) { int64_t constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } UInt4::UInt4(RValue<UInt4> rhs) : XYZW(this) { storeValue(rhs.value); } UInt4::UInt4(const UInt4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } UInt4::UInt4(const Reference<UInt4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } UInt4::UInt4(RValue<Int4> rhs) : XYZW(this) { storeValue(rhs.value); } UInt4::UInt4(const Int4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } UInt4::UInt4(const Reference<Int4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } UInt4::UInt4(RValue<UInt2> lo, RValue<UInt2> hi) : XYZW(this) { int shuffle[4] = {0, 1, 4, 5}; // Real type is v4i32 Value *packed = Nucleus::createShuffleVector(lo.value, hi.value, shuffle); storeValue(packed); } RValue<UInt4> UInt4::operator=(RValue<UInt4> rhs) { storeValue(rhs.value); return rhs; } RValue<UInt4> UInt4::operator=(const UInt4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt4>(value); } RValue<UInt4> UInt4::operator=(const Reference<UInt4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<UInt4>(value); } RValue<UInt4> operator+(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createAdd(lhs.value, rhs.value)); } RValue<UInt4> operator-(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createSub(lhs.value, rhs.value)); } RValue<UInt4> operator*(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createMul(lhs.value, rhs.value)); } RValue<UInt4> operator/(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createUDiv(lhs.value, rhs.value)); } RValue<UInt4> operator%(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createURem(lhs.value, rhs.value)); } RValue<UInt4> operator&(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createAnd(lhs.value, rhs.value)); } RValue<UInt4> operator|(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createOr(lhs.value, rhs.value)); } RValue<UInt4> operator^(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createXor(lhs.value, rhs.value)); } RValue<UInt4> operator<<(RValue<UInt4> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return As<UInt4>(x86::pslld(As<Int4>(lhs), rhs)); #else return As<UInt4>(V(lowerVectorShl(V(lhs.value), rhs))); #endif } RValue<UInt4> operator>>(RValue<UInt4> lhs, unsigned char rhs) { #if defined(__i386__) || defined(__x86_64__) return x86::psrld(lhs, rhs); #else return As<UInt4>(V(lowerVectorLShr(V(lhs.value), rhs))); #endif } RValue<UInt4> operator<<(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createShl(lhs.value, rhs.value)); } RValue<UInt4> operator>>(RValue<UInt4> lhs, RValue<UInt4> rhs) { return RValue<UInt4>(Nucleus::createLShr(lhs.value, rhs.value)); } RValue<UInt4> operator+=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs + rhs; } RValue<UInt4> operator-=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs - rhs; } RValue<UInt4> operator*=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs * rhs; } // RValue<UInt4> operator/=(UInt4 &lhs, RValue<UInt4> rhs) // { // return lhs = lhs / rhs; // } // RValue<UInt4> operator%=(UInt4 &lhs, RValue<UInt4> rhs) // { // return lhs = lhs % rhs; // } RValue<UInt4> operator&=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs & rhs; } RValue<UInt4> operator|=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs | rhs; } RValue<UInt4> operator^=(UInt4 &lhs, RValue<UInt4> rhs) { return lhs = lhs ^ rhs; } RValue<UInt4> operator<<=(UInt4 &lhs, unsigned char rhs) { return lhs = lhs << rhs; } RValue<UInt4> operator>>=(UInt4 &lhs, unsigned char rhs) { return lhs = lhs >> rhs; } RValue<UInt4> operator+(RValue<UInt4> val) { return val; } RValue<UInt4> operator-(RValue<UInt4> val) { return RValue<UInt4>(Nucleus::createNeg(val.value)); } RValue<UInt4> operator~(RValue<UInt4> val) { return RValue<UInt4>(Nucleus::createNot(val.value)); } RValue<UInt4> CmpEQ(RValue<UInt4> x, RValue<UInt4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpEQ(x.value, y.value), Int4::getType())); return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF); } RValue<UInt4> CmpLT(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULT(x.value, y.value), Int4::getType())); } RValue<UInt4> CmpLE(RValue<UInt4> x, RValue<UInt4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULE(x.value, y.value), Int4::getType())); return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGT(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF); } RValue<UInt4> CmpNEQ(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpNE(x.value, y.value), Int4::getType())); } RValue<UInt4> CmpNLT(RValue<UInt4> x, RValue<UInt4> y) { // FIXME: An LLVM bug causes SExt(ICmpCC()) to produce 0 or 1 instead of 0 or ~0 // Restore the following line when LLVM is updated to a version where this issue is fixed. // return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGE(x.value, y.value), Int4::getType())); return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpULT(x.value, y.value), Int4::getType())) ^ UInt4(0xFFFFFFFF); } RValue<UInt4> CmpNLE(RValue<UInt4> x, RValue<UInt4> y) { return RValue<UInt4>(Nucleus::createSExt(Nucleus::createICmpUGT(x.value, y.value), Int4::getType())); } RValue<UInt4> Max(RValue<UInt4> x, RValue<UInt4> y) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::pmaxud(x, y); } else #endif { RValue<UInt4> greater = CmpNLE(x, y); return (x & greater) | (y & ~greater); } } RValue<UInt4> Min(RValue<UInt4> x, RValue<UInt4> y) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::pminud(x, y); } else #endif { RValue<UInt4> less = CmpLT(x, y); return (x & less) | (y & ~less); } } Type *UInt4::getType() { return T(llvm::VectorType::get(T(UInt::getType()), 4)); } Half::Half(RValue<Float> cast) { UInt fp32i = As<UInt>(cast); UInt abs = fp32i & 0x7FFFFFFF; UShort fp16i((fp32i & 0x80000000) >> 16); // sign If(abs > 0x47FFEFFF) // Infinity { fp16i |= UShort(0x7FFF); } Else { If(abs < 0x38800000) // Denormal { Int mantissa = (abs & 0x007FFFFF) | 0x00800000; Int e = 113 - (abs >> 23); abs = IfThenElse(e < 24, mantissa >> e, Int(0)); fp16i |= UShort((abs + 0x00000FFF + ((abs >> 13) & 1)) >> 13); } Else { fp16i |= UShort((abs + 0xC8000000 + 0x00000FFF + ((abs >> 13) & 1)) >> 13); } } storeValue(fp16i.loadValue()); } Type *Half::getType() { return T(llvm::Type::getInt16Ty(*::context)); } Float::Float(RValue<Int> cast) { Value *integer = Nucleus::createSIToFP(cast.value, Float::getType()); storeValue(integer); } Float::Float(RValue<UInt> cast) { RValue<Float> result = Float(Int(cast & UInt(0x7FFFFFFF))) + As<Float>((As<Int>(cast) >> 31) & As<Int>(Float(0x80000000u))); storeValue(result.value); } Float::Float(RValue<Half> cast) { Int fp16i(As<UShort>(cast)); Int s = (fp16i >> 15) & 0x00000001; Int e = (fp16i >> 10) & 0x0000001F; Int m = fp16i & 0x000003FF; UInt fp32i(s << 31); If(e == 0) { If(m != 0) { While((m & 0x00000400) == 0) { m <<= 1; e -= 1; } fp32i |= As<UInt>(((e + (127 - 15) + 1) << 23) | ((m & ~0x00000400) << 13)); } } Else { fp32i |= As<UInt>(((e + (127 - 15)) << 23) | (m << 13)); } storeValue(As<Float>(fp32i).value); } Float::Float(float x) { storeValue(Nucleus::createConstantFloat(x)); } Float::Float(RValue<Float> rhs) { storeValue(rhs.value); } Float::Float(const Float &rhs) { Value *value = rhs.loadValue(); storeValue(value); } Float::Float(const Reference<Float> &rhs) { Value *value = rhs.loadValue(); storeValue(value); } RValue<Float> Float::operator=(RValue<Float> rhs) { storeValue(rhs.value); return rhs; } RValue<Float> Float::operator=(const Float &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Float>(value); } RValue<Float> Float::operator=(const Reference<Float> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Float>(value); } RValue<Float> operator+(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Float>(Nucleus::createFAdd(lhs.value, rhs.value)); } RValue<Float> operator-(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Float>(Nucleus::createFSub(lhs.value, rhs.value)); } RValue<Float> operator*(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Float>(Nucleus::createFMul(lhs.value, rhs.value)); } RValue<Float> operator/(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Float>(Nucleus::createFDiv(lhs.value, rhs.value)); } RValue<Float> operator+=(Float &lhs, RValue<Float> rhs) { return lhs = lhs + rhs; } RValue<Float> operator-=(Float &lhs, RValue<Float> rhs) { return lhs = lhs - rhs; } RValue<Float> operator*=(Float &lhs, RValue<Float> rhs) { return lhs = lhs * rhs; } RValue<Float> operator/=(Float &lhs, RValue<Float> rhs) { return lhs = lhs / rhs; } RValue<Float> operator+(RValue<Float> val) { return val; } RValue<Float> operator-(RValue<Float> val) { return RValue<Float>(Nucleus::createFNeg(val.value)); } RValue<Bool> operator<(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOLT(lhs.value, rhs.value)); } RValue<Bool> operator<=(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOLE(lhs.value, rhs.value)); } RValue<Bool> operator>(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOGT(lhs.value, rhs.value)); } RValue<Bool> operator>=(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOGE(lhs.value, rhs.value)); } RValue<Bool> operator!=(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpONE(lhs.value, rhs.value)); } RValue<Bool> operator==(RValue<Float> lhs, RValue<Float> rhs) { return RValue<Bool>(Nucleus::createFCmpOEQ(lhs.value, rhs.value)); } RValue<Float> Abs(RValue<Float> x) { return IfThenElse(x > 0.0f, x, -x); } RValue<Float> Max(RValue<Float> x, RValue<Float> y) { return IfThenElse(x > y, x, y); } RValue<Float> Min(RValue<Float> x, RValue<Float> y) { return IfThenElse(x < y, x, y); } RValue<Float> Rcp_pp(RValue<Float> x, bool exactAtPow2) { #if defined(__i386__) || defined(__x86_64__) if(exactAtPow2) { // rcpss uses a piecewise-linear approximation which minimizes the relative error // but is not exact at power-of-two values. Rectify by multiplying by the inverse. return x86::rcpss(x) * Float(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); } return x86::rcpss(x); #else return As<Float>(V(lowerRCP(V(x.value)))); #endif } RValue<Float> RcpSqrt_pp(RValue<Float> x) { #if defined(__i386__) || defined(__x86_64__) return x86::rsqrtss(x); #else return As<Float>(V(lowerRSQRT(V(x.value)))); #endif } RValue<Float> Sqrt(RValue<Float> x) { #if defined(__i386__) || defined(__x86_64__) return x86::sqrtss(x); #else return As<Float>(V(lowerSQRT(V(x.value)))); #endif } RValue<Float> Round(RValue<Float> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::roundss(x, 0); } else { return Float4(Round(Float4(x))).x; } #else return RValue<Float>(V(lowerRound(V(x.value)))); #endif } RValue<Float> Trunc(RValue<Float> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::roundss(x, 3); } else { return Float(Int(x)); // Rounded toward zero } #else return RValue<Float>(V(lowerTrunc(V(x.value)))); #endif } RValue<Float> Frac(RValue<Float> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x - x86::floorss(x); } else { return Float4(Frac(Float4(x))).x; } #else // x - floor(x) can be 1.0 for very small negative x. // Clamp against the value just below 1.0. return Min(x - Floor(x), As<Float>(Int(0x3F7FFFFF))); #endif } RValue<Float> Floor(RValue<Float> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::floorss(x); } else { return Float4(Floor(Float4(x))).x; } #else return RValue<Float>(V(lowerFloor(V(x.value)))); #endif } RValue<Float> Ceil(RValue<Float> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::ceilss(x); } else #endif { return Float4(Ceil(Float4(x))).x; } } Type *Float::getType() { return T(llvm::Type::getFloatTy(*::context)); } Float2::Float2(RValue<Float4> cast) { storeValue(Nucleus::createBitCast(cast.value, getType())); } Type *Float2::getType() { return T(Type_v2f32); } Float4::Float4(RValue<Byte4> cast) : XYZW(this) { Value *a = Int4(cast).loadValue(); Value *xyzw = Nucleus::createSIToFP(a, Float4::getType()); storeValue(xyzw); } Float4::Float4(RValue<SByte4> cast) : XYZW(this) { Value *a = Int4(cast).loadValue(); Value *xyzw = Nucleus::createSIToFP(a, Float4::getType()); storeValue(xyzw); } Float4::Float4(RValue<Short4> cast) : XYZW(this) { Int4 c(cast); storeValue(Nucleus::createSIToFP(RValue<Int4>(c).value, Float4::getType())); } Float4::Float4(RValue<UShort4> cast) : XYZW(this) { Int4 c(cast); storeValue(Nucleus::createSIToFP(RValue<Int4>(c).value, Float4::getType())); } Float4::Float4(RValue<Int4> cast) : XYZW(this) { Value *xyzw = Nucleus::createSIToFP(cast.value, Float4::getType()); storeValue(xyzw); } Float4::Float4(RValue<UInt4> cast) : XYZW(this) { RValue<Float4> result = Float4(Int4(cast & UInt4(0x7FFFFFFF))) + As<Float4>((As<Int4>(cast) >> 31) & As<Int4>(Float4(0x80000000u))); storeValue(result.value); } Float4::Float4() : XYZW(this) { } Float4::Float4(float xyzw) : XYZW(this) { constant(xyzw, xyzw, xyzw, xyzw); } Float4::Float4(float x, float yzw) : XYZW(this) { constant(x, yzw, yzw, yzw); } Float4::Float4(float x, float y, float zw) : XYZW(this) { constant(x, y, zw, zw); } Float4::Float4(float x, float y, float z, float w) : XYZW(this) { constant(x, y, z, w); } void Float4::constant(float x, float y, float z, float w) { double constantVector[4] = {x, y, z, w}; storeValue(Nucleus::createConstantVector(constantVector, getType())); } Float4::Float4(RValue<Float4> rhs) : XYZW(this) { storeValue(rhs.value); } Float4::Float4(const Float4 &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Float4::Float4(const Reference<Float4> &rhs) : XYZW(this) { Value *value = rhs.loadValue(); storeValue(value); } Float4::Float4(RValue<Float> rhs) : XYZW(this) { Value *vector = loadValue(); Value *insert = Nucleus::createInsertElement(vector, rhs.value, 0); int swizzle[4] = {0, 0, 0, 0}; Value *replicate = Nucleus::createShuffleVector(insert, insert, swizzle); storeValue(replicate); } Float4::Float4(const Float &rhs) : XYZW(this) { *this = RValue<Float>(rhs.loadValue()); } Float4::Float4(const Reference<Float> &rhs) : XYZW(this) { *this = RValue<Float>(rhs.loadValue()); } RValue<Float4> Float4::operator=(float x) { return *this = Float4(x, x, x, x); } RValue<Float4> Float4::operator=(RValue<Float4> rhs) { storeValue(rhs.value); return rhs; } RValue<Float4> Float4::operator=(const Float4 &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Float4>(value); } RValue<Float4> Float4::operator=(const Reference<Float4> &rhs) { Value *value = rhs.loadValue(); storeValue(value); return RValue<Float4>(value); } RValue<Float4> Float4::operator=(RValue<Float> rhs) { return *this = Float4(rhs); } RValue<Float4> Float4::operator=(const Float &rhs) { return *this = Float4(rhs); } RValue<Float4> Float4::operator=(const Reference<Float> &rhs) { return *this = Float4(rhs); } RValue<Float4> operator+(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFAdd(lhs.value, rhs.value)); } RValue<Float4> operator-(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFSub(lhs.value, rhs.value)); } RValue<Float4> operator*(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFMul(lhs.value, rhs.value)); } RValue<Float4> operator/(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFDiv(lhs.value, rhs.value)); } RValue<Float4> operator%(RValue<Float4> lhs, RValue<Float4> rhs) { return RValue<Float4>(Nucleus::createFRem(lhs.value, rhs.value)); } RValue<Float4> operator+=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs + rhs; } RValue<Float4> operator-=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs - rhs; } RValue<Float4> operator*=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs * rhs; } RValue<Float4> operator/=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs / rhs; } RValue<Float4> operator%=(Float4 &lhs, RValue<Float4> rhs) { return lhs = lhs % rhs; } RValue<Float4> operator+(RValue<Float4> val) { return val; } RValue<Float4> operator-(RValue<Float4> val) { return RValue<Float4>(Nucleus::createFNeg(val.value)); } RValue<Float4> Abs(RValue<Float4> x) { Value *vector = Nucleus::createBitCast(x.value, Int4::getType()); int64_t constantVector[4] = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; Value *result = Nucleus::createAnd(vector, Nucleus::createConstantVector(constantVector, Int4::getType())); return As<Float4>(result); } RValue<Float4> Max(RValue<Float4> x, RValue<Float4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::maxps(x, y); #else return As<Float4>(V(lowerPFMINMAX(V(x.value), V(y.value), llvm::FCmpInst::FCMP_OGT))); #endif } RValue<Float4> Min(RValue<Float4> x, RValue<Float4> y) { #if defined(__i386__) || defined(__x86_64__) return x86::minps(x, y); #else return As<Float4>(V(lowerPFMINMAX(V(x.value), V(y.value), llvm::FCmpInst::FCMP_OLT))); #endif } RValue<Float4> Rcp_pp(RValue<Float4> x, bool exactAtPow2) { #if defined(__i386__) || defined(__x86_64__) if(exactAtPow2) { // rcpps uses a piecewise-linear approximation which minimizes the relative error // but is not exact at power-of-two values. Rectify by multiplying by the inverse. return x86::rcpps(x) * Float4(1.0f / _mm_cvtss_f32(_mm_rcp_ss(_mm_set_ps1(1.0f)))); } return x86::rcpps(x); #else return As<Float4>(V(lowerRCP(V(x.value)))); #endif } RValue<Float4> RcpSqrt_pp(RValue<Float4> x) { #if defined(__i386__) || defined(__x86_64__) return x86::rsqrtps(x); #else return As<Float4>(V(lowerRSQRT(V(x.value)))); #endif } RValue<Float4> Sqrt(RValue<Float4> x) { #if defined(__i386__) || defined(__x86_64__) return x86::sqrtps(x); #else return As<Float4>(V(lowerSQRT(V(x.value)))); #endif } RValue<Float4> Insert(RValue<Float4> x, RValue<Float> element, int i) { return RValue<Float4>(Nucleus::createInsertElement(x.value, element.value, i)); } RValue<Float> Extract(RValue<Float4> x, int i) { return RValue<Float>(Nucleus::createExtractElement(x.value, Float::getType(), i)); } RValue<Float4> Swizzle(RValue<Float4> x, unsigned char select) { return RValue<Float4>(createSwizzle4(x.value, select)); } RValue<Float4> ShuffleLowHigh(RValue<Float4> x, RValue<Float4> y, unsigned char imm) { int shuffle[4] = { ((imm >> 0) & 0x03) + 0, ((imm >> 2) & 0x03) + 0, ((imm >> 4) & 0x03) + 4, ((imm >> 6) & 0x03) + 4, }; return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Float4> UnpackLow(RValue<Float4> x, RValue<Float4> y) { int shuffle[4] = {0, 4, 1, 5}; return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Float4> UnpackHigh(RValue<Float4> x, RValue<Float4> y) { int shuffle[4] = {2, 6, 3, 7}; return RValue<Float4>(Nucleus::createShuffleVector(x.value, y.value, shuffle)); } RValue<Float4> Mask(Float4 &lhs, RValue<Float4> rhs, unsigned char select) { Value *vector = lhs.loadValue(); Value *result = createMask4(vector, rhs.value, select); lhs.storeValue(result); return RValue<Float4>(result); } RValue<Int> SignMask(RValue<Float4> x) { #if defined(__i386__) || defined(__x86_64__) return x86::movmskps(x); #else return As<Int>(V(lowerFPSignMask(V(x.value), T(Int::getType())))); #endif } RValue<Int4> CmpEQ(RValue<Float4> x, RValue<Float4> y) { // return As<Int4>(x86::cmpeqps(x, y)); return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOEQ(x.value, y.value), Int4::getType())); } RValue<Int4> CmpLT(RValue<Float4> x, RValue<Float4> y) { // return As<Int4>(x86::cmpltps(x, y)); return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLT(x.value, y.value), Int4::getType())); } RValue<Int4> CmpLE(RValue<Float4> x, RValue<Float4> y) { // return As<Int4>(x86::cmpleps(x, y)); return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOLE(x.value, y.value), Int4::getType())); } RValue<Int4> CmpNEQ(RValue<Float4> x, RValue<Float4> y) { // return As<Int4>(x86::cmpneqps(x, y)); return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpONE(x.value, y.value), Int4::getType())); } RValue<Int4> CmpNLT(RValue<Float4> x, RValue<Float4> y) { // return As<Int4>(x86::cmpnltps(x, y)); return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGE(x.value, y.value), Int4::getType())); } RValue<Int4> CmpNLE(RValue<Float4> x, RValue<Float4> y) { // return As<Int4>(x86::cmpnleps(x, y)); return RValue<Int4>(Nucleus::createSExt(Nucleus::createFCmpOGT(x.value, y.value), Int4::getType())); } RValue<Int4> IsInf(RValue<Float4> x) { return CmpEQ(As<Int4>(x) & Int4(0x7FFFFFFF), Int4(0x7F800000)); } RValue<Int4> IsNan(RValue<Float4> x) { return ~CmpEQ(x, x); } RValue<Float4> Round(RValue<Float4> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::roundps(x, 0); } else { return Float4(RoundInt(x)); } #else return RValue<Float4>(V(lowerRound(V(x.value)))); #endif } RValue<Float4> Trunc(RValue<Float4> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::roundps(x, 3); } else { return Float4(Int4(x)); } #else return RValue<Float4>(V(lowerTrunc(V(x.value)))); #endif } RValue<Float4> Frac(RValue<Float4> x) { Float4 frc; #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { frc = x - Floor(x); } else { frc = x - Float4(Int4(x)); // Signed fractional part. frc += As<Float4>(As<Int4>(CmpNLE(Float4(0.0f), frc)) & As<Int4>(Float4(1.0f))); // Add 1.0 if negative. } #else frc = x - Floor(x); #endif // x - floor(x) can be 1.0 for very small negative x. // Clamp against the value just below 1.0. return Min(frc, As<Float4>(Int4(0x3F7FFFFF))); } RValue<Float4> Floor(RValue<Float4> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::floorps(x); } else { return x - Frac(x); } #else return RValue<Float4>(V(lowerFloor(V(x.value)))); #endif } RValue<Float4> Ceil(RValue<Float4> x) { #if defined(__i386__) || defined(__x86_64__) if(CPUID::supportsSSE4_1()) { return x86::ceilps(x); } else #endif { return -Floor(-x); } } Type *Float4::getType() { return T(llvm::VectorType::get(T(Float::getType()), 4)); } RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, int offset) { return lhs + RValue<Int>(Nucleus::createConstantInt(offset)); } RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, RValue<Int> offset) { return RValue<Pointer<Byte>>(Nucleus::createGEP(lhs.value, Byte::getType(), offset.value, false)); } RValue<Pointer<Byte>> operator+(RValue<Pointer<Byte>> lhs, RValue<UInt> offset) { return RValue<Pointer<Byte>>(Nucleus::createGEP(lhs.value, Byte::getType(), offset.value, true)); } RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, int offset) { return lhs = lhs + offset; } RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, RValue<Int> offset) { return lhs = lhs + offset; } RValue<Pointer<Byte>> operator+=(Pointer<Byte> &lhs, RValue<UInt> offset) { return lhs = lhs + offset; } RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, int offset) { return lhs + -offset; } RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, RValue<Int> offset) { return lhs + -offset; } RValue<Pointer<Byte>> operator-(RValue<Pointer<Byte>> lhs, RValue<UInt> offset) { return lhs + -offset; } RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, int offset) { return lhs = lhs - offset; } RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, RValue<Int> offset) { return lhs = lhs - offset; } RValue<Pointer<Byte>> operator-=(Pointer<Byte> &lhs, RValue<UInt> offset) { return lhs = lhs - offset; } void Return() { Nucleus::createRetVoid(); Nucleus::setInsertBlock(Nucleus::createBasicBlock()); Nucleus::createUnreachable(); } void Return(RValue<Int> ret) { Nucleus::createRet(ret.value); Nucleus::setInsertBlock(Nucleus::createBasicBlock()); Nucleus::createUnreachable(); } void branch(RValue<Bool> cmp, BasicBlock *bodyBB, BasicBlock *endBB) { Nucleus::createCondBr(cmp.value, bodyBB, endBB); Nucleus::setInsertBlock(bodyBB); } RValue<Long> Ticks() { llvm::Function *rdtsc = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::readcyclecounter); return RValue<Long>(V(::builder->CreateCall(rdtsc))); } } namespace rr { #if defined(__i386__) || defined(__x86_64__) namespace x86 { RValue<Int> cvtss2si(RValue<Float> val) { llvm::Function *cvtss2si = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_cvtss2si); Float4 vector; vector.x = val; return RValue<Int>(V(::builder->CreateCall(cvtss2si, ARGS(V(RValue<Float4>(vector).value))))); } RValue<Int4> cvtps2dq(RValue<Float4> val) { llvm::Function *cvtps2dq = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_cvtps2dq); return RValue<Int4>(V(::builder->CreateCall(cvtps2dq, ARGS(V(val.value))))); } RValue<Float> rcpss(RValue<Float> val) { llvm::Function *rcpss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rcp_ss); Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0); return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(rcpss, ARGS(V(vector)))), Float::getType(), 0)); } RValue<Float> sqrtss(RValue<Float> val) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *sqrtss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_sqrt_ss); Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0); return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(sqrtss, ARGS(V(vector)))), Float::getType(), 0)); #else llvm::Function *sqrt = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::sqrt, {V(val.value)->getType()}); return RValue<Float>(V(::builder->CreateCall(sqrt, ARGS(V(val.value))))); #endif } RValue<Float> rsqrtss(RValue<Float> val) { llvm::Function *rsqrtss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rsqrt_ss); Value *vector = Nucleus::createInsertElement(V(llvm::UndefValue::get(T(Float4::getType()))), val.value, 0); return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall(rsqrtss, ARGS(V(vector)))), Float::getType(), 0)); } RValue<Float4> rcpps(RValue<Float4> val) { llvm::Function *rcpps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rcp_ps); return RValue<Float4>(V(::builder->CreateCall(rcpps, ARGS(V(val.value))))); } RValue<Float4> sqrtps(RValue<Float4> val) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *sqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_sqrt_ps); #else llvm::Function *sqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::sqrt, {V(val.value)->getType()}); #endif return RValue<Float4>(V(::builder->CreateCall(sqrtps, ARGS(V(val.value))))); } RValue<Float4> rsqrtps(RValue<Float4> val) { llvm::Function *rsqrtps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_rsqrt_ps); return RValue<Float4>(V(::builder->CreateCall(rsqrtps, ARGS(V(val.value))))); } RValue<Float4> maxps(RValue<Float4> x, RValue<Float4> y) { llvm::Function *maxps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_max_ps); return RValue<Float4>(V(::builder->CreateCall2(maxps, ARGS(V(x.value), V(y.value))))); } RValue<Float4> minps(RValue<Float4> x, RValue<Float4> y) { llvm::Function *minps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_min_ps); return RValue<Float4>(V(::builder->CreateCall2(minps, ARGS(V(x.value), V(y.value))))); } RValue<Float> roundss(RValue<Float> val, unsigned char imm) { llvm::Function *roundss = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_round_ss); Value *undef = V(llvm::UndefValue::get(T(Float4::getType()))); Value *vector = Nucleus::createInsertElement(undef, val.value, 0); return RValue<Float>(Nucleus::createExtractElement(V(::builder->CreateCall3(roundss, ARGS(V(undef), V(vector), V(Nucleus::createConstantInt(imm))))), Float::getType(), 0)); } RValue<Float> floorss(RValue<Float> val) { return roundss(val, 1); } RValue<Float> ceilss(RValue<Float> val) { return roundss(val, 2); } RValue<Float4> roundps(RValue<Float4> val, unsigned char imm) { llvm::Function *roundps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_round_ps); return RValue<Float4>(V(::builder->CreateCall2(roundps, ARGS(V(val.value), V(Nucleus::createConstantInt(imm)))))); } RValue<Float4> floorps(RValue<Float4> val) { return roundps(val, 1); } RValue<Float4> ceilps(RValue<Float4> val) { return roundps(val, 2); } RValue<Int4> pabsd(RValue<Int4> x) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pabsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_ssse3_pabs_d_128); return RValue<Int4>(V(::builder->CreateCall(pabsd, ARGS(V(x.value))))); #else return RValue<Int4>(V(lowerPABS(V(x.value)))); #endif } RValue<Short4> paddsw(RValue<Short4> x, RValue<Short4> y) { llvm::Function *paddsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_padds_w); return As<Short4>(V(::builder->CreateCall2(paddsw, ARGS(V(x.value), V(y.value))))); } RValue<Short4> psubsw(RValue<Short4> x, RValue<Short4> y) { llvm::Function *psubsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubs_w); return As<Short4>(V(::builder->CreateCall2(psubsw, ARGS(V(x.value), V(y.value))))); } RValue<UShort4> paddusw(RValue<UShort4> x, RValue<UShort4> y) { llvm::Function *paddusw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_paddus_w); return As<UShort4>(V(::builder->CreateCall2(paddusw, ARGS(V(x.value), V(y.value))))); } RValue<UShort4> psubusw(RValue<UShort4> x, RValue<UShort4> y) { llvm::Function *psubusw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubus_w); return As<UShort4>(V(::builder->CreateCall2(psubusw, ARGS(V(x.value), V(y.value))))); } RValue<SByte8> paddsb(RValue<SByte8> x, RValue<SByte8> y) { llvm::Function *paddsb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_padds_b); return As<SByte8>(V(::builder->CreateCall2(paddsb, ARGS(V(x.value), V(y.value))))); } RValue<SByte8> psubsb(RValue<SByte8> x, RValue<SByte8> y) { llvm::Function *psubsb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubs_b); return As<SByte8>(V(::builder->CreateCall2(psubsb, ARGS(V(x.value), V(y.value))))); } RValue<Byte8> paddusb(RValue<Byte8> x, RValue<Byte8> y) { llvm::Function *paddusb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_paddus_b); return As<Byte8>(V(::builder->CreateCall2(paddusb, ARGS(V(x.value), V(y.value))))); } RValue<Byte8> psubusb(RValue<Byte8> x, RValue<Byte8> y) { llvm::Function *psubusb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psubus_b); return As<Byte8>(V(::builder->CreateCall2(psubusb, ARGS(V(x.value), V(y.value))))); } RValue<UShort4> pavgw(RValue<UShort4> x, RValue<UShort4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pavgw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pavg_w); return As<UShort4>(V(::builder->CreateCall2(pavgw, ARGS(V(x.value), V(y.value))))); #else return As<UShort4>(V(lowerPAVG(V(x.value), V(y.value)))); #endif } RValue<Short4> pmaxsw(RValue<Short4> x, RValue<Short4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pmaxsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmaxs_w); return As<Short4>(V(::builder->CreateCall2(pmaxsw, ARGS(V(x.value), V(y.value))))); #else return As<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT))); #endif } RValue<Short4> pminsw(RValue<Short4> x, RValue<Short4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pminsw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmins_w); return As<Short4>(V(::builder->CreateCall2(pminsw, ARGS(V(x.value), V(y.value))))); #else return As<Short4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT))); #endif } RValue<Short4> pcmpgtw(RValue<Short4> x, RValue<Short4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pcmpgtw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpgt_w); return As<Short4>(V(::builder->CreateCall2(pcmpgtw, ARGS(V(x.value), V(y.value))))); #else return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Short4::getType())))); #endif } RValue<Short4> pcmpeqw(RValue<Short4> x, RValue<Short4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pcmpeqw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpeq_w); return As<Short4>(V(::builder->CreateCall2(pcmpeqw, ARGS(V(x.value), V(y.value))))); #else return As<Short4>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Short4::getType())))); #endif } RValue<Byte8> pcmpgtb(RValue<SByte8> x, RValue<SByte8> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pcmpgtb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpgt_b); return As<Byte8>(V(::builder->CreateCall2(pcmpgtb, ARGS(V(x.value), V(y.value))))); #else return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_SGT, V(x.value), V(y.value), T(Byte8::getType())))); #endif } RValue<Byte8> pcmpeqb(RValue<Byte8> x, RValue<Byte8> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pcmpeqb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pcmpeq_b); return As<Byte8>(V(::builder->CreateCall2(pcmpeqb, ARGS(V(x.value), V(y.value))))); #else return As<Byte8>(V(lowerPCMP(llvm::ICmpInst::ICMP_EQ, V(x.value), V(y.value), T(Byte8::getType())))); #endif } RValue<Short4> packssdw(RValue<Int2> x, RValue<Int2> y) { llvm::Function *packssdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packssdw_128); return As<Short4>(V(::builder->CreateCall2(packssdw, ARGS(V(x.value), V(y.value))))); } RValue<Short8> packssdw(RValue<Int4> x, RValue<Int4> y) { llvm::Function *packssdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packssdw_128); return RValue<Short8>(V(::builder->CreateCall2(packssdw, ARGS(V(x.value), V(y.value))))); } RValue<SByte8> packsswb(RValue<Short4> x, RValue<Short4> y) { llvm::Function *packsswb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packsswb_128); return As<SByte8>(V(::builder->CreateCall2(packsswb, ARGS(V(x.value), V(y.value))))); } RValue<Byte8> packuswb(RValue<Short4> x, RValue<Short4> y) { llvm::Function *packuswb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_packuswb_128); return As<Byte8>(V(::builder->CreateCall2(packuswb, ARGS(V(x.value), V(y.value))))); } RValue<UShort8> packusdw(RValue<Int4> x, RValue<Int4> y) { if(CPUID::supportsSSE4_1()) { llvm::Function *packusdw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_packusdw); return RValue<UShort8>(V(::builder->CreateCall2(packusdw, ARGS(V(x.value), V(y.value))))); } else { RValue<Int4> bx = (x & ~(x >> 31)) - Int4(0x8000); RValue<Int4> by = (y & ~(y >> 31)) - Int4(0x8000); return As<UShort8>(packssdw(bx, by) + Short8(0x8000u)); } } RValue<UShort4> psrlw(RValue<UShort4> x, unsigned char y) { llvm::Function *psrlw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_w); return As<UShort4>(V(::builder->CreateCall2(psrlw, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<UShort8> psrlw(RValue<UShort8> x, unsigned char y) { llvm::Function *psrlw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_w); return RValue<UShort8>(V(::builder->CreateCall2(psrlw, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Short4> psraw(RValue<Short4> x, unsigned char y) { llvm::Function *psraw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_w); return As<Short4>(V(::builder->CreateCall2(psraw, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Short8> psraw(RValue<Short8> x, unsigned char y) { llvm::Function *psraw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_w); return RValue<Short8>(V(::builder->CreateCall2(psraw, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Short4> psllw(RValue<Short4> x, unsigned char y) { llvm::Function *psllw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_w); return As<Short4>(V(::builder->CreateCall2(psllw, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Short8> psllw(RValue<Short8> x, unsigned char y) { llvm::Function *psllw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_w); return RValue<Short8>(V(::builder->CreateCall2(psllw, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Int2> pslld(RValue<Int2> x, unsigned char y) { llvm::Function *pslld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_d); return As<Int2>(V(::builder->CreateCall2(pslld, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Int4> pslld(RValue<Int4> x, unsigned char y) { llvm::Function *pslld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pslli_d); return RValue<Int4>(V(::builder->CreateCall2(pslld, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Int2> psrad(RValue<Int2> x, unsigned char y) { llvm::Function *psrad = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_d); return As<Int2>(V(::builder->CreateCall2(psrad, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Int4> psrad(RValue<Int4> x, unsigned char y) { llvm::Function *psrad = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrai_d); return RValue<Int4>(V(::builder->CreateCall2(psrad, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<UInt2> psrld(RValue<UInt2> x, unsigned char y) { llvm::Function *psrld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_d); return As<UInt2>(V(::builder->CreateCall2(psrld, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<UInt4> psrld(RValue<UInt4> x, unsigned char y) { llvm::Function *psrld = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_psrli_d); return RValue<UInt4>(V(::builder->CreateCall2(psrld, ARGS(V(x.value), V(Nucleus::createConstantInt(y)))))); } RValue<Int4> pmaxsd(RValue<Int4> x, RValue<Int4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pmaxsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmaxsd); return RValue<Int4>(V(::builder->CreateCall2(pmaxsd, ARGS(V(x.value), V(y.value))))); #else return RValue<Int4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SGT))); #endif } RValue<Int4> pminsd(RValue<Int4> x, RValue<Int4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pminsd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pminsd); return RValue<Int4>(V(::builder->CreateCall2(pminsd, ARGS(V(x.value), V(y.value))))); #else return RValue<Int4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_SLT))); #endif } RValue<UInt4> pmaxud(RValue<UInt4> x, RValue<UInt4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pmaxud = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmaxud); return RValue<UInt4>(V(::builder->CreateCall2(pmaxud, ARGS(V(x.value), V(y.value))))); #else return RValue<UInt4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_UGT))); #endif } RValue<UInt4> pminud(RValue<UInt4> x, RValue<UInt4> y) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pminud = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pminud); return RValue<UInt4>(V(::builder->CreateCall2(pminud, ARGS(V(x.value), V(y.value))))); #else return RValue<UInt4>(V(lowerPMINMAX(V(x.value), V(y.value), llvm::ICmpInst::ICMP_ULT))); #endif } RValue<Short4> pmulhw(RValue<Short4> x, RValue<Short4> y) { llvm::Function *pmulhw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulh_w); return As<Short4>(V(::builder->CreateCall2(pmulhw, ARGS(V(x.value), V(y.value))))); } RValue<UShort4> pmulhuw(RValue<UShort4> x, RValue<UShort4> y) { llvm::Function *pmulhuw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulhu_w); return As<UShort4>(V(::builder->CreateCall2(pmulhuw, ARGS(V(x.value), V(y.value))))); } RValue<Int2> pmaddwd(RValue<Short4> x, RValue<Short4> y) { llvm::Function *pmaddwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmadd_wd); return As<Int2>(V(::builder->CreateCall2(pmaddwd, ARGS(V(x.value), V(y.value))))); } RValue<Short8> pmulhw(RValue<Short8> x, RValue<Short8> y) { llvm::Function *pmulhw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulh_w); return RValue<Short8>(V(::builder->CreateCall2(pmulhw, ARGS(V(x.value), V(y.value))))); } RValue<UShort8> pmulhuw(RValue<UShort8> x, RValue<UShort8> y) { llvm::Function *pmulhuw = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmulhu_w); return RValue<UShort8>(V(::builder->CreateCall2(pmulhuw, ARGS(V(x.value), V(y.value))))); } RValue<Int4> pmaddwd(RValue<Short8> x, RValue<Short8> y) { llvm::Function *pmaddwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmadd_wd); return RValue<Int4>(V(::builder->CreateCall2(pmaddwd, ARGS(V(x.value), V(y.value))))); } RValue<Int> movmskps(RValue<Float4> x) { llvm::Function *movmskps = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse_movmsk_ps); return RValue<Int>(V(::builder->CreateCall(movmskps, ARGS(V(x.value))))); } RValue<Int> pmovmskb(RValue<Byte8> x) { llvm::Function *pmovmskb = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse2_pmovmskb_128); return RValue<Int>(V(::builder->CreateCall(pmovmskb, ARGS(V(x.value))))) & 0xFF; } RValue<Int4> pmovzxbd(RValue<Byte16> x) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pmovzxbd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovzxbd); return RValue<Int4>(V(::builder->CreateCall(pmovzxbd, ARGS(V(x.value))))); #else return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), false))); #endif } RValue<Int4> pmovsxbd(RValue<SByte16> x) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pmovsxbd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovsxbd); return RValue<Int4>(V(::builder->CreateCall(pmovsxbd, ARGS(V(x.value))))); #else return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), true))); #endif } RValue<Int4> pmovzxwd(RValue<UShort8> x) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pmovzxwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovzxwd); return RValue<Int4>(V(::builder->CreateCall(pmovzxwd, ARGS(V(x.value))))); #else return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), false))); #endif } RValue<Int4> pmovsxwd(RValue<Short8> x) { #if REACTOR_LLVM_VERSION < 7 llvm::Function *pmovsxwd = llvm::Intrinsic::getDeclaration(::module, llvm::Intrinsic::x86_sse41_pmovsxwd); return RValue<Int4>(V(::builder->CreateCall(pmovsxwd, ARGS(V(x.value))))); #else return RValue<Int4>(V(lowerPMOV(V(x.value), T(Int4::getType()), true))); #endif } } #endif // defined(__i386__) || defined(__x86_64__) }